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ABSTRACT

On the following pages this project will investigate the well known Funda-
mental Theorem of Calculus. It will first focus on what the theorem means
today. Later, it will look at the specific conditions that need to be met for the
application of the theorem and it will analyse different approaches of some
mathematicians throughout the 17th and the 18th century, and how that
has affected the evolution of the understanding of this important concept.
The topic is especially interesting since after a detailed scrutiny it can be
realised how important mathematical rigorousness is, even over a spectrum
of hundreds of years.
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INTRODUCTION

The analytical geometry of Descartes and the calculus of Newton and
Leibniz have expanded into the marvelous mathematical method more daring

than anything that the history of philosophy records of Lobachevsky and
Riemann, Gauss and Sylvester. Indeed, mathematics, the indispensable tool

of the sciences, defying the senses to follow its splendid flights, is
demonstrating today, as it never has been demonstrated before, the

supremacy of the pure reason.
Nicholas Murray Butler 1

Calculus has certainly been evolving over the past centuries. Even though
the ability of the mathematicians to perform calculus was limited before the
time of Newton, the concepts were not unfamiliar to them. Greek mathemati-
cians already knew how to integrate and understood the concept, however
their approach was much different. Differentiation was also not a strange con-
cept to mathematicians centuries ago and they studied this notion in terms
of motion. The invention of the Fundamental Theorem of Calculus was a
breakthrough not because of the ability to perform these operations but be-
cause of the ability to recognise the link between them. Until the seventeenth
century, people viewed the integration and differentiation as two unlinked op-
erations and the realisation that in some aspect they were actually inverse
of each other was astonishing and transcendental.

In this project I will firstly analyse the theorem itself followed by stating
its formal definition and the proof. Then, I will look at the different inter-
pretations made by some renowned mathematicians and try to understand
their approach to the FTC. Meanwhile, I will see whether the seventeenth
and early eighteenth century approach was rigorous enough and if not, I will
try to explain why. Finally,I will provide an overall conclusion.

1Moritz, Robert Edouard. Memorabilia mathematica; or, The philomath’s quotation-
book. The Macmillan Company, 1914.
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THE MODERN VERSION OF THE FUNDAMENTAL
THEOREM OF CALCULUS.
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Figure 1: Representation of the fundamental theorem
of calculus.

The fundamental
theorem of calculus
reveals a close rela-
tion between two im-
portant concepts of
calculus, the deriva-
tive and the integral;
this was not recog-
nised before the ex-
istence of the theo-
rem even though the
ancient mathemati-
cians perfectly knew
how to integrate and
differentiate a long
time before the discovery. This is why this connection is the real break-
through, and not the ability to perform the operations themselves, hence
being given the name ‘Fundamental Theorem of Calculus’. The theorem can
be interpreted in a geometrical and a physical manner. It is important to
understand both and to be able to switch between them in order to grasp
the full idea.

Geometrically speaking, taking any continuous function, say f , any value
x will have a corresponding area under the function, A(x) as represented in
Figure 1. This is what we understand as the definite integral of a function,
noting that the area under the curve is not a function but a set of functions
and can be negative if it is located below the x axis. The area between x and
x + h can be calculated by subtracting the area between 0 and x from the
area between 0 and x+h, therefore the needed area would be A(x+h)−A(x).

Another way of looking at the problem is estimating the needed area to
be found, here A(x), using the method for finding the area of a rectangle and
keeping in mind that the rate at which the area is changing is equal to the
height of the function. Then A(x+ h)−A(x) is estimated to bef(x)× h. If
the presence of the excess is taken into account(as marked in Figure 1) then
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the estimation becomes an equality, A(x+ h)−A(x) = f(x)× h−′ excess′.
After rearranging the terms, so that f(x) is the subject of the equation, we
observe that the term including the excess of the area divided by h, tends
to zero as h does, and therefore disappears from the equation. This can be
explained as follows. If we take the height of the black rectangle to be a, then
the area will be ah; dividing the area by h will simply yield in the height of
the rectangle, ah

h
= a, and it does go to zero when h does, so the excess does

too. We get the following result:

f(x) = limh→0
A(x+ h)− A(x)

h
,

that is f(x) = A′(x) following the definition of the derivative. We can con-
clude that the derivative of the area function is the original function itself!
It can be easily noticed from this implementation that the computation of
the antiderivative of a function, that is the area function, and the derivative
of the function, that is the rate of change of the area with respect to x, are
inverse operations; and this is the epicentre of the Fundamental Theorem of
Calculus.

