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Abstract

This thesis discusses properties of waves, in particular, reference is made to ocean
waves in order to help one’s mathematical understanding of how tsunami waves

differ from normal ocean waves.
We do this by finding solutions to various partial differential equations, using a
variety of mathematical methods. We will then illustrate these graphically and

observe the important characteristics of the waves and their interactions with one
another.

This builds up to our study of a specific type of partial differential equation; the
Korteweg de-Vries Equation, in which we observe particular solutions which hold

some very special properties, differing to some of our initial observations.
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1 An Introduction to Waves

Waves are an extremely crucial yet fascinating natural phenomenon which arises in many
subject areas today. It is the travelling of waves over millions of kilometres by which light
reaches the Earth and by which sound is able to be heard. Built upon this phenomenon
is the latest technology such as that used to search for oil on the Earth’s subsurface using
seismic waves. Wave energy is a relatively new form of renewable energy that can poten-
tially be utilised in the Energy Sector.

The importance of the different wave types is due to their ability to transfer large
amounts of energy whilst travelling through a wide range of media such as through vacu-
ums, solid materials or our atmosphere.

A precise definition for waves cannot be produced but we can most certainly observe
the properties and characteristics of waves. A wave is a set of oscillations which propagate
with time through a medium. The propagation of a wave is associated with a transfer of
energy through a medium from one position to another. The travelling of a wave involves
the displacement of particles within a medium as they vibrate, and these vibrations are
passed on to neighbouring particles and then to further neighbouring particles, which in
turn carry the energy in the form of waves. An uninterrupted propagating wave consists of
a pattern of consecutive crests and troughs, which form a sinusoidal wave [2]. Such waves
are known as travelling waves. These waves consist of an amplitude which is the distance
between the top of the crest or the bottom of the trough and the stationary position of
the wave. It represents how much energy is being carried by the wave, for example a loud
sound has a large amplitude sound wave and a bright light has a large amplitude light
wave as it is of a large intensity. The frequency of a wave is defined as the number of oscil-
lations produced per second. The wavelength is the width of a wave which is the distance
between one crest and the next neighbouring crest. These characteristics of a wave can be
illustrated in Figure 1 below.

Figure 1: This figure illustrates the characteristics of a wave structure [1]

A particular type of travelling wave is a water waves (also known as a surface wave and a
gravity wave). In particular ocean waves are the cause of much natural destruction through
tsunamis, triggered by earthquakes in oceans. The reason behind this natural disaster, is
the larger than normal amplitude of the waves which form as a result of a disturbance on
the seabed. Tsunamis are difficult to detect as the waves are spanned over a very large area
horizontally such that wavelengths are very large. Consequently these are not easily visible
in an ocean of depth approximately 14000ft deep. It is only when the waves approach the
shore that the depth of the water, relative to the wave’s amplitude decreases making the
large amplitude waves more prominent at the shore. Water waves which cause tsunamis
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have constant amplitude as they travel through the ocean in comparison to normal water
waves whose amplitude decrease relative to the water depth as they reach the shore. What
determines whether a wave’s amplitude remains constant or decreases is the relationship
between the wavelength k, and frequency ω, of a wave. This relation is better known as
the Dispersion Relation, which we will later discuss in further detail.

1.0.1 Boundary Conditions

When studying waves we must note that there exists wave boundaries and initial conditions
at time, t = 0. The knowledge of these are required in order to obtain a wave solution.
The boundaries can come in different forms depending on the waves we are studying.

On studying waves produced from plucking a finite string on a guitar, the boundary
condition is the finite length of the string being plucked, and the initial conditions refer to
how much we displace the string by from its initial shape to when it is plucked.

Whereas, when studying water waves we consider boundaries in a slightly different
manner. There is no limit as to how long the wave is horizontally thus we could poten-
tially have waves with very large wavelengths, but we are limited to finite amplitudes,
which is the height of the wave from the crest. Hence we can deduce that boundaries in
water waves lie in the direction of the amplitude; the vertical direction, as opposed to the
horizontal direction with length of a string as on a guitar. As a result of this we become
slightly limited to the types of equations which can be solutions to wave equations as they
must be bounded in the vertical direction such as those we will study in this thesis. We
can rule out all linear and some quadratic functions existing as wave equation solutions,
such as the exponential function and multiples of this as these functions tend to infinity.
Whereas, functions such as e−x2 and its translations are more likely solutions.
Although this may appear to be a very subtle idea it is important to know this when
recognising wave equation solutions.

In the subsequent chapters we will study three partial differential equations. We will
begin with introducing the linear Wave Equation and Schrödinger’s Equation and find-
ing their solutions through the use of Fourier Transformations. Illustrating these wave
solutions graphically, we will observe their motion over time and make some important
observations through introducing concepts such as the Superposition Principle and the
dispersion relation.

Furthermore, we will study the Korteweg-de Vries (KdV) equation which models shal-
low water waves together with some of its properties. In addition to this, we will discuss
its soliton solutions and properties of such solutions. Using a direct integration method;
separation of variables, we will obtain a one-soliton solution of this equation. In studying
this equation further we will adopt Hirota’s Method to help us calculate a two-soliton solu-
tion. We will then interpret both these solutions graphically and analyse the illustrations
produced. In doing this we will be able to see how the Korteweg-de Vries equation differs
significantly from the wave equation and the Schrödinger’s Equation, and finally, discuss
the limitations in the methods we used to find solutions to the KdV equation.

All the illustrations presented in this thesis have been produced using a mathematical
software Matlab, unless otherwise stated.
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2 The Linear Wave Equation

2.1 The Wave Equation Explained

Definition 1. The Wave Equation is a linear, second-order partial differential equation

∂2u

∂t2
1

c2
= 52u (2.1)

where 52 = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

with respect to the function u(x, y, z, t), where x, y, z are the
three-dimensional space variables and t is the time variable.
For the remainder of this thesis we will be studying the wave equation in one-dimensional
form thus making use of the following equation

∂2u

∂x2
=

1

c2
∂2u

∂t2
. (2.2)

Partial differential equations crop up in a branch of applied mathematics called mathe-
matical analysis. A partial differential equation is a mathematical equation which consists
of partial derivatives of a number of variables. The order of the equation refers to the
highest power contained in the equation. In equation (2.2) both partial derivatives are to
the power 2 hence this equation is 2nd order.

The wave equation models waves such as water waves which arise in a variety of fields
such as fluid dynamics and electrodynamics.

2.1.1 The Superposition Principle

The wave equation is linear and so we can take a linear combination of wave equation
solutions and this would also form a solution. A solution to the wave equation will be of
the form u(x, t)=f(x ± ct) where c is the velocity of the wave and f(x, t) is a function
f : R2 → R which determines the shape of the wave. In order to see what a solution
u(x, t) to the equation looks like, we can first see what the equation represents at initial
time t0 = 0, u(x, 0). Seeing the initial shape of the wave represented by the solution, helps
us to gather an intuition of the solution graphically. To be able to do this we can plot the
solution at a time t0+δ = 0 + δ, u(x, 0 + δ) where δ is very small and t0+δ is very close to
t0 to enable us to see the shape produced by the wave solution [3].
Once we have obtained one solution to the linear wave equation we can obtain other
solutions using the very important superposition principle.

Definition 2. The Superposition Principle is an important property within linear equa-
tions such as the wave equation. This principle states that once one has obtained a solution
u(x, t) to a linear equation, one can obtain a finite number of solutions to the equation from
this in the following way

n∑
i=1

aiui(x, t) (2.3)

where ai is an arbitrary constant and ui(x, t) is the i− th solution [19].

It is important to clarify the difference between the superposition principle in partial
differential equations (PDEs) such as the wave equation, where the general solutions consist
of arbitrary functions, and the superposition principle in ordinary differential equations
(ODEs) where the general solutions contain arbitrary constants.
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2.2 Solutions to the Wave Equation

2.2.1 The d’Alembert Solution

The following derivation has been taken from [19].

Now that we understand the benefit of the superposition principle being applied to linear
equations, we will use a method known as d’Alembert’s solution to obtain general and
particular solutions to the one-dimensional wave equation.

In order to carry out d’Alembert’s method it is necessary to introduce two new variables,
of which both are dependent on a single spacial coordinate x and time t;

r = r(x, t) = x− ct (2.4)
s = s(x, t) = x+ ct (2.5)

r and s can be re-arranged such that x and t can be written as follows

x =
1

2
(r + s) (2.6)

t =
1

2c
(s− r) (2.7)

giving two implicit functions of r and s.
We will make use of the chain rule for differentiation in order to find the partial deriva-

tives of a solution to the wave equation, u with respect to r and s. Having written x and
t in terms of r and s, we can use (2.6) and (2.7) to differentiate as follows

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂t

∂t

∂r
=

1

2

∂u

∂x
− 1

2c

∂u

∂t
(2.8)

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂t

∂t

∂s
=

1

2

∂u

∂x
+

1

2c

∂u

∂t
(2.9)

Multiplying ∂u
∂r with ∂u

∂s from (2.8) and (2.9) gives us the following expression

∂2u

∂r∂s
=

1

4

∂2u

∂x2
+

1

4c

∂2u

∂x∂t
− 1

4c

∂2u

∂x∂t
− 1

4c2
∂2u

∂t2
. (2.10)

In order to proceed we need to remember that second order partial derivatives with respect
to two distinct variables are commutative, thus ∂2u

∂x∂t =
∂2u
∂t∂x .

This simplifies our expression to

∂2u

∂r∂s
=

1

4

(
∂2u

∂x2
− 1

c2
∂2u

∂t2

)
(2.11)

within the brackets in (2.11) we have the wave equation, which when re-arranged from
(2.2), is equal to zero. Thus leaves us with the following, so called Canonical Form of
the wave equation

∂2u

∂r∂s
= 0. (2.12)
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This partial differential equation has a general solution of the form

u = u(r, s) = u1(r) + u2(s) (2.13)

where u1, u2 are arbitrary functions of r and s respectively. Equivalently, using (2.4) and
(2.5), (2.13) can be written as

u(x, t) = u1(x− ct) + u2(x+ ct) (2.14)

which is a general solution of a wave travelling over infinite time.

Now we need to find a solution satisfying a set of initial conditions of initial time (t0 = 0)
and initial wave velocity so we can study waves travelling finitely. These initial conditions
of time and wave velocity are

u(x, 0) = u0(x)[
∂u

∂t

]
t=0

= v0(x).