The physical way of stating the theorem is to look at it in terms of
distance and time. One could calculate any journey travelled by adding
up its small intervals. To calculate the distance travelled in each interval
we would use the basic theory of distance=speed × time, and by adding
multiples of the velocity and time for the corresponding intervals we achieve
the total distance. However, similarly as in the geometrical approach, the
small intervals of time would disappear when dealing with such big sums
and the overall distance travelled would become simply the summation of
the velocities, which is the same as saying the integral of the velocity, since
we know that summation corresponds to the integration process. Due to the
fact that the derivative of the position function is the velocity, we clearly see
that integrating velocity recovers the original position, hence the core idea
of the Fundamental Theorem of Calculus.

Before further analysis of the theorem, I will state the following
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Definition 1
Let f be a function defined on a real, closed interval, [a, b]. Let P be the
partition of the interval such that
P = [x0, x1], [x1, x2], ..., [xn−1, xn],
where
a = x0 < x1 < x2 < ... < xn = b.
The Riemann sum of f over the interval [a, b] with partition P is defined as:

S =
n∑

i=1

f(x∗i )(xi − xi−1), xi−1 ≤ x∗i ≤ xi.

The choice of x∗i in the interval [xi−1, xi] is arbitrary. 3

4

Figure 2: Upper and lower Riemann sums.

Definition 2
We define the upper Rie-
mann sum of f with re-
spect to the partition P
by

U(f ;P ) =
n∑

k=1

Mk(xk−xk−1)

where
Mk = sup{f(x) : x ∈
[xk−1, xk]} relating to the in-
terval [xk−1,xk].

We define the lower Riemann
sum of f with respect to the
partition P by

L(f ;P ) =
n∑

k=1

mk(xk − xk−1)

where mk = inf{f(x) : x ∈ [xk−1, xk]} relating to the interval [xk−1,xk].
For a particular partition P , we always have U(f ;P ) ≥ L(f ;P ). 5

3Thomas, George B. Jr.; Finney, Ross L. (1996), Calculus and Analytic Geometry (9th
ed.), Addison Wesley, ISBN 0-201-53174-7,p.312

5Stephen Abbott, (2001), Understanding Analysis, Springer, ISBN 978-0-387-21506-8,
p.186-187
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The shaded areas in the graph above (Figure 2) show the lower and upper
sums of the Riemann sum for a constant mesh size (i.e. the length of the
longest subinterval).

Figure 3: Partitions P and P ′ over the
same interval

Definition 3
Let R be the collection of all possible
partitions of the closed interval [a, b].
The upper Riemann integral of f is
defined to be

U(f) = inf{U(f ;P ) : P ∈ R}

Similarly, we define the lower Rie-
mann integral of f by

L(f) = sup{U(f ;P ) : P ∈ R}

For any bounded function f on [a, b]
it is always the case that U(f) ≥ L(f). 6

On an additional note, if we take two partitions, P and P ′, over the same
closed interval [a, b] (represented in Figure 3), where P ′ is a refinement of
P ,7 then U(f ;P ) ≥ U(f ;P ′).
By the same analogy we have L(f ;P ) ≤ L(f, P ′) and U(f ;P ) ≥ L(f ;P ).
Therefore it can be concluded that U(f ;P )− L(f ;P ) ≥ 0.
Moreover, infP(U(f ;P )− L(f ;P )) = 0⇒ infP U(f ;P ) = supPL(f ;P )
and by the definition of U(f) and L(f) we have U(f) = L(f).

Definition 4
Let f be a function defined over R. Then we say that f is Riemann integrable
everywhere if, for all [a, b],

inf{U(f ;P )− L(f ;P )} = 0.

where the infimum is taken over all partitions of [a, b].

6Stephen Abbott, (2001), Understanding Analysis, Springer, ISBN 978-0-387-21506-8,
p.188

7It means that P ′ contains at least all of the points of P ; it could contain extra points.
We say that P ′ is ’finer’ than P .
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Lemma 1
If f is a bounded, Riemann integrable function then its upper integral, U(f),
and its lower integral, L(f), are equal. That is

U(f) = L(f)

Definition 5
We define the Riemann integral of f to be

U(f) = L(f) =
∫ b

a
f(x)dx.

It is the common value of U(f) and L(f). 8

Proposition 1
If f is a Riemann integrable function then it is bounded. 9

The Proposition implies that an unbounded function is never Riemann inte-
grable (by applying the contrapositive of the statement).

Proof
We will prove this by contradiction. First assume that f is not bounded.
Then by Definition 4 we see that

inf {U(f ;P )− L(f ;P )} 6= 0

This is because if a function is unbounded then the upper integral will be
infinite whilst the lower integral will be finite so the infimum will never be
equal to 0. That means that the upper and the lower integrals are not the
same, i.e.

U(f) 6= L(f)

This implies (by Lemma 1) that the function is not Riemann integrable.
Therefore we get the result.
Q.E.D.

8 Stephen Abbott, (2001), Understanding Analysis, Springer, ISBN 978-0-387-21506-8,
p.188

9Max Jodeit,(2000),Introduction to Riemann integration, using Riemann sums, School
of Mathematics, University of Minnesota
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Theorem 1 Lebesgue criterion for Riemann Integrability.

Let f be a function defined on a closed interval, [a, b], over R. Then f is
Riemann integrable if and only if it is bounded and continuous almost ev-
erywhere, i.e. the set of discontinuities of f has measure 0. 10

On another note however, there exist functions that are integrable, but
not Riemann integrable. An example of such a function would be a function
f defined over a closed interval [0, 1] by

f(x) =

{
1, if x 6∈ Q
0, if x ∈ Q

The function is bounded and can be regarded as continuous almost ev-
erywhere, as f(x) = 1, except on a set of measure zero; that is on the set of
rational points in [0, 1], where it is not continuous. Such functions are not
Riemann integrable, but Lebesgue integrable. It is important to highlight
that the FTC does not relate to functions of this type. We need to deal
with functions that are Riemann integrable only and therefore satisfy the
Lebesgue criterion for Riemann integrability.

Theorem 2. (Integrability of Continuous Functions.)
Suppose that f is a continuous function on a closed interval [a, b]. Then f is
Riemann integrable over [a, b]. 11

It is important to raise one point before moving further. The indefinite
integral can be defined as the antiderivative of a function which means that
we can apply it to the differentiated function in order to get back to the
original function; it is simply understood to be the opposite operation of the
derivative. Mathematically speaking, an antiderivative of a function f(x)
is a function g(x) such that g′(x) = f(x). The function g(x) exists if f(x)

10R. Chen, ”Lebesgue Criterion for Riemann Integrability, Advanced Calcu-
lus,Department of Mathematics, National Cheng Kung University, Taiwan, 4th May
2011,p.2

11This theorem is weaker than Theorem 1. Sourced from: Prof Bill Jack-
son,(2013),Calculus I,Thomas’ Calculus,Sections 5.2 to 5.5, School of Mathematical Sci-
ences,Queen Mary University of London
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is continuous. The antiderivative of a function is not unique. If we take
a function f(x) then its antiderivative is g(x) but, it is also g(x) + C for
some constant C (further details explained below). The definite integral is
understood as the area function, that is the area under the curve as x varies.
The fundamental theorem of calculus states that the two are equivalent (this
is where the lack of uniqueness comes from).

Further explanation: If we let f(x) be a function for which there exists
an antiderivative g(x), then we can say that this antiderivative could also be
g(x) + C, where C is some constant. This is because if A(x) and g(x) are
primitives of f(x) then we know that A(x) − g(x) = C. After rearranging,
we get A(x) = g(x) + C where A(x) is the area function of f(x).

As discussed above, the theorem is understood that integration and differ-
entiation are inverse operations, however this raises certain difficulties. The
assumption leads us to think that a derivative of a differentiable function is
always integrable, and we do know that derivatives of some functions, espe-
cially of ones that oscillate fast as they approach end points12 and remain
differentiable in such manners, are not integrable. An example of such a
function would be

f(x) =

{
0, if x = 0

x2 sin( 1
x2 ), if x 6= 0

where x ∈ R : x 6= 0. The appearance of the function is presented in Figure
4, where the smaller figure is showing what is happening over a much smaller
interval.
Firstly, I will differentiate for x 6= 0. The following is obtained:

f ′(x) = 2x2 sin( 1
x2 )− 2

x
cos( 1

x2 ).

The function is presented in Figure 5.
For x = 0 the differentiation is a little bit more tricky, because I cannot sim-
ply differentiate the value 0. I will need to use the definition of a derivative.
We know that a derivative of a function f at a value a is

12If we take a function xa cos(
1

xb
), where a, b ∈ Q then the condition for a function that

oscillates fast would be a − 1 < b. In this case essential singularity always occurs that
gives raise to the oscillation. Obviously, the greater the difference in the inequality the
more rapid the oscillation.
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Figure 4: The representation of the original function f(x)

f ′(a) = limh→0
f(a+ h)− f(a)

h
.

We can easily substitute a = 0 to get the following:

f ′(0) = limh→0
f(h)− f(0)

h
=

= limh→0

h2sin( 1
h2 )− 0

h
=

= limh→0

h2sin( 1
h2 )

h
=

= limh→0 hsin(
1

h2
) = 0.