We can apply these initial conditions to our general solution in (2.14), giving us

u0(x) = u1(x) + u2(x) (2.15)
v0(x) = cu′2(x)− cu′1(x) (2.16)

integrating (2.16) gives us1

1

c

∫ x

a
v0(α)dα = u2(x)− u1(x) (2.17)

adding (2.15) and (2.17) gives us

u0(x) +
1

c

∫ x

a
v0(α)dα = u1(x) + u2(x) + u2(x)− u1(x) (2.18)

= 2u2(x) (2.19)
1

2
u0(x) +

1

2c

∫ x

a
v0(α)dα = u2(x) (2.20)

subtracting (2.15) and (2.17) gives us

u0(x)−
1

c

∫ x

a
v0(α)dα = u1(x) + u2(x)− u2(x) + u1(x) (2.21)

= 2u1(x) (2.22)
1

2
u0(x)−

1

2c

∫ x

a
v0(α)dα = u1(x). (2.23)

Now we can make the substitutions for u1(x) and u2(x) into the general solution in (2.14),
resulting in

u(x, t) =
1

2
u0(x− ct)−

1

2c

∫ x−ct

a
v0(α)dα+

1

2
u0(x+ ct) +

1

2c

∫ x+ct

a
v0(α)dα (2.24)

1In our integral, the lower limit ‘a’ is a constant which we can drop when carrying out the integration,
as this is chosen such that it is very large.
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which is the d’Alembert solution to the wave equation subject to initial conditions. Here
we have replaced x by x− ct and x+ ct as we require the solution for all time and not just
initial time. From this solution, one can see that the solution to the one-dimensional wave
equation is a sum of two functions u1 and u2, where u1 travels in the right direction along
the positive x− axis and u2 travels in the left direction along the negative x− axis. Note
that the overall shape of the wave solution remains the same as it travels at a velocity c
which is illustrated in Figure 2 on the following page.

9
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(a) Time= -3 (b) Time= -0.6

(c) Time= -0.3 (d) Time= 0

(e) Time= 0.3 (f) Time= 3

Figure 2: This figure neatly demonstrates the superposition principle in d’Alembert’s so-
lution to the wave equation at progressive times

10
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In Figure 2 we have plotted u1 = e−(x−4t)
2 and u2 = e−(x+4t)2 where c = 4, as possi-

ble solutions to the wave equation. We can confirm that the waves produced by u1 and u2
do indeed travel towards the right and left respectively as time progresses.

Another characteristic of the wave equation solutions which was mentioned earlier as
the superposition principle, is also illustrated in Figure 2. As the waves approach each
other at the same speed, they merge together and at time t = 0 we have obtained another
solution to the wave equation as a result of the current two solutions being added together
in a linear form. Once they have passed each other the shape of the wave has not been
altered and they both continue travelling at the same speed and same amplitude as they
did before they passed each other. This is a result of the superposition principle.

2.3 The Dispersion Relation and other relations: The Wave Equation

Another possible solution of the wave equation is in the form of sine and cosine trigono-
metric functions. A solution of such a form is called a plane wave. In order to be able to
define the plane wave we must first define the dispersion relation.

Definition 3. The Dispersion Relation of a linear, partial differential equation is an
equation which relates the wavenumber k = 2π

λ and the frequency ω(k) = 2π
λ of a wave,

such that the plane wave solves the equation, where λ is the wavelength.

Definition 4. A Plane Wave also a type of travelling wave, is a possible solution to a
linear wave equation if it satisfies one condition; the dispersion relation. The plane wave
takes the form

u(−→x , t) = Aei(
−→
k −→x−ωt)

where A is an arbitrary amplitude, i is a complex number, i =
√
−1, ω is the wave vector,

x is a point along the x-axis, k is the angular frequency and t is the time. As we are only
studying the wave equation in one dimension, k and x will be scalar quantities thus

u(x, t) = ei(kx−ωt) (2.25)

In terms of sine and cosine (2.25) is equivalent to

u(x, t) = cos(kx− ωt) + i sin(kx− ωt)

In order to show u(x, t) is a solution to the wave equation by which we also obtain the
dispersion relation, we need to substitute the required derivatives of u(x, t) into the wave
equation.

∂2u

∂x2
= −k2ei(kx−ωt) (2.26)

∂2u

∂t2
= −ω2ei(kx−ωt). (2.27)

Now we can substitute these derivatives into the wave equation (2.2)

−c2k2ei(kx−ωt) = −ω2ei(kx−ωt) (2.28)

we can cancel out the common term ei(kx−ωt) on both sides and multiply throughout by
−1, to obtain

√
c2k2 =

√
ω2 (2.29)

ω = ±ck (2.30)

11



Student ID: 100108615

which is the linear dispersion relation for the wave equation.
For the remainder of this section, we will take the positive value of the frequency, al-

though the negative wavelength would also work in the negative time direction.
We can see that in order for the plane wave to satisfy the wave equation, the linear

dispersion relation ω = ck (where c is the wave velocity) must be satisfied. In general the
linearity of the dispersion relation for an equation determines whether a wave’s amplitude
decreases. This implies the wave is carrying a decreasing amount of energy as time pro-
gresses; such waves are called dispersive waves. Conversely, a wave’s amplitude can remain
constant hence carrying a constant amount of energy, such waves are called non-dispersive
waves. A linear dispersion relation as for the wave equation implies the latter of the two
as we will illustrate later.

Using the wave number and frequency, we can also make some other observations re-
garding the motion of waves.

One observation we can make is explained by the wave’s group velocity. This is the rate
of change of the frequency with respect to the wave number. It is the velocity at which
energy flows in a wave packet through a medium [12]. Using the dispersion relation we can
write the group velocity for the wave equation as [10]

dω

dk
= c. (2.31)

We can also define another type of velocity which tells us the rate at which the phase (a
period) of the wave travels through a medium. This is known as the phase velocity which
is [10]

cph =
ω

k
(2.32)

In the case for a non-dispersive wave, the phase and group velocity are the same as we can
show below [10]

cph =
ω

k
=
ck

k
= c =

∂ω

∂k
. (2.33)

The above tells us that the wave does not disperse as it travels with time [13].
An example of where this relation can be demonstrated in the natural world is in a tsunami.
Disruptions in the ocean such as by earthquakes and landslides are major causes of a
tsunami. A disturbance in the ocean caused by an earthquake occurs when the tectonic
plates under the ocean rub against each other causing friction as one plate is pushed up
above the other. This results in hundreds of cubic kilometres of water being disturbed
which in turn triggers very large waves to travel in the ocean away from the epicentre. In
the ocean where the depth of the water is large, the waves travel at very high speeds but
as the water approaches the shore, the depth decreases and the speed of the wave slows
down as wave amplitude becomes larger [4]. The occurrence of a tsunami is dependent on
the strength of the earthquake. A tsunami can be triggered if the jolting of the tectonic
plate by an earthquake is large enough. This in turn brings about the effect of the linear
dispersion relation, causing the wave’s to maintain their shape and conserve their energy
as they travel through the ocean towards the shore. To put this into perspective, a large
enough magnitude earthquake, say 9.0 such as that which occurred on the coast of Sumatra,
Indonesia in 2004, triggered a heavily destructive tsunami of waves with height 50 metres
that travelled 5 kilometres inland [5]. This helps one understand the existence of the
dispersion relation in he real world.

12
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2.4 Solutions to the Wave Equation continued

We have already come across some solutions to the wave equation. Our aim now is to be
able to find a way where we can easily obtain as many solutions to the equation as we
require. We can make this possible with the use of the Fourier Transformation.

This Fourier transformation is a useful method which can be used on a function such
as a waveform which is composed of sine and cosines. It allows the waveform function to
be written as a continuous sum of sinusoidal functions.

Definition 5. The Fourier Transform can be defined as follows [6]

F{g(k)} = G(f) =

∫ ∞
−∞

g(k)e−2πifkdk (2.34)

where we can write the function G(f) as an integral of g(t)e−2πifk, and so we have a
continuous sum of g(k).

In relation to what we are dealing with, we need to find g(k) which we will rename as
A(k) using the Fourier Transformation in Definition 5. A(k) contains the coefficients of
the plane wave solutions which will aid us in using the linear superposition principle.

In the example that follows, we will work to calculate a wave-packet solution. A wave-
packet also known as a wave group is a group of two or more waves travelling simultaneously
through a medium. Wave-packets exist as a result of the linear superposition principle [18].

The following is a general form of a solution of a wave-packet

u(x, t) =
1√
2π

∫ ∞
−∞

A(k)ei(kx−ω(k)t)dk (2.35)

where u(x, t) is a function of the one-dimensional spacial coordinate x and time t of a wave.
With this general form we can find a continuous sum of the solutions of the wave equa-

tion with the help of A(k). We will obtain a wave-packet solution of the form f(x − ct)
where our wave-packet will propagate in the positive x-direction and we can let c = 1 for
simplicity.

To begin with, we need to calculate the amplitude, A(k) which can be done by invert-
ing the general form of a wave packet in (2.35) at t = 0

A(k) =
1√
2π

∫ ∞
−∞

u(x, 0)e−ikxdx. (2.36)

We can illustrate the use of the Fourier Transform in the following example. This will
eventually lead us to a solution of the wave equation.

For the sake of this example we can allow u(x, 0) = e−x
2 , which is an equation of a

wave at initial time t = 0. Substituting this into (2.36) gives us

A(k) =
1√
2π

∫ ∞
−∞

e−x
2
e−ikxdx (2.37)

=
1√
2π

∫ ∞
−∞

e−x
2−ikxdx. (2.38)

13
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We are able to write the exponent from the integral in (2.38) as a sum of two squares as
follows

−(x2 + ikx) = −

(
x2 + ikx+

(
ik

2

)2

−
(
ik

2

)2
)

(2.39)

= −
(
x+

ik

2

)2

+

(
ik

2

)2

. (2.40)

By writing the exponent in this form, it allows us to use the method of substitution to
solve the integral in (2.38). Thus to use this method we make the following substitution

y = x+
ik

2
(2.41)

thus dy = dx (2.42)

and our integration limits will remain as they are.