It is very clear that the above limit goes to zero as h does. Summariz-
ing, we obtain the following function:

f ′(x) =

{
0, if x = 0

2xsin( 1
x2 )− 2

x
cos( 1

x2 ), if x 6= 0

The derivative of the function when x 6= 0 is represented in Figure 5.
Something interesting happens when we take the derivative. Namely, at

x 6= 0 the term
2

x
implies that the function is not bounded, in fact it im-
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Figure 5: The representation of the derivative of f(x)

plies that it oscillates unboundedly as x tends to 0. This leads us to a quick
conclusion that the unbounded function is not Riemann integrable by Propo-
sition 1. This is a contradiction.

Another assumption that one might draw would be that if he takes a
function and integrates it, its antiderivative will always be differentiable.
However, this is impossible for some functions. As an example of this, let us
take a function g defined below. The plot is represented in Figure 6.

g(x) =

{
1, if x ≥ 0

−1, if x < 0

This function is not continuous, however it is Riemann integrable. We can
define its integral as

G(t) =
∫ t

0
g(x)dx = |t|.

By looking at Figure 7 we see that the antiderivative has a kink at the
origin. This implies that the function cannot be differentiated at that point
and hence is not differentiable everywhere. Summarizing, the integral cannot
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be differentiated back to the original Riemann integrable function; this is a
contradiction.

The counterexamples stated above raise an important point. One should
be careful whilst defining the types of the functions for which the theorem
works. We should not state the theorem without making very specific as-
sumptions about the functions, because, as shown in the aforementioned, it
does not work in absolutely all cases and therefore we cannot define it as such.
The examples have shown us that in order for the Fundamental Theorem of
Calculus to work, the functions need to be continuous and Riemann inte-
grable. I will talk about the needed assumptions and the mistakes that have
risen due to the lack of carefully defining the functions further in the next
Chapter, whilst analysing proofs of different mathematicians over the past
centuries.

Figure 6: The representation of the function
g(x)

Before officially stating the
theorem and its proof, there
are additional definitions and
properties that need to be
stated, such as the definition
of continuity or the prop-
erties of Riemann Integrals.
They can be seen below.
I will refer to these later
on.
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Figure 7: The representation of the antiderivative of the function g(x)

Definition 6

f is continuous at c if and only if ∀ε > 0, ∃δ > 0 such that,

| x− c |< δ ⇒| f(x)− f(c) |< ε.

Theorem 3. (Properties of Riemann Integrals)

Suppose that f and g are Riemann integrable functions defined on [a, b]
and that a < c < b. Then the following rules apply:

Rule 1.
∫ b

a
f(x)dx+

∫ b

a
g(x)dx =

∫ b

a
(f(x) + g(x))dx.

Rule 2.
∫ c

a
f(x)dx+

∫ b

c
f(x)dx =

∫ b

a
f(x)dx.

Rule 3.
∫ b

a
(cf(x) + dg(x))dx = c

∫ b

a
f(x)dx+ d

∫ b

a
g(x)dx.

Rule 4. |
∫ b

a
f(x)dx |≤

∫ b

a
| f(x) | dx.

Rule 5. If g(x) < f(x) then
∫ b

a
g(x)dx ≤

∫ b

a
f(x)dx.
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Rule 6. With the conditions assumed above f(x)g(x) is integrable on [a, b].

Rule 7.
∫ b

a
f(x)dx−

∫ c

a
f(x)dx =

∫ b

c
f(x)dx.

13

13Prof Bill Jackson,(2013),Calculus I,Thomas’ Calculus,Sections 5.2 to 5.5, School of
Mathematical Sciences,Queen Mary University of London
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FUNDAMENTAL THEOREM OF CALCULUS, PART I

Suppose that f is a bounded, Riemann integrable function defined on a
closed, bounded interval [a, b]. Define F (x) =

∫ x

a
f(t)dt. Then F is contin-

uous in [a, b]. If f is also continuous, then F is differentiable in (a, b) and
F ′(x) = f(x) for all x ∈ (a, b).

This part shows how to construct an anti-derivative from a definite integral
and therefore is called the anti-derivative part of the theorem.

FUNDAMENTAL THEOREM OF CALCULUS, PART II

Let f be continuous on [a, b] and let G be any anti-derivative of f , then:

∫ b

a
f(t)dt = G(b)−G(a).

This is the opposite to the first part, that is a construction of the definite
integral using the anti-derivative, called the evaluation part of the theorem.

PROOF, PART I

We know that f is Riemann integrable on [a, b], so it is bounded on [a, b],
by Proposition 1. Therefore there must exist some M such that
| f(t) |≤M ∀t ∈ [a, b].