The integral we are now required to calculate, having made the substitution for y and
dy in (2.38) is

A(k) =
1√
2π

∫ ∞
−∞

e−y
2+( ik

2
)2dy (2.43)

=
1√
2π
e(

ik
2
)2
∫ ∞
−∞

e−y
2
dy. (2.44)

Using our knowledge, we know the integral
∫∞
−∞ e

−y2dy =
√
π which we can make use of

in (2.44) to cancel out
√
π, giving us

A(k) =
1√
2π
e−

k2

4
√
π (2.45)

=
1√
2
e−

k2

4 . (2.46)

Now substituting this amplitude, A(k) into the original general form of the wave-packet in
(2.35) gives us the following

u(x, t) =
1√
2π

∫ ∞
−∞

1√
2
e−

k2

4 ei(kx−ω(k)t)dk. (2.47)

We can now consider the linear dispersion relation which we obtained earlier. As we men-
tioned before, only when the dispersion relation is satisfied, does there exist a solution to
the wave equation in terms of the trigonometric functions sine and cosine.

Again, we will make use of the substitution method to integrate (2.47).
Using the dispersion relation ω(k) = k from earlier calculations, we can substitute for
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ω(k) into the exponent in (2.47)

−k
2

4
+ i(kx− kt) = −k

2

4
+ ik(x− t) (2.48)

= −1

4
(k2 − 4ik(x− t)) (2.49)

= −1

4

[
k2 − 4ik(x− t) +

(
−4i(x− t)

2

)2

−
(
−4i(x− t)

2

)2
]
(2.50)

= −1

4

[
(k − 2i(x− t))2 − (−2i(x− t))2

]
(2.51)

= −1

4

[
(k − 2i(x− t))2 + 4(x− t)2

]
(2.52)

= −1

4
[k − 2i(x− t)]2 − (x− t)2. (2.53)

In steps (2.48) − (2.53) we have taken the exponent within the integral in (2.47) and
rewritten it, such that we can take the sum of two squares and write this in such a way
as to make a helpful substitution back into (2.47). We can see that the exponent can
eventually be written as shown in (2.53). Using this form we can make the following
substitution

y =
1

2
(k − 2i(x− t)) (2.54)

dy =
1

2
dk. (2.55)

Substituting (2.54) and (2.55) into (2.47) we can write the integral as follows

u(x, t) =
1

2
√
π

∫ ∞
−∞

e−y
2−(x−t)22dy. (2.56)

We can now simplify this integral and use the result
∫∞
∞ e−y

2
dy =

√
π to obtain a solution

u(x, t) =
2e−(x−t)

2

2
√
π

∫ ∞
−∞

e−y
2
dy (2.57)

=
1√
π
e−(x−t)

2√
π (2.58)

= e−(x−t)
2
. (2.59)

We can conclude that

u(x, t) = e−(x−t)
2

(2.60)

is a wave-packet solution to the wave equation which takes the form of a Gauss function
as illustrated on the next page.
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(a) 2D Plot (b) 3D Plot

Figure 3: This figure illustrates the solution we obtained from the linear wave equation
both in two-dimensional and three-dimensional form

In Figure 3b we can see that as time progresses, the shape of the wave remains consistent;
a property resulting from the linear dispersion relation.

From our solution in (2.60) we can see it takes the form u(x − ct) where c = 1, thus
the wave propagates in the positive x-direction. Our solution is a localised wave which is
in fact a Gauss function that is bounded in the direction of the amplitude, as is required
of the wave solutions that we discussed earlier.

A wave of this kind is one which a tsunami is formed from, since it does not reduce in
amplitude as it arrives to the shore.

3 The Schrödinger Equation

3.1 The Schrödinger Equation explained

In the previous chapter we studied waves of constant amplitude over time, such as those
which form tsunamis. There also exists waves which do not have constant amplitude; they
are the complete opposite due to the fact that they spread as they travel over time.

The Schrödinger Equation is an example of an equation from which we can obtain
solutions of such waves.

This equation has its uses in Quantum Mechanics, which is the study of the behaviour
of particles in terms of matter and energy on a nanoscopic scale including atoms such as
those in the elements in the Periodic Table. Comparatively, Classical Mechanics differs
from this in terms of the relatively larger objects studied in this branch. Due to the differ-
ences in behaviour at the two scales we require two sets of rules, where Quantum Mechanics
observations involve the Planck’s constant, h = 6.62606957× 10−34m2kg/s.
Within Quantum Mechanics, the same particle can behave very differently at different
times. This interpretation is commonly known as the Copenhagen Interpretation, as most
of the research in this field was carried out by Niels Bohr; a Danish physicist working in
Copenhagen [7].
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Definition 6. [8] The Schrödinger Equation

i~
∂

∂t
ψ(−→r , t) = − ~2

2m
52 ψ(−→r , t) + V (−→r , t)ψ(−→r , t) (3.1)

• i is the complex number
√
−1

• ~ is the Planck’s Constant h = 6.62606957× 10−34m2kg/s divided by 2π

• ψ(−→r , t) is the wave function with respect to space and time

• m is the mass of the particle

• 52 is the Laplacian operator ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

• V (−→r , t) is the potential energy of the particle

This is the Schrödinger equation inclusive of all variables for the reader to appreciate the
full equation. However, for the calculations carried out in this section we will use the
following equation, a simplified one-dimensional version of the Schrödinger equation.

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
(3.2)

3.2 The Dispersion Relation: The Schrödinger Equation

Previously we have shown how the wave equation illustrated a linear dispersion relation.
Now we will calculate the non-linear dispersion relation for Schrödinger’s equation using
the plane wave as before. We have chosen this equation as it is the simplest wave equation
with which we can show the non-linear dispersion relation.

We will calculate the 1st and 2nd derivatives of the plane wave with respect to t and
x respectively

ψ = ei(kx−ω(k)t) (3.3)
∂ψ

∂t
= −iω(k)ei(kx−ω(k)t) (3.4)

∂2ψ

∂x2
= −k2ei(kx−ω(k)t). (3.5)

We can substitute this into the Schrödinger equation in (3.2) giving us

i(−iω(k)ei(kx−ω(k)t)) = −1

2
(−k2ei(kx−ω(k)t)). (3.6)

We can cancel out the common term ei(kx−ω(k)t) from both sides and multiply the complex
numbers i · −i = 1. This results in the following non-linear dispersion relation for the
Schrödinger equation

ω(k) =
1

2
k2. (3.7)

A wave equation which insists on a non-linear dispersion relation is satisfied by wave-packet
solutions which consist of waves of different speeds and amplitudes. As time progresses the
wave-packet spreads and flattens out, no longer keeping its shape. This will be illustrated
in the next subsection where we will be able to obtain a solution with the help of this
relation.
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3.3 Solutions to the Schrödinger Equation

As we did for the wave equation in the previous section, we are able to use the Fourier Trans-
formation to obtain the amplitude of a wave and calculate a solution to the Schrödinger
equation. With this solution we will be able to find more solutions to the equation using
a linear combination of current solutions through the superposition principle. It is here
where the amplitude A(k) is of importance as this contains the coefficients necessary to
construct linear combinations of solutions.

The following example will lead us to a solution of the Schrödinger equation. In order
to achieve this we must first calculate the amplitude as we did for the wave equation.
We then use the non-linear dispersion relation we obtained in the previous subsection to
calculate a solution to the Schrödinger equation, from which we can obtain more solutions.

To begin with we can use the plane wave to obtain the amplitude. Steps (2.35)− (2.46)
in which we calculated an amplitude for the wave equation solution will be repeated exactly
giving us

A(k) =
1√
2
e−

k2

4 . (3.8)

Substituting this into the general form of a solution of a wave-packet in (2.35), and also
making the substitution of the non-linear dispersion relation ω = 1

2k
2 from (3.7) results in

ψ(x, t) =
1√
2π

∫ ∞
−∞

1√
2
e−

k2

4
+i(kx− 1

2
k2t)dk. (3.9)

Taking the exponent −k2

4 + i(kx− 1
2k

2t) from (3.9), notice we can re-write this as the sum
of two squares. This notation will later help us make a substitution such that the integral
is easier to solve. Re-arranging this exponent and writing it as a sum of two squares gives
us

−k
2

4
+ i

(
kx− 1

2
k2t

)
=
−1− 2it

4

[
k2 +

(
4ix

−1− 2it

)
k

]
(3.10)

=
−1− 2it

4

[(
k +

2ix

−1− 2it

)2

−
(

2ix

−1− 2it

)2
]
. (3.11)

Writing the exponent as in the form (3.11) allows us to make a suitable substitution and
differentiate this as follows

let y =

√
1 + 2it

4

(
k +

2ix

−1− 2it

)
(3.12)

2dy√
1 + 2it

= dk. (3.13)

For the convenience of the reader, intermediate calculations have been omitted. For the
full length of calculations between (3.10)− (3.13) please refer to Appendix 1.

Using the substitution for y in (3.12), and the expression for dk in (3.13), we can sub-
stitute these into the expression for ψ(x, t) in (3.9) to give us

ψ(x, t) =
1

2
√
π

∫ ∞
−∞

2√
1 + 2it

e−y
2−(−1−2it

4 )( 2ix
−1−2it)

2

dy (3.14)
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rearranging this gives us

1√
π(1 + 2it)

e−(
−1−2it

4 )( 2ix
−1−2it)

2
∫ ∞
−∞

e−y
2
dy

using the result
∫∞
−∞ e

−y2dy =
√
π, we obtain

ψ(x, t) =
1√

(1 + 2it)
e−(

−1−2it
4 )( 2ix

−1−2it)
2

. (3.15)

Now we can simply rewrite the exponent
(−1−2it

4

) (
2ix
−1−2it

)2
to x2

1+2it by cancelling out
common factors in the numerator and denominator. This can now be rewritten by mul-
tiplying numerator and denominator by (2it − 1), giving us 2itx2

4t2+1
− x2

4t2+1
. Thus writing

ψ(x, t) as

ψ(x, t) =
1√

(1 + 2it)
e

(
2itx2

4t2+1
− x2

4t2+1

)
. (3.16)

In order to be able to plot this, we are required to take the absolute value of ψ(x, t) in
(3.16) with the aim to get rid of the complex numbers, i.

|ψ(x, t)| = | 1√
(1 + 2it)

|e
2itx2

4t2+1 ||e−
x2

4t2+1 |. (3.17)

We arrive at a solution of the Schrödinger equation

|ψ(x, t)|2 = 1√
1 + 4t2

e
− 2x2

1+4t2 (3.18)

For the convenience of the reader, intermediate calculations have been omitted here. To
see the full length of calculations between (3.17)− (3.18) please refer to Appendix 2.

The following two-dimensional and three-dimensional graphs are a plot of the above
solution of the Schrödinger Equation.