Now, let’s take an arbitrary c ∈ [a, b] and prove that F is continuous at
c.
For any x ∈ [a, b] we have

| F (x)− F (c) |=

=|
∫ x

a
f(t)dt−

∫ c

a
f(t)dt |=

=|
∫ x

c
f(t)dt |≤

≤|
∫ x

c
| f(t) | dt |≤

≤|
∫ x

c
Mdt |=
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= M | x− c |.

Some explanations: The first equality holds by definition of F . The sec-
ond by Rule 7. The third inequality by Rule 4. The last inequality holds
because | f(t) |≤M as mentioned earlier.

Now given ε > 0, we choose δ =
ε

M
.

Then if | x− c |< δ then | F (x)− F (c) |≤M | x− c |< Mδ = M
ε

M
= ε.

Summarising, if | x − c |< δ then | F (x) − F (c) |< ε, which is the def-
inition of continuity, so we can say that F is continuous at c. Since c is
arbitrary (as assumed at the beginning), we deduce that F is continuous
anywhere on the interval [a, b].
Now assume that f is continuous and let c ∈ (a, b) and x ∈ [a, b]. Then∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ =

=

∣∣∣∣
∫ x

a
f(t)dt−

∫ c

a
f(t)dt

x− c
− f(c)

∣∣∣∣ =

=

∣∣∣∣
∫ x

c
f(t)dt

x− c
− f(c)

∣∣∣∣ =

=

∣∣∣∣
∫ x

c
(f(x)− f(c)))dt

x− c

∣∣∣∣ ≤
≤
∣∣∣∣
∫ x

c
| f(t)− f(c) | dt

x− c

∣∣∣∣.
The first equality holds by definition of F . The second by Rule 7. The
third equality comes from the fact that f(c) is constant. Finally, the last
inequality holds by Rule 4.

16



We assumed that f is continuous and this, by the definition of continuity,
means that given
ε > 0, ∃δ > 0 such that | f(t)− f(c) |< ε for | t− c |< δ.
Then for 0 <| x− c |< δ we have∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ ≤ ∣∣∣∣
∫ x

c
| f(t)− f(c) | dt

x− c

∣∣∣∣ ≤ ∣∣∣∣
∫ x

c
εdt

x− c

∣∣∣∣ = ε.

This result means that F ′(c) = f(c) which is equivalent to saying that
F ′(x) = f(x), hence f is differentiable in (a, b) and F ′(x) = f(x) for all
x ∈ (a, b).

PROOF, PART II

Let G be an anti-derivative of f , as stated in the theorem.
Define a new function of F :

F (x) =
∫ x

a
f(t)dt

By the first part of the theorem, it can be seen that F is continuous on [a, b],
differentiable on (a, b) and F ′(x) = f(x) for ∀x ∈ (a, b).
Define another function h:

h(x) = F (x)−G(x)

17



Then h is continuous on [a, b] and differentiable on (a, b), as it is a
difference of two differentiable functions.14 Moreover, if x ∈ (a, b) then
h′(x) = F ′(x) − G′(x), but we know that F ′(x) = f(x) by the first part
of the theorem, and G′(x) = f(x) by definition of anti-derivative.
Therefore, h′(x) = f(x)− f(x) = 0 for every x ∈ (a, b) and, because in addi-
tion h is continuous at a and b, h is constant on [a,b], and hence h(a) = h(b).
In particular:

h(b) = h(a)

F (b)−G(b) = F (a)−G(a) (By definition of h)

F (b) = F (a) + (G(b)−G(a))∫ b

a
f(t)dt =

∫ a

a
f(t)dt+ (G(b)−G(a)) (By definition of F )∫ b

a
f(t)dt = 0 +G(b)−G(a)∫ b

a
f(t)dt = G(b)−G(a).

And therefore the result is proved.

Q.E.D.

14The result that h is continuous is not immediately obvious unless we state the following
conditions, consequently leading to the result:
1.1 If f is a continuous function on [a, b] and is differentiable on [a, b] then f is bounded
on [a, b] and achieves its bounds.
1.2 If f is differentiable on (a, b) and if c ∈ (a, b) satisfies f(x) has maximum on (a, b) then
f ′(c) = 0.
1.3 Rolle’s Theorem
If f is differentiable on (a, b) and continuous on [a, b] and if f(a) = f(b), then f ′(c) = 0
for some c ∈ (a, b).
1.4 (Mean Value Theorem)If f is differentiable on (a, b) and continuous on [a, b] then

∃c ∈ (a, b) such that f ′(c) =
(f(b)− f(a)

b− a
1.5. This leads us to the final conclusion:

If f(d) 6= f(a) for some d ∈ [a, b], then ∃c ∈ [a, d] such that f ′(c) =
f(d)− f(a)

d− a
6= 0.
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ANALYSIS OF THE HISTORICAL PROOFS

Mathematics has been evolving and changing constantly throughout many
centuries. Every year we gain more knowledge and understanding in many
different areas. We improve the already existent theorems making them
more rigorous in order to fit the standards. However, certain problems arise
when it comes to analysis of some theorems with a perfect example being
the Fundamental Theorem of Calculus. The differences in the approach to
mathematics between the 17th century mathematicians and the current one
is rather significant, and many times misleading. In this chapter I will point
out the main mistakes and the hidden assumptions made by great mathe-
maticians such as Isaac Newton or his teacher Isaac Barrow, looking at it
from a modern perspective.

The connection between differentiation and integration only started to
be recognised in the 17th century. Back then, concepts such as integrals,
derivatives or even functions did not exist in the modern sense. Newton
thought of an integral as a way of calculating the area and this led him
to a rushed assumption that the integral was well defined because the area
was. From our modern approach, one has to prove that the integral is well
defined in order to prove that the concept of the area is. On the other side,
the derivative was thought of as the ratio of the sides of the characteristic
triangle, which is presented in Figure 8.

Today we know that these definitions are not entirely correct. This leads
us onto another important issue. In the 17th century, calculus was not applied
to functions but to curves. If a function is defined in a modern sense, then it
can have many properties that would have not been thought of a few centuries
ago. For example, a function could be continuous but not differentiable
anywhere. Moreover, the distance between any two points on the curve
representing such a function, measured along the curve, could be infinite. All
this would make it impossible to draw such a function. On the other side,
a curve was understood as something that could have been easily drawn,
without these surprising properties mentioned above. This is why most of
the time, mathematicians assumed that all functions on a closed interval,
[a, b], were continuous and Riemann integrability was assumed rather than
proved. When it comes to open intervals (a, b), we can have a function that
is continuous but not Riemann integrable on (0, 1), such as

f(x) =
1

x
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Figure 8: The characteristic tirangle

However, they imagined functions to be only well behaved and did not take
these instances into the account. Now we define curves differently than in
the 17th century.

Therefore one can say that these problems appeared due to the nature
of the definition of a function back in those days. For example, Newton
defined it as the position of a particle at some given time. The derivative
of the function was therefore the speed of the particle. He made these as-
sumptions without stating them beforehand. He also assumed that these
functions were continuous and piecewise monotonic, again without mention-
ing it beforehand. Such misleading definitions imply that all functions fulfil
these conditions and lead up to cases presented in Figures 4 and 6, where
the Fundamental Theorem of Calculus cannot be applied.

While proving the FTC, we encounter some problems that were simply
beyond the reach of 17th century mathematicians. For instance, the theorem
states that for any function f that is continuous,

∫ b

a
f ′(x)dx = f(b) − f(a).

This implies that if the speed remains zero in an interval of time, then there is
no movement. This is relatively easy to prove if it is assumed that the result
holds when f ′(x) = 0 for all x in the interval. However, Newton attempted to
tackle this in the Principia, which often led to problems when calculating the
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areas because he gave the proof without assuming the result or even without
assuming that if f ′(x) is given and continuous then the function is given up
to a constant. Whilst this approach is taken, the proof is basically out of
reach.

The distinctive ability, that both Newton and Leibniz had, was the skill
to switch between both the dynamical and the geometrical approach in un-
derstanding the FTC. We combine these two aspects of calculus in the 21st
century, as the only difference between them is that in one we view the in-
dependent variable as the marking distance and in the other as the elapsed
time. However, the difference between the two took a while to be fully un-
derstood in history and therefore it was not obvious to the mathematicians
in the past.

The importance of understanding the meaning of quantifiers is also great.
Nowadays, we are aware of the logical use of quantifiers and apply them com-
fortably as opposed to the past, when they were not such familiar concepts
and many times were used vaguely and led to difficulties.

Another issue that is worth a thought, is whether the assumption that
f ′(x) is continuous is needed for the theorem to work. It very much depends
on the version of the integral used. Even though this is not going to be
analysed in this project, one should not ignore the problem and assume that
f ′(x) is integrable.