19



Student ID: 100108615

(a) 2D plot (b) 3D plot

Figure 4: This figure shows a two-dimensional and three-dimensional illustration of the
Schrödinger equation solution which we obtained in our calculations

From Figure 4 we can see that the Schrödinger equation exhibits a non-linear dispersion
relation. In particular, in Figure 4b we can see that as time progresses, the wave-packet
decreases in amplitude as the wave flattens and spreads whilst it travels. This is due to
the loss of energy carried by the wave. As described before, this characterises a dissipative
wave [10]. We have plotted the solution in forwards and backwards time which displays
symmetry at time t = 0.

Looking at the solution itself in (3.18) we can see that the amplitude 1√
1+4t2

, which is
the coefficient in front of the exponential function is dependent on time. The time vari-
able, t is presented within the square-root of the denominator which tells us that as time
increases the amplitude becomes increasingly smaller which is illustrated in Figure 4.

(a) Illustration of the non-linear dispersion relation at
time=1,4,7

(b) Illustration of the linear dispersion relation at
time=1,4,7

Figure 5: This figure allows us to make better comparisons of the dispersion relations of
the wave equation and the Schrödinger equation
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Figure 5 allows us to see a clear comparison between the effect of the linear and non-linear
dispersion relation on wave solutions obtained from linear partial differential equations
such as those we studied in the last two chapters. This figure presents a neat summary to
conclude what we have observed so far. The non-linear dispersion relation presented in the
Schrödinger’s equation has an effect of decreasing the amplitude as a wave progresses over
time. This is due to the dependency of the amplitude on time in the solution we obtained
for the Schrödinger’s equation. It is possible to obtain other solutions to the Schrödinger
equation, all of which will illustrate dissipative waves. These solutions can be obtained
from the use of the linear superposition principle.

Comparatively, we have shown in Section 2 that the wave equation adopts a linear
dispersion relation. This has the effect of the amplitude of a wave remaining constant
as it travels through a medium, with respect to time. We can explain this by looking at
the example of a solution we obtained to the wave equation. Equation (2.60) is our wave
equation solution e−(x−t)

2 . The amplitude being the coefficient in front of the exponen-
tial, which in this case is 1, has no dependency on time. Thus linear partial differential
equations which possess a linear dispersion relation are satisfied by wave-packet solutions
of non-dissipative waves [10].

4 The Korteweg-de Vries Equation

4.1 The Korteweg-de Vries Equation explained

In this section we will study a relatively different type of differential equation known as
the Korteweg-de Vries equation, which is a non-linear partial differential equation. The
non-linearity in this equation differentiates it from the first two in a significant way. As a
result of this, we are unable to use previous methods to obtain solutions; instead we will
make use of more complicated methods as it will be explained later.

Definition 7. The Korteweg-de Vries Equation (KdV) is a 3rd order, non-linear,
dispersive partial differential equation for φ(x, t), where x is the one-dimensional space
variable, t is the time variable and φ is the amplitude of the wave in question [9].

∂φ

∂t
+
∂3φ

∂x3
+ 6φ

∂φ

∂x
= 0 (4.1)

where −∞ < x <∞, t > 0.

The term ∂3φ
∂x3

represents the dispersion of waves [13]. The order tells us that the largest
derivative in this equation is the 3rd derivative. The non-linearity aspect arises from the
fact that the third term in the equation consists of a product of two terms φ∂φ∂x . Studying
the KdV equation in one-dimensional form means the equation only contains one space
variable x and a time variable t. A potential solution to the KdV equation is denoted
φ(x, t).

For some background knowledge of this equation we will look at how it was introduced
and some of its properties. John Scott Russell a naval architect, made a significant ob-
servation in 1834 regarding waves along the Union Canal at Hermiston, Edinburgh. As
a boat was in motion along the narrow channel, Russell noticed that the water around
the front of the boat in motion piled up once it reached a halt, forming a wave one foot
high and 30 feet long [11]. As the boat returned to motion, Russell followed it along the
channel by horseback (for about an hour). He noticed that the shape of the wave formed

21



Student ID: 100108615

from the accumulation of water remained unchanged as it propagated along the channel
whilst also the speed remained constant. Russell described this phenomenon as the ‘Wave
of Translation’ [10]. It is this phenomenon which is described by the KdV equation as
explained in Definition 7. Solutions to the KdV equation are known as soliton solutions.

4.1.1 Soliton properties

The information provided in this section has been motivated by ideas from [13].
Long before soliton solutions and their respective equations were introduced, Russell

had already seen a soliton in real-life, what he called it then was a ‘Wave of Translation’ [10];
a wave which did not break as it travelled [11]. Since then the theory behind solitons has
been extensively researched by the likes of Zabusky, Kruskal, Korteweg and his student
de Vries just to name a few [15]. Soliton solutions are governed by non-linear partial
differential equations such as the Sine-Gordon Equation, Korteweg-de Vries Equation and
Kadomtsev-Petviashvili equation just to name a few.

Below is an image of a soliton and we will explain some of the properties of this structure
which make them worth studying and highlight why they are so important in the natural
world.

Figure 6: This figure illustrates the shape of a Soliton [20]

1) Symmetry in Solitons: Solitons are symmetric about the point of highest amplitude
which is evident when viewing the soliton in its cross sectional form. Furthermore,
there also exist symmetrical properties in the equations from which the soliton solu-
tions are obtained from. In the following subsection we will show a type of symmetry
which exists in the KdV equation.

2) Solitons retain their shape and velocity : Whilst a soliton travels and also what
Russell observed, is that a solitary wave does not disperse as it travels. The shape
of the wave remains unchanged as it passes through another solitary wave, hence we
can say a solitary wave is shape invariant.
Solitons scatter elastically, this means that whilst they are shape invariant, the ve-
locity at which the wave travels is also constant upon approaching another solitary
wave. In our example of a two-soliton solution using Hirota’s Method we will be able
to illustrate these properties.

3) Solitons exhibit a kind of "non-linear" superposition principle: When two soli-
tons are travelling and pass each other, although the speed and shape of the two waves
(we will see that one will always be taller than the other) remain constant, the waves
actually experience a phase shift. This means that the waves are slightly displaced
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compared to if they had not passed through each other. We will show this in our
analysis of a two soliton solution later on. It is this phase shift that allows us to
disregard the linear superposition principle.

4) Solitary waves only appear locally at a point in time: Solitons are continuous and
smooth objects. They are isolated and appear locally at a point in time such that if
u(x, t) represents a soliton solution and x→ ±∞, then u(x, t)→ 0.

The shape of a soliton as it travels and the velocity at which it travels is determined by
the equation of the wave-packet.

The properties explained above relate back to the observation made by Russell where
he noticed the accumulation of water at the front of the canal boat. His observation is
what we describe now as a Solitary Wave. As mentioned above φ(x, t) represents a solution
to the KdV equation which we can now refer to as a soliton solution.

The KdV equation is unidirectional, thus the solution φ(x, t) obtained will describe
solitons collectively travelling in one direction only. This eliminates one’s need to observe
the idea of how solitons would interact had they approached each other whilst travelling
in opposite directions, with a head-on collision [22].

Methods to obtain soliton solutions differ to the methods used to obtain solutions to the
wave equation and Schrodinger’s equation. This is due to the difference being in the non-
linearity of the KdV equation. A non-linear partial differential equation is comparatively
difficult to solve as the linear superposition principle does not apply to such an equation.
This is due to the presence of the non-linear 6φ∂φ∂x term in the KdV equation. As we are
not able to obtain a general solution and thus take advantage of the linear superposition
principle we will need to obtain a particular solution to the KdV equation.

4.2 Some properties of the Korteweg-de Vries Equation

4.2.1 Symmetric Properties

The following ideas have been used from [15].

For this section we will write the KdV equation as

φt + γφφx + λφ3x = 0 (4.2)

where −∞ < x <∞, t > 0.

Here the subscript indicates the variable at which φ is partially differentiated with re-
spect to. The constants γ and λ are arbitrary and they can be changed, or all be made to
equal 1 depending on how we choose to rescale the equation.

The aim of this section is to show that the KdV equation is invariant, such that if φ(x, t)
is a solution then so is φ(−x,−t). We will demonstrate this using an example of rescaling
the variables in such a way that we return back to the original form.

We can begin with rescaling the space variable x, and t such that

x = XY (4.3)
t = TZ (4.4)

where Y and Z are arbitrary constants.
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We can now use the chain rule to write the partial derivative with respect to x and t
as

∂

∂x
=

dX

dx

∂

∂X

=
1

Y

∂

∂X
(4.5)

∂

∂t
=

dT

dt

∂

∂T

=
1

Z

∂

∂T
(4.6)

We can now use the expressions for ∂
∂x and ∂

∂t and apply these to (4.2). This gives us

φT
Z

+
γφφX
Y

+
λφXXX
Y 3

= 0 (4.7)

multiplying each component by Z gives

φT +
γZφφX
Y

+
λZφXXX

Y 3
= 0. (4.8)

As we mentioned above, rescaling the variables should leave our equation unchanged, so
we need to undertake another rescaling to demonstrate the invariance. To do this we can
introduce a rescaling for φ;

φ = CU (4.9)

where C is an arbitrary constant and the solution to the KdV equation is also renamed
φ(x, t) = U(X,T ). We can now use this rescaled φ and apply it to (4.8)

UT +
γCZUUX

Y
+
λZUXXX

Y 3
= 0. (4.10)

We mentioned before that γ and λ are arbitrary and so we can choose what to make them
and solve for C, Y, Z accordingly. For this example we will choose for them both to equal 1.

As we are now working with the rescaled KdV equation (4.10) the coefficient γ from
the original KdV equation (4.2) is now γCZ

Y and λ is now λZ
Y 3 . We equate these to 1 as this

is what we require the coefficient to be for this example.
γCZ

Y
= 1 (4.11)

λZ

Y 3
= 1. (4.12)

We now have to solve two equations for three unknowns. This indicates the KdV equation
lies in a symmetry group which explains why our solution to (4.2) is φ(x, t) = φ(−x,−t).
To solve (4.11) and (4.12) we can let any of C, Y, Z represent an arbitrary constant and
then find the other two variables in terms of this constant.

We can let Y = α and rearrange using equation (4.12) and we obtain Z = α3

λ . This
implies C = λ

α2γ
by rearranging (4.11). As α is some arbitrary constant, we can show the

invariant property for a particular value of α, for example we can let α = 1, then C, Y, Z
can be written as follows

C =
λ

γ
(4.13)

Y = 1 (4.14)

Z =
1

λ
. (4.15)
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Now that we have values for C, Y, Z, substituting this into our rescaled equation from
(4.10) and simplifying gives us

UT + UUX + UXXX = 0 (4.16)

which brings us back to our original equation with the coefficients we required.

This is a particular example of how we could go about changing coefficients in the KdV
equation. If we wanted coefficients γ and λ to be 2 and 3 respectively then we could equate
(4.11) and (4.12) to 2 and 3 and solve in the same way.

The type of symmetry we have shown here is also known as a scaling symmetry group
or similarity transformation group.

4.2.2 Conservation law

The following ideas have been taken from [16] and [23].
The KdV equation satisfies infinitely many conservation laws. The local conservation

law is

At +Bx = 0 (4.17)

where A and B are the conserved local density and flux respectively, where the flux is the
flow of a fluid. For an equation to satisfy the conservation law it must be possible to write
it in the form in (4.17). Here A and B represent a finite number of functions of φ which
are partially differentiated with respect to t and x respectively.

For the remainder of this subsection we will write the equation using slightly different
notation for simplicity as shown below

φt − 6φφx + φxxx = 0. (4.18)

This can be re-written in conservation form in (4.17) as follows

∂

∂t
φ+

∂

∂x
(φxx − 3φ2) = 0 (4.19)

where A = φ and B = φxx − 3φ2.

Thus we can see that
∫∞
−∞ φdx is a conserved quantity, where∫ ∞

−∞
φdx = constant (4.20)

is the conservation of mass of the water waves.

The KdV equation also satisfies another conservation law. In multiplying (4.18) by φ
we obtain the following

φφt − 6φ2φx + φφxxx = 0. (4.21)

We can now write this in conservation form as follows

∂

∂t

(
1

2
φ2
)
+

∂

∂x

(
φφxx −

1

2
φ2x − 2φ3

)
= 0 (4.22)
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where A = 1
2φ

2 and B = φφxx − 1
2φ

2
x − 2φ3.

Thus, we can see that
∫∞
−∞ φ

2dx is also a conserved quantity, where∫ ∞
−∞

φ2dx = constant (4.23)

is the conservation of momentum of water waves.

We have shown that the conserved densities φ and φ2 which describe the conservation
of mass and momentum respectively, are satisfied by the KdV equation. This implies that
there exists a corresponding conserved quantity;

∫∞
−∞ 3φ2φt+φxφxtdx. We can obtain this

by calculating the following

3φ2(φt − 6φφx + uxxx) + φx(φxt − 6φ2x − 6φφxx + φxxxx) = 0 (4.24)

where the first bracket contains the KdV equation as in (4.18) and the second bracket
contains the partial derivative of the KdV equation with respect to x. Writing (4.24) in
conservation form, it can be written as

∂

∂t

(
φ3 +

1

2
φ2x

)
+

∂

∂x

(
−9

2
φ4 + 3φ2φxx − 6φφ2x + φxφxxx −

1

2
φ2xx

)
= 0. (4.25)

Referring back to (4.17), A = φ3 + 1
2φ

2
x and B = −9

2φ
4 +3φ2φxx− 6φφ2x+ φxφxxx− 1

2φ
2
xx.

Thus we can see that
∫∞
−∞ 3φ2φt + φxφxtdx is a conserved quantity, where∫ ∞

−∞
3φ2φt + φxφxtdx = constant (4.26)

is the conservation of energy.

We have shown the existence of the three main conserved quantities; the conservation of
mass, momentum and energy, together they describe a physical system in one-dimension,
which in our case is the KdV equation.

After further tedious calculations, Gardner, Kruskal and Miura eventually obtained 8
more conserved quantities for the KdV equation. They eventually deduced that in fact the
KdV equation satisfies infinitely many conservation quantities this in turn corresponds to
the KdV equation being associated with an infinite Hamiltonian system. This is still an
active form of research. For further reading on this, please refer to Chapter 5 of [23].

26



Student ID: 100108615

4.2.3 Hirota’s bilinear D-operator

Hirota discovered a method to find soliton solutions of the KdV equation by introducing
a bilinear D-operator as defined below.

Definition 8. The Hirota bilinear D-operator can be applied to two functions say, f
and g. If we were to differentiate these functions m,n-times respectively, then the Hirota
D-operator applied to these is defined with respect to two variables as the following

Dm
t D

n
x(f · g) =

(
∂

∂t
− ∂

∂t′

)m( ∂

∂x
− ∂

∂x′

)n
f(x, t)g(x′, t′)|x′=x,t′=t

where m,n ∈ Z+ [23].

In a later section we will obtain a two-soliton solution using Hirota’s method. Alternatively,
we could also use the D-operator to obtain the same answer and also derive n-soliton
solutions to the KdV equation. If you would like to learn more of this method, please refer
to Chapter 5 of [23] where the two-soliton solution is constructed using the D-operator.

4.3 The Dispersion Relation: The Korteweg-De Vries Equation

As before, we will obtain the dispersion relation, this time for the KdV equation to help us
understand the type of wave solution this equation produces. However we do not explicitly
use it in our one and two-soliton solutions which follow.
We have stated in Definition 3 that the dispersion relation only exists for a linear partial
differential equation. Therefore we must linearise the KdV equation and to do this we
consider when the amplitude φ is very small thus |φ| � 1. It is only then that the term
6φ∂φ∂x in Definition 7 can be ignored, since the product of two small values results in a
smaller value and so 6φ∂φ∂x ≈ 0, hence we are able to disregard this. We can now write the
linearised form of the KdV equation as:

∂φ

∂t
+
∂3φ

∂x3
= 0. (4.27)

where −∞ < x <∞, t > 0.

In order to deduce the dispersion relation from (4.27) we use the plane wave φ(x, t) =
ei(kx−ω(k)t) from Definition 4, Section 2.3 as we did to calculate dispersion relation previ-
ously.

We need to calculate the 1st and 3rd derivatives with respect to t and x respectively
and substitute into the linearised KdV equation. This gives

−iwei(kx−ωt) − ik3ei(kx−wt) = 0. (4.28)

We can cancel and simplify like terms on both sides of the equation in (4.28) which results
in the following non-linear dispersion relation

w(k) = k3. (4.29)

In order for the plane wave to be a solution to the linear KdV equation, the non-linear
relationship between the wave number and the angular frequency must be satisfied. We
have seen from the Schrödinger equation that this has a significant impact on the shape
of the wave as it propagates. Relating to ocean waves, as time progresses, the wave
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amplitude decreases progressively, by the time the wave approaches the shore, its amplitude
is comparatively smaller and no longer large enough to be destructive.

We have just solved the linear KdV equation where dispersive waves exist. However,
now we will study the non-linear KdV Equation where |φ| � 1, and we will see that such
dispersive waves do not exist and we in fact obtain soliton solutions.

4.4 A One-Soliton solution to the Korteweg-de Vries Equation

Now we will carry out an example, in which we find a solution to the KdV equation that
consists of the propagation of one soliton as time progresses. We will do this by direct
integration of the 3rd order KdV equation (4.1). The way in which we will approach this
calculation is by aiming to reduce the 3rd order KdV equation into a 1st order equation
as this is much simpler to solve. We will integrate via the so called separation of variables
method. The type of solution we are aiming to achieve will take either of the form φ(x±ct).
This is a general form of a wave-packet solution which propagates to the right if the sign in
between is negative, or propagates to the left if the sign in between is positive. The speed
at which the corresponding wave travels at, is represented by c.

As we mentioned above, φ(x, t) represents a solution to the KdV equation so we can
let φ(x, t) = u(x − ct). In this particular example, which has been motivated by [11], we
will obtain a single soliton solution that represents a solitary wave which propagates to the
right as time progresses.

We can differentiate u(x− ct) according to the derivatives required in the non-linear KdV
equation. This gives us

∂φ

∂t
= −cdu

dt
,

∂φ

∂x
=
du

dx
,

∂2φ

∂x2
=
d2u

dx2
,

∂3φ

∂x3
=
d3u

dx3
. (4.30)

Equivalently, u(x − ct) ≡ u(ξ). Using this change of variables we can substitute the
derivatives from (4.30) into the KdV equation obtaining

−cdu
dξ

+ 6u
du

dξ
+
d3u

dξ3
= 0. (4.31)

We can integrate each of the above terms once with respect to dξ, and as a result of this
we obtain an arbitrary constant c1 on the right-hand side as shown in (4.34) below.∫ (

−cdu
dξ

+ 6u
du

dξ
+
d3u

dξ3

)
dξ =

∫
0dξ (4.32)

−cu+
6u2

2
u+

d2u

dξ2
= c1 (4.33)

−cu+ 3u2 +
d2u

dξ2
= c1 (4.34)

We have now arrived at a 2nd order normal differential equation.

In order to obtain the 1st order equation we are aiming for, we need to reduce (4.34)
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further by multiplying it by du
dξ and then by dξ as follows

−cudu
dξ

+ 3u2
du

dξ
+
d2u

dξ2
du

dξ
= c1

du

dξ
(4.35)

−cudu+ 3u2du+
d2u

dξ2
du = c1du. (4.36)

We can then integrate each term in (4.36) separately with respect to du. In particular, to
integrate the 3rd term on the left hand side we can write it as follows∫

d2u

dξ2
du =

∫
d2u

dξ2
du

dξ
dξ (4.37)

=

∫
d

dξ

1

2

(
du

dξ

)2

dξ. (4.38)

In (4.37) we have multiplied by dξ
dξ and then re-written the integral such that the integral

and d
dξ cancel each other out. Using the result in (4.38) we can integrate (4.36) and we

obtain

−c
∫
udu+

∫
3u2du+

∫
d

dξ

1

2

(
du

dξ

)2

dξ =

∫
c1du (4.39)

−cu
2

2
+ u3 +

1

2

(
du

dξ

)2

= c1u+ c2 (4.40)

where c1 and c2 are arbitrary constants.

The equation (4.40) is a 1st order normal differential equation. This is what we were
aiming for, as it makes it slightly simpler, although not trivial, to solve in order to find a
particular solution to the KdV equation.