Different mathematicians approached the Fundamental Theorem of Cal-
culus differently. To begin with, Leibniz sought to find the area under a
curve. He stated that if there exists a function F for which the original curve
is described as y = F ′(x) then the area underneath the function is expressed
in terms of F . This yields part II of the FTC. One issue to point out is
the manner that Leibniz expressed the idea. The values of what would now
respectively be understood as the horizontal axis are positive both below and
above the axis. This resulted in problems around the fact that some values
appeared to be increasing where they were not. Another issue to point out is
the understanding of ratios. In the past, a ratio of lengths could only equal to
another ratio of lengths. This is how the distances were referred to in math-
ematics. Nowadays, the concept is still the same, since if we think of a string
being 2 meters long, then the ratio of its length to the length of a standard
meter is 2:1. The significant difference is in the notation. While understand-
ing was the same as currently, this notation can cause some confusion being
analysed from the modern perspective.

Isaac Barrow had the sufficient knowledge in order to differentiate any
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curve, by drawing its tangent. In addition, he was aware of the differential
triangle method (that is very similar to the characteristic triangle mentioned
before), therefore he was also able to compute the derivative numerically. He
was the first person to notice the distinct connection between the derivatives
and the integrals and represented it as a picture that we can see in Figure
9. He constructed a curve V IFI so that if we made a rectangle with sides
DF and R, its area would be the same as the area enclosed by V ZDE. We
identify this curve with the derivative. Next, he reflected this curve across the
horizontal axis, i.e.ZGEG, constructing what we would call an antiderivative.
It is constructed in a way that the ordinates to the horizontal axis decrease
in length as we go from the left to the right. Additionally, he drew the figure
so that the ratios DT : R = DF : DE and LF : LK = DE : R agreed. Due
to this, we have LK ∗ DE = LF ∗ R. By the hypothesis, LF ∗ R was the
area enclosed by PGED. We know that this area is greater than the area
enclosed by the ordinates to the horizontal axis which is located to the left of
the preceding area (in this case also PDGE), and so on. This is because the
curve ZGEG was constructed in this particular way. It leads us to conclude
that KFK touches the upper curve at a point, and in particular this point
is F as represented.

If we define the general ordinate of the curve ZGEG to be y, and the
general ordinate of the curve V IFI to be y1 then the theorem becomes such
that ∫

y = area VDEZ = R.DF=R.y1;

It follows that dy1/dx=FL/LK=(area PGED/R)LK=DE/R,

i.e. R.dy1/dx=y.

In addition, he shows that the sides of the characteristic triangle of the
antiderivative are equal to the ratio of the height of the original curve to some
constant. The contribution of Isaac Barrow into the mathematical world
was great, taking into account the little time that he had spent working
in the field. However, even though it can be concluded that Barrow did
recognize the strong connection between integration and differentiation (for
example, he did recognise the necessity to prove not only the theorem but
also its converse), he never used the theorems. Besides, he never realised the
importance of his discoveries, nor did he complete his work. Furthermore, he
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took things as fact, even though he omitted their proofs; it was very intuitive
(for example in Lecture XI, Chapter 27)16. We should therefore realise that
it is the combination of the algorithmic technique and the full understanding
of the theorem when it becomes the most useful.

17.

Figure 9: Geometric representation of the fundamental
theorem of calculus by Issac Barrow

As mentioned
beforehand, New-
ton understood a
function as a rate
of change and
the definite inte-
gral of this func-
tion as the accu-
mulation of the
change (which can
be understood in
the modern terms
as the Riemann
Sum). Further-
more, he states
that the motion
by which the curve
increases is the
ordinate of the curve, that is the height of the curve, leading to the first
part of the theorem: ’the rate of change of the area is given by the ordinate
of the bounding curve’.18 If the antiderivative (the rate of change) is known,
then the area under the curve can be calculated, which essentially is the sec-
ond part of the theorem. In order to understand this approach, we do need
to realise the meaning of the ordinate of the curve as the rate of change of
the area.
”While calculus as understood in the late 17th and early 18th century was
recognized to have broad applications to variable phenomena, it was always
presented as a tool for analysing curves. Euler was the person chiefly respon-
sible for the shift from an analysis of curves to an analysis of functions.”19.

16J.M.Child,”Criticisms and discussions.”,Derby, England,1914,p.256-261
18David M. Bressoud. Historical Reflections on Teaching the Fundamental Theorem of

Integral Calculus. (The American Association Monthly, Vol. 118, No. 2 (February 2011),
p.104