From our knowledge of soliton properties from Section 4.1.1, we know that solitons are
localised waves. We saw in property 4 when x → ±∞ then u(ξ) → 0 which implies that
du
dξ → 0, and d2u

dξ2
→ 0. Thus it follows that c1 = c2 = 0 whilst also after multiplying (4.40)

throughout by 2 we eventually obtain

−cu2 + 2u3 +

(
du

dξ

)2

= 0. (4.41)

.
From (4.41) we are required to find the solution u(ξ). Rearranging this to make (dudξ )

2 the
subject and factorising it gives: (

du

dξ

)2

= u2(c− 2u) (4.42)

du

dξ
= u

√
c− 2u. (4.43)

To summarise so far, we have obtained a 1st order normal differential equation in (4.43)
from our 3rd order non-linear KdV equation which we can now integrate more easily. To do
so we can use the method of separation of variables for which the following form rearranged
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from (4.43) is required to integrate

∫
du

u
√
c− 2u

=

∫
dξ. (4.44)

Introducing integration limits requires us to change the variables with which we are inte-
grating with respect to; ∫ u

0

dζ

ζ
√
c− 2ζ

=

∫ ξ

0
dη. (4.45)

To carry out the integral in (4.45), we can use the following substitution

ζ =
1

2
csech2w. (4.46)

Using this substitution for ζ we can rearrange the terms within the square root in the
denominator in (4.45) to give

c− 2ζ = c− 2

(
1

2
csech2w

)
(4.47)

c− 2ζ = c− csech2w (4.48)
c− 2ζ = c(1− sech2w) (4.49)

using the hyperbolic trigonometric identity tanh2(w) + sech2(w) = 1 we obtain

c− 2ζ = ctanh2w. (4.50)

We can rearrange for ζ we arrive at

ζ =
1

2
c− 1

2
csech2w. (4.51)

We can then differentiate (4.51) as this will be needed further on. The chain rule for
differentiation can be used with respect to w and we get the following derivative

dζ

dw
= −c sinhw

cosh3w
. (4.52)

The upper limit of the integral on the left hand side in (4.45) can be transformed using
the substitution in (4.46), rearranging for w gives

w = sech−1
(√

2ζ

c

)
. (4.53)

Going back to the initial integral we needed to solve in (4.45), we can now use the substi-
tution in (4.46) together with (4.50) and (4.52) and substitute these into (4.45). We can
then simplify this further which gives the following calculations∫ ξ

0
dη =

∫ u

0

dζ

ζ
√
c− 2ζ

(4.54)

ξ =

∫ w

0
−c sinhw

cosh3w

1
1
2csech

2w

1√
ctanh2w

dw (4.55)

=
−2√
c

∫ w

0
dw (4.56)

=
−2√
c
w. (4.57)
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Now we can substitute (4.53) into the right hand side of (4.57) which gives us

ξ = − 2√
c
sech−1

(√
2u

c

)
. (4.58)

We can then rearrange (4.58) as follows in order to obtain an expression for u in terms of
ξ;

−
√
c

2
ξ = sech−1

(√
2u

c

)
(4.59)

sech2
(
−
√
c

2
ξ

)
=

(√
2u

c

)2

(4.60)

sech2
(
−
√
c

2
ξ

)
=

2u

c
(4.61)

u(ξ) =
c

2
sech2

(
−
√
c

2
ξ

)
. (4.62)

Remembering that we initially made a change of variables φ(x, t) = u(x − ct) ≡ u(ξ), we
can now return to our original variables t and x to obtain the following

φ(x, t) =
c

2
sech2

(
−
√
c

2
(x− ct)

)
. (4.63)

We have arrived at a one-soliton solution to the KdV equation which is illustrated in Figure
7 below.

(a) 2D Plot (b) 3D Plot

Figure 7: This figure presents our one-soliton solution graphically in two-dimensional and
three-dimensional form

31



Student ID: 100108615

From our equation for a one-soliton solution in (4.63) we can make an important obser-
vation. The amplitude of the wave is c

2 and the wavelength, in other words the width of
the wave is −

√
c
2 . This tells us that they are both dependent on the velocity c at which

the wave propagates. Hence, as the velocity increases then so does the wave amplitude
and wavelength. However, although the amplitude and wavelength may change, the actual
shape of the soliton is invariant whilst it travels, maintaining its hump-like shape as is
evident from Figure 7. Also evident from this figure is the localised wave structure which
we explained previously. We can see that as x → ±∞ the solitary wave flattens out and
φ(x, t)→ 0.

Our one-soliton solution differs in comparison to the linear wave equation solution we
obtained in a previous example. In this previous example we were able to find one solu-
tion to the wave equation, and by varying the amplitude we were able to obtain multiple
solutions, where the amplitude was independent on the velocity of the wave.

The dependency of both the wavelength and amplitude on the velocity in soliton so-
lutions obtained from the KdV equation, is due to the presence of the the non-linear
dispersion relation. It is this non-linear dispersion relation, together with the non-linearity
of the KdV equation, that form the basis upon which this dependency occurs.

What we have just studied is a one solitary wave. One may now wonder what happens if we
have two solitary waves? We will illustrate this in the next subsection where we will derive
a particular two-soliton solution (more explicitly) to the KdV equation. In this solution,
we will see that the linear superposition principle will only be satisfied to a certain extent.

4.5 A Two-Soliton solution to the Korteweg-de Vries Equation

A two-soliton solution represents two solitary waves travelling together. As mentioned
previously, we cannot use exactly the linear superposition principle, instead we need to
find a particular two-soliton solution rather than a general one. In this example we will
approach this calculation using a different method called Hirota’s Method.

The solution we will obtain will have some characteristic properties which will explain
some of our observations. We will notice that our solution will illustrate two solitary waves
where the taller and narrower wave will travel faster compared to the shorter wider wave.
This is due to the dependence of the amplitude on the speed [22].

The following example has been motivated by [17].

For convenience, we can re-write the non-linear KdV equation with slightly different nota-
tion in line with [17].

ut = −uxxx + 6uux (4.64)

where ut= ∂u
∂t , ux=

∂u
∂x and uxxx= ∂3u

∂x3
.

Remark. The variable ‘u’ in this section has no correspondence with that of Section 2:
The Wave Equation
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We will briefly explain the steps here to gather an overview of what we are aiming to
achieve in this example. Using the substitution u = ∂xv to the KdV equation (4.64),
we can obtain Hirota’s form of the KdV equation. Using a general form of the solution
denoted as η(x, t), we can substitute this into the Hirota’s form of the KdV equation and
after a lengthy calculation, we eventually obtain a two-soliton solution.

The first step of the calculation involves making the substitution u = ∂xv into (4.64)

∂x(vt + vxxx − 3v2x) = 0. (4.65)

We can then integrate this with respect to ∂x so that we obtain the potential KdV (PKdV)
equation below, assuming the arbitrary constant of integration, C = 0

vt + vxxx − 3v2x = 0. (4.66)

A solution to the PKdV equation in (4.66) is denoted v(x, t). From this we can deduce a
solution to the KdV equation from the relationship u = ∂xv.

Hence a solution to the PKdV equation is

v(x, t) = −
√
c

(
tanh

(√
c

2
(x− ct)

)
+ 1

)
(4.67)

which is in fact a one-soliton solution. This will aid us in generating Hirota’s form of the
KdV equation. We can re-write this in a different way so it is easier to work with.

v(x, t) = −
√
c

(
e
√
c(x−ct) − 1

e
√
c(x−ct) + 1

+ 1

)
(4.68)

= −
√
c

(
e
√
c(x−ct) − 1

e
√
c(x−ct) + 1

+
e
√
c(x−ct) + 1

e
√
c(x−ct) + 1

)
(4.69)

= −
√
c

(
2e
√
c(x−ct)

e
√
c(x−ct) + 1

)
(4.70)

In (4.68) − (4.70) we have expressed tanh in its exponential form, tanh = e−2x−1
e2x+1

and
re-written it as a single fraction.

We denote (4.70) as

v =
−2ηx
η

(4.71)

which is referred to a the Hopf-Cole transformation where η = 1 + e
√
c(x−ct) [23].

This motivates our use of making the Hirota Substitution v = −2ηx
η into the PKdV

equation. In order to do this we need to calculate the relevant derivatives using (4.71),

with the use of the quotient rule for differentiation, stated as
(
f
g

)′
= f ′g−fg′

g2
. Then we

must substitute these derivatives into (4.66).

The terms we require to substitute into the PKdV equation are:

vt =
−2ηxt
η

+
2ηxηt
η2

(4.72)

vxx =
6η2ηxηxx − 2η3ηxxx − 4ηη3x

η4
(4.73)

vxxx =
6η6η2xx − 2η7ηxxxx − 4η4η4x − 24η5η2xηxx + 8η6ηxηxxx + 16η4η4x

η8
. (4.74)
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Substituting these terms, we obtain the following lengthy equation

−2ηxt
η

+
2ηxηt
η2

=
−6η2xx
η2

+
2ηxxxx
η
− 12η4x

η4
+

24η2xηxx
η3

− 8ηxηxxx
η2

+
12η2xx
η2

−

24η2xηxx
η3

+
12η4x
η4

(4.75)

From (4.75) we can cancel out like terms which leaves us with

−2ηxt
η

+
2ηxηt
η2

=
2ηxxxx
η
− 8ηxηxxx

η2
+

6η2xx
η2

. (4.76)

To get rid of the denominator we can multiply each numerator by η2 and simplify the
coefficients, obtaining

ηηxt − ηxηt + ηηxxxx − 4ηxηxxx + 3η2xx = 0. (4.77)

Now we have arrived at the Hirota form of the KdV equation. With this form it is now
easier to find n-soliton solutions. Although equation (4.77) looks rather complicated, it can
be written in a simpler form with the use of Hirota D-operator. Applying the D-operator,
we can write the Hirota form of the KdV equation in the following short form as such

Dx(Dt +D3
x)η · η = 0. (4.78)

Although we will not be using the D-operator method here, (4.78) allows us to see how
we can write (4.77) using the D-operator from Definition 8. We can use this as a starting
point in using this alternative method to obtain a two-soliton solution as further work.

A solution to the KdV equation illustrating two solitary waves takes the form

η = 1 + eθ1 + eθ2 + aeθ1+θ2 (4.79)

where θ1 = A1x−A3
1t+C1, θ2 = A2x−A3

2t+C2, A1, A2, C1 and C2 are ∈ R, x and t are

space and time variables respectively and a =
(
A1−A2
A1+A2

)2
.

We can calculate all the required derivatives needed to substitute into Hirota’s form of
the KdV equation (4.77)

η = 1 + eθ1 + eθ2 + aeθ1+θ2 (4.80)
ηx = A1e

θ1 +A2e
θ2 + a(A1 +A2)e

θ1+θ2 (4.81)
ηt = −A3

1e
θ1 −A3

2e
θ2 − (A3

1 +A3
2)ae

θ1+θ2 (4.82)
ηxx = A2

1e
θ1 +A2

2e
θ2 + (A1 +A2)

2aeθ1+θ2 (4.83)
ηxxx = A3

1e
θ1 +A3

2e
θ2 + (A1 +A2)

3aeθ1+θ2 (4.84)
ηxxxx = A4

1e
θ1 +A4

2e
θ2 + (A1 +A2)

4aeθ1+θ2 (4.85)
ηxt = −A4

1e
θ1 −A4

2e
θ2 − (A3

1 +A3
2)(A1 +A2)ae

θ1+θ2 . (4.86)

We can multiply terms according to (4.77), and assuming we add the terms correctly, all
the coefficients should cancel out. This should result in our equation to equal 0.

For the convenience of the reader the lengthy calculations have been omitted. Please
refer to Appendix 3 if you would like to follow them through.
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As a result of carrying out these calculations we can confirm that η = 1+eθ1+eθ2+aeθ1+θ2

is a solution to the Hirota form of the KdV equation, only when a =
(
A1−A2
A1+A2

)2
.

Now, in order to find a solution u to the KdV equation we use the following

u =

(
−2ηx
η

)
x

. (4.87)

This requires us to use η and calculate its partial derivative with respect to x. The full
form of the solution η can be written as

η(x, t) = 1 + eA1x−A3
1t+C1 + eA2x−A3

2t+C2 +

(
A1 −A2

A1 +A2

)2

e(A1+A2)x−(A3
1+A

3
2)t+(C1+C2).(4.88)

For this example we can simply let A1 = 1, A2 = 2 and C1 = C2 = 0. We can re-write η
with these constants as

η = 9 + 9ex−t + 9e2x−8t + e3x−9t. (4.89)

Calculating ηx, we can substitute this together with η into (4.87), and obtain the following

u =
∂

∂x

(
−18ex−t − 36e2x−8t − 6e3x−9t

9 + 9ex−t + 9e2x−8t + e3x−9t

)
. (4.90)

Intermediate steps to find this two-soliton solution have been provided in Appendix 4.
We can use the quotient rule of differentiation to compute the derivative in (4.90). This
calculates to

u(x, t) =
−162ex−t − 324e3x−9t − 72e4x−10t − 648e2x−8t − 18e5x−17t

(9 + 9ex−t + 9e2x−9t + e3x−9t)2
. (4.91)

We can take out a factor of −18 and write u(x, t) as

u(x, t) = −189e
x−t + 18e3x−9t + 4e4x−10t + 36e2x−8t + e5x−17t

(9 + 9ex−t + 9e2x−9t + e3x−9t)2
. (4.92)

Finally, we arrive at a two-soliton solution to the Korteweg-de Vries equation. Illustrating
(4.92) graphically we get the following graphs in Figure 8 at increasing times.
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(a) Time= -5 (b) Time= -0.75

(c) Time= -0.3 (d) Time= 0

(e) Time= 0.8 (f) Time= 5

Figure 8: This figure illustrates how two solitons travel in our two-soliton solution (4.92)
at times t = −5, t = −0.75, t = −0.3, t = 0, t = 0.8 and t = 5. The constants in our
solution are A1 = 1, A2 = 2 and C1 = C2 = 0.
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Figure 8 shows the illustrations of the function −u(x, t) from (4.92). Producing graphs for
u(x, t) will plot the same graphs symmetrical in the x-axis. Figure 8 shows how two solitons
interact both with each other and individually at progressive times. In Figure 8a at time,
t = −5, it is clear that there are two solitary waves with distinct peaks, one significantly
greater than the other, a characteristic common in solitons. As time progresses the waves
travel in the positive x-direction as our solution takes the form u(x−ct). In particular, the
wave with the taller peak travels at a greater velocity than the smaller wave, eventually
approaching the smaller wave, it travels right through.

At time, t = 0 in Figure 8d, the two solitons have fully merged together forming one
soliton. The phenomenon by which this occurs is known as soliton resonance. Also at this
point, the solitons are defined as being stable, but very quickly become unstable as they
separate from each other when the larger wave travels ahead of the smaller one [22]. The
shape of both solitons remain unchanged through their motion.

According to Figure 8, the motion of the waves described so far is the same as that which
would be observed in solutions for linear wave equations, where the linear superposition
principle applies. However, we know that in a non-linear equation the same superposition
principle would not apply, but rather a slight variation to this principle is required. This
arises as the large amplitude wave travels through the smaller wave and a phase-shift
becomes evident. This explains why the two waves are not in the same position as they
would have been whilst travelling at uniform speed, had they not interacted with one
another. We can explain this by looking at Figure 9, where we have taken two graphs from
Figure 8 at time t = −5 and t = 5 to better explain this phase-shift.

(a) Time= -5 (b) Time= 5

Figure 9: This figure allows us to see a phase-shift more clearly, from our two soliton
solution

Figure 9b shows the two solitary waves as they separate after they pass through each other
at time t = 0. Referring to Figure 9b if the superposition principle did exist, the larger
wave’s peak should lie at x = 20 as at time t = −5 the larger peak lay at x = −20.
This would imply a constant speed, thus a symmetry in the position of each wave would
occur. However, in Figure 9b we can see that the larger peak is actually slightly ahead of
x = 20, hence an absence of symmetry has occurred thus indicating the non-existence of
the linear superposition principle. From our knowledge of soliton properties, we know that
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once two solitary waves have passed through each other, their velocity and shape remains
unchanged. A viable explanation for the absence of symmetry in our example is that a
phase shift has occurred. This occurrence of a phase shift is not a surprise, but rather a
well-known characteristic of solitons. It is this concept which aids us in recognising travel-
ling solitary waves and rules out the existence of the linear superposition principle. Instead
it introduces a kind of ‘non-linear’ superposition principle.

We mentioned earlier that there exists two distinct peaks in our solution. We can suggest
that the height of each peak is determined by A1 and A2. To see the effect of A1 and
A2, we will do another example and slightly change these values to A1 = 1 and A2 = 2.5.
Solving in the same way as we did previously, we obtain the following solution:

u(x, t) =
−2(ηxxη − η2x)

η2
(4.93)

where η = 49 + 49ex−t + 49e2.5x−15.625t + 9e3.5x−16.625t and ηx, ηxx are the 1st and 2nd

derivatives with respect to x.
We can recall that the shape and size of solitary waves does not change as it travels

with time, therefore at all times the waves peaks will remain constant. Comparing solution
(4.92) with (4.93), we observe the significant changes in the soliton peaks. These changes
occur as a result of increasing A2 by 0.5 and keeping A1 the same. This is demonstrated
in Figure 10 below, which illustrates the plot of solution (4.93) at progressive times.
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(a) Time= -5 (b) Time= -0.75

(c) Time= -0.3 (d) Time= 0

(e) Time= 0.8 (f) Time= 5

Figure 10: This figure illustrates how two solitons travel in our second two-soliton solution
(4.93) at times t = −5, t = −0.75, t = −0.3, t = 0, t = 0.8 and t = 5. The constants in
our solution are A1 = 1, A2 = 2.5 and C1 = C2 = 0.
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Looking at Figure 10, we can see that in comparison with Figure 8 the peak of the larger
wave is greater and is also at a different position at the same time. From this we can deduce
that the values of A1 and A2 determine the height of the smaller and larger solitary waves
and also their positions in time. Making this observation and looking at one time in
particular, say time, t = −5 in Figure 10a, we can see that keeping A1 unchanged has
resulted in the smaller wave remaining the same size, and in the same position as in Figure
8a. Comparatively, looking at the larger wave, increasing A2 by 0.5 has resulted in an
increase in the amplitude and also a change in its position. In fact, A2 actually refers to
the speed of the respective soliton [17].

Comparing Figures 8 and 10 we can see that as time progresses, the larger of the two
solitons travels faster, as it covers a greater distance in the same amount of time. Whereas
the smaller soliton has covered the same distance in both figures, as is expected since A1

remains unchanged. This is a rather significant observation of our solutions.
By understanding the effect of the constants on the speed and shape of our solitons, we

can manipulate these values and produce several variations of the two solitons in question.
A couple of observations we can afford to make are how long it takes for two solitons of a
particular size to interact with each other, whilst travelling at particular speeds. As well as
how long it takes n-solitons to interact with one other whilst travelling at same or different
speeds. This gives a considerable amount of freedom to observing such solutions.

40



Student ID: 100108615

5 Conclusion

To conclude our observations, we will summarise the findings we have made throughout
this thesis.

We have studied three partially differentiated wave equations; the linear wave equation,
the Schrödinger equation and the Korteweg-de Vries equation.

From our study of the wave equation, we were able to deduce that the linear wave equa-
tion exhibited a linear dispersion relation. Using Fourier analysis we calculated a general
solution to this equation. And from the illustration of this we observed that such wave
solutions represented waves which had constant amplitude as they travelled, indicating the
presence of these in tsunamis.

Conversely, we deduced that the Schrödinger equation satisfied a non-linear dispersion
relation. Upon calculating a general solution to this equation, we observed that waves
represented by these solutions produced illustrations in which the waves possessed a de-
creasing amplitude, as they travelled with time.

Taking our knowledge of waves further, we studied a very particular, non-linear, partial
differential equation which models shallow water waves; the Korteweg-de Vries equation.
Linearising this equation and calculating its non-linear dispersion relation, we very quickly
recognised that this linearised equation, exhibited solutions of dispersive waves. However,
upon calculating one and two-soliton solutions of the non-linear KdV equation, we were
able to make some interesting findings on the propagation of such solitary waves.

We observed a phase-shift upon the interaction of two solitons. Due to this phase-shift
and the non-linearity of the KdV equation which governed our soliton solutions, we dis-
regarded the existence of the linear superposition principle. This meant that we were not
able to use Fourier analysis as we were required to calculate a particular solution rather
than a general one. To do this, we calculated a one-soliton solution using direct integra-
tion. We then used Hirota’s method to obtain a two-soliton solution. Using this method we
observed the significant contributions of the arbitrary constants on the soliton’s speed and
shape. We then further discussed observations we could make upon varying these constants.