19David M. Bressoud. Historical Reflections on Teaching the Fundamental Theorem of
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This can be argued. Firstly, what does ”broad applications to variable phe-
nomena” mean? For example, Newton took a curve and parametrised it by
some parameter that, in his opinion, corresponded to time. It does not mean
that such parameter did correspond to time. Therefore, the speed with which
a point moved along the curve defined by Newton did not correspond to the
actual speed of a physically defined moving point. The question of this pa-
rameter, differently defined, due to the lack of rigorousness, is the distinction
between the ’curves’ and ’variable phenomena’. A tangent of a curve or an
area under a curve are independent of parametrization of the curve there-
fore, it is rather meaningless to state that calculus was a tool for analysing
curves (instead of stating that calculus was being concerned with ’variable
phenomena’).It is important to highlight that the main concern here is not
the distinction between the functions, curves or ’variable phenomena’ but
the type of functions that were considered. For example, it is not clear to
which extend Newton considered negative exponents in the definition of the
functions that he considered, even though he did consider power series and
fractional exponents. In this manner, there is no evidence that he considered

functions such as f(x) =
1

x
for x 6= 0, that has a negative exponent for

x−n for ∀n > 0. Finally, one needs to keep in mind that functions were not
defined in the same manner in the 17th or 18th century as today. Functions
were defined to be well-behaved, continuous, geometrical objects that can be
easily drawn (that is very far from the recent definition). If we consider this,
then it seems that from a modern point of view, there is not a big difference
between a curve (that represents such easily drawn geometrical object) and
a function, so the importance of Euler’s impact vanishes.

Meanwhile, Cauchy introduced the definition of the definite integral in
the 19th century. He defined it in accordance with the modern approach,
that is

∫ b

a
f(x)dx = f(b)− f(a)

The indefinite integral was defined as

F (x) =
∫
f(x)dx.

Integral Calculus, p. 106
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In order to prove that F ′(x) = f(x) he used the mean value theorem (stated
in a footnote explaining a result in the proof of FTC) and the fact that f
is continuous, that is the first part of the theorem. Then he proves that
any function whose derivative is zero must be constant and so that any two
derivatives of the same function must differ by a constant; putting this in a
mathematical context∫
f(x)dx = F (x) + C where C is some constant. Hence, the second part of

the theorem follows.
Cauchy made a clear difference between the definite integral and the concept
of integral understood as the antiderivative.

The notion of a function only became sufficiently rigorous in the 19th
century. Mathematicians have realised that functions that are nowhere con-
tinuous exist and therefore the statement of the Fundamental Theorem of
Calculus had to become more rigorous as well, namely the type of functions
that it considers. We should not remove these assumptions and make sure
that we state them very clearly before proceeding any further. One needs
to realise that FTC has been developed over many years and looked at from
many points of view, but on the way, there have been disagreements and
problems encountered by the mathematicians due to the lack of the rigorous
approach that was caused partially by the lack of knowledge that we have in
21st century.
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CONCLUSION

During the extensive research over the past months, I have realised what
a long path it has been towards the reformation of the discovery discussed,
so that it could be studied and understood in the twenty first century in
terms of general functions. One should not be surprised about the amount
of research that is still carried out around this topic, taking into account
the time taken by mathematicians just to define some concepts, such as the
integral or the derivative.

In this project I have first analysed the theorem, looking at the geo-
metrical and the dynamical approaches that deepen its understanding, and
then I have discussed how challenging it was to notice the connection by the
seventeenth century mathematicians. These days we know that to make the
switching between the two approaches easier, one could focus on the dynamic
approach first and then visualise it via the geometrical approach.

I have talked about certain mathematicians, such as Newton, Barrow or
Leibniz, who lacked in rigorous approach when stating definitions or made
hidden assumptions; later, I have given examples of problems that could oc-
cur when this happens. For example, we have seen that it is not enough
to understand integration as simply the opposite process of differentiation
but also as the limit of Riemann sums. One can use this limit in order to
construct an antiderivative for any function that is continuous and, if such
antiderivative is known, one can evaluate back the limit from the antideriva-
tive. 20

It is now clear that the Fundamental Theorem of Calculus cannot be
applied to all functions, as it was believed a few centuries ago. One should
keep this in mind when applying the theorem or when reading the literature
from that period, not only because of the different notation used but also due
to the gaps in the interpretation of some important mathematical concepts.

Today, we have sufficient knowledge to avoid this approach and fully
understand the theorem. We should not mechanically apply the methods in
order to find areas under curves, but stop and deeply think about what it
means that we are doing. Moreover, we should see functions for what they
are, that is expressions describing relations between varying quantities21. We

20David M. Bressoud, Historical Reflections on Teaching the Fundamental Theorem of
Integral Calculus, The American Association Monthly, Vol. 118, No. 2 (February 2011),
p.112

21ibid.
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should appreciate how privileged we are because of all the knowledge that
is available to us at this time in the history. If we want to understand
the Fundamental Theorem of Calculus fully, we should also make sure that
we know, up to the recent rigour, not only the concept of a function, but
also notions of accumulation, rate of change, antiderivative, or derivative.
Calculus emerges from these ideas, therefore one should not move forward
without fully grasping what is beforehand.
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