When studying the Hirota bilinear D-operator, an attempt was made to use this to obtain
a two-soliton solution, however this proved to be rather challenging. If we were afforded
more time, we could use the D-operator as an alternative method to finding two-soliton
solutions. Hence we could use this to confirm the correctness of the two-soliton solution we
obtained. We can also adopt this method to derive n-soliton solutions. In illustrating these
solutions, we will be able to observe that the solitons should eventually line up in order
of decreasing amplitude [22]. In addition to this, we can vary the constants to see how
solitons of different speed and size interact with one another. This could enable us to apply
our examples to real-world situations, and be able to make predictions and assumptions
based on these results.
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6 Appendices

6.1 Appendix 1

Full calculation for lines between (3.10)− (3.13)

−k
2

4
+ i(kx− 1

2
k2t) = −k

2

4
+ ikx− 1

2
k2it

=

(
−1

4
− 1

2
it

)
k2 + ikx

=

(
−1− 2it

4

)
k2 + ikx

=
−1− 2it

4

[
k2 +

(
4ix

−1− 2it

)
k

]
=
−1− 2it

4

[
k2 +

(
4ix

−1− 2it

)
k +

(
2ix

−1− 2it

)2

−
(

2ix

−1− 2it

)2
]

=
−1− 2it

4

[(
k +

(
2ix

−1− 2it

))2

−
(

2ix

−1− 2it

)2
]

=
−1− 2it

4

(
k +

(
2ix

−1− 2it

))2

+

(
1 + 2it

4

)(
2ix

−1− 2it

)2

(6.1)

In the above calculations we have taken the exponent from (3.9) and rearranged it in such
a way were we can apply a the sum of two squares. This method has been used to enable
us to make a suitable substitution.

Now we can make a substitution as shown below

lety =

√
1 + 2it

4

(
k +

2ix

−1− 2it

)
dy

dk
=

√
1 + 2it

2
2dy√
1 + 2it

= dk.

6.2 Appendix 2

Below is the full length of calculations from (3.17)− (3.18).
In order to be able to plot the solution in question, we are required to take the absolute
value of ψ(x, t) in order to get rid of the complex valued number, i.

|ψ(x, t)| = | 1√
(1+2it)

|e
2itx2

4t2+1 ||e−
x2

4t2+1 |

We can take the absolute value of each term individually and then multiply them together.
We will make use of the following rule to find the absolute value; |a + bi| =

√
a2 + b2.
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Applying this, we obtain the following terms

1st term = | 1√
(1 + 2it)

| = 1√√
(12 + (2t)2

=
1(

(1 + 4t2)
1
2

) 1
2

=
(
1 + 4t2

)− 1
4

2nd term = |e−
x2

4t2+1 |

= e
−| x2

4t2+1
|

= e
− x2

4t2+1 .

For the following term, we will make use of Euler’s identity, eix = cosx+ i sinx

3rd term = |e
2itx2

4t2+1 |

= |cos
(

2tx2

4t2 + 1

)
+ isin

(
2tx2

4t2 + 1

)
|

=

√
cos2

(
2tx2

4t2 + 1

)
+ sin2

(
2tx2

4t2 + 1

)
= 1

Above, we have applied the trigonometric identity sin2 x+cos2 x = 1 to simplify this term.

Finally, multiplying the results together gives us

|ψ(x, t)|2 =
((

1 + 4t2
)− 1

4

)2(
e
− x2

1+4t2

)2

Re-writing this, a solution of the Schrödinger equation with a non-linear dispersion relation
is

|ψ(x, t)|2 = 1√
1+4t2

e
− 2x2

1+4t2

6.3 Appendix 3

Now we can calculate all the relevant derivatives according to the ones present in Hirota’s
form of KdV as follows

η = 1 + eθ1 + eθ2 + aeθ1+θ2

ηx = A1e
θ1 +A2e

θ2 + a(A1 +A2)e
θ1+θ2

ηt = −A3
1e
θ1 −A3

2e
θ2 − (A3

1 +A3
2)ae

θ1+θ2

ηxx = A2
1e
θ1 +A2

2e
θ2 + (A1 +A2)

2aeθ1+θ2

ηxxx = A3
1e
θ1 +A3

2e
θ2 + (A1 +A2)

3aeθ1+θ2

ηxxxx = A4
1e
θ1 +A4

2e
θ2 + (A1 +A2)

4aeθ1+θ2

ηxt = −A4
1e
θ1 −A4

2e
θ2 − (A3

1 +A3
2)(A1 +A2)ae

θ1+θ2

We can obtain each term in Hirota’s KdV equation by multiplying the above derivatives
were necessary and collecting like terms where required.

ηxtη = −A4
1e
θ1 −A4

2e
θ2 −A4

1e
2θ1 −A4

2e
2θ2 + (−A4

1 −A4
2 − a(A1 +A2)(A

3
1 +A3

2))e
θ1+θ2 +

(−A4
1 − (A1 +A2)(A

3
1 +A3

2))ae
2θ1+θ2 + (−A4

2 − (A1 +A2)(A
3
1 +A3

2))ae
θ1+2θ2 −

(A1 +A2)(A
3
1 +A3

2)a
2e2θ1+2θ2

43



Student ID: 100108615

ηxηt = −A4
1e

2θ1 −A4
2e

2θ2 + (−A1A
3
2 −A3

1A2)e
θ1+θ2 + (−A1(A

3
1 +A3

2)−A3
1(A1 +A2))ae

2θ1+θ2

+(−A2(A
3
1 +A3

2)−A3
2(A1 +A2))ae

θ1+2θ2 − a2(A1 +A2)(A
3
1 +A3

2)e
2θ1+2θ2

ηηxxxx = A4
1e
θ1 +A4

2e
θ2 +A4

1e
2θ1 +A4

2e
2θ2 + (A4

1 +A4
2 + a(A1 +A2)

4)eθ1+θ2 +

a(A4
1 + (A1 +A2)

4)e2θ1+θ2 + a(A4
2 + (A1 +A2)

4)eθ1+2θ2a2(A1 +A2)
4e2θ1+2θ2

ηηxxx = A4
1e

2θ1 +A4
2e

2θ2 + (A1A
3
2 +A3

1A2)e
θ1+θ2 + (A1(A1 +A2)

3 +A3
1(A1 +A2))ae

2θ1+θ2

+(A2(A1 +A2)
3 +A3

2(A1 +A2))ae
θ1+2θ2 + a2(A1 +A2)

4e2θ1+2θ2

3η2xx = 3A4
1e

2θ1 + 3A4
2e

2θ2 + 3(A2
1A

2
2 +A2

1A
2
2)e

θ1+θ2 + 3(A2
1(A1 +A2)

2 +A2
1(A1 +A2)

2)ae2θ1+θ2

+3(A2
2(A1 +A2)

2 +A2
2(A1 +A2)

2)aeθ1+2θ2 + 3a2(A1 +A2)
4e2θ1+2θ2

Now referring back to the Hirota form of the KdV we can collect the coefficients of eθ1 ,
eθ2 , eθ1+θ2 , e2θ1 , e2θ2 , e2θ1+2θ2 , e2θ1+θ2 , eθ1+2θ2 from all the terms ηxtη, ηxηt, ηηxxxx, ηηxxx,
3η2xx above. What is required of us is that the coefficients of each of the exponential terms
must eventually all cancel out, thus equating to 0 in order to satisfy equation (4.77). Below
we will show how each term is cancelled out.
eθ1 = −A4

1 +A4
1 = 0

eθ2 = −A4
2 +A4

2 = 0

e2θ1 = −A4
1 +A4

1 +A4
1 − 4A4

1 + 3A4
1 = 0

e2θ2 = −A4
2 +A4

2 +A4
2 − 4A4

2 + 3A4
2 = 0

eθ1+θ2 = −A4
1 −A4

2 − a(A1 +A2)(A
3
1 +A3

2) +A1A
3
2 +A3

1A2 +A4
1 +A4

2 + a(A1 +A2)
4

−4A1A
3
2 − 4A3

1A2 + 6A2
1A

2
2 (6.2)

making the substitution a =
(
A1−A2
A1+A1

)2
gives the following

eθ1+θ2 = −A4
1 −A4

2 −
(A1 −A2)

2

(A1 +A2)
(A3

1 +A3
2) +A1A

3
2 +A3

1A2 +A4
1 +A4

2 + (A1 −A2)
2(A1 +A2)

2

−4A1A
3
2 − 4A3

1A2 + 6A2
1A

2
2(6.3)

expanding all the brackets gives us the following

eθ1+θ2 =
−A3

1A
2
2 −A5

2 −A5
1 −A2

1A
3
2 + 2A4

1A2 + 2A1A
4
2

A1 +A2
+A1A

3
2 +A3

1A2 +

A4
1 +A4

2 − 2A2
1A

2
2 − 4A1A

3
2

−4A3
1A2 + 6A2

1A
2
2

This can be simplified slightly by collecting the like terms 6A2
1A

2
2 − 2A2

1A
2
2, and then we

can multiply throughout by (A1 +A2) to remove the fraction

eθ1+θ2 = −A3
1A

2
2 −A5

2 −A5
1 −A2

1A
3
2 + 2A4

1A2 + 2A1A
4
2 + 4A3

1A
2
2 + 4A2

1A
3
2 − 3A4

1A2

−3A3
1A

2
2 − 3A2

1A
3
2 − 3A1A

4
2 +A5

1 +A4
1A2 +A1A

4
2 +A5

2
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Now we can collect like terms and everything cancels itself out and so eθ1+θ2 = 0.

e2θ1+θ2 = a(−A4
1 − (A1 +A2)(A

3
1 +A3

2)) + a(A1(A
3
1 +A3

2) +A3
1(A1 +A2)) +

a(A4
1 + (A1 +A2)

4)− 4a(A1(A1 +A2)
3 +A3

1(A1 +A2)) +

3a(A2
1(A1 +A2)

2 +A2
1(A1 +A2)

2.

Making the substitution for a gives the following

e2θ1+θ2 = −A4
1(
A1 −A2

A1 +A2
)2 − (A1 −A2)

2(A3
1 +A3

2)

(A1 +A2)
+
A1(A1 −A2)

2(A3
1 +A3

2)

(A1 +A2)2
+

A3
1(A1 −A2)

2

(A1 +A2)
+A4

1(
A1 −A2

A1 +A2
)2 + (A1 +A2)

2(A1 −A2)
2 −

4A1(A1 −A2)
2(A1 +A2)−

4A3
1(A1 −A2)

2

(A1 +A2)
+ 6A2

1(A1 −A2)
2.

To get rid of the denominator we can multiply throughout by (A1 +A2)
2 which gives us

e2θ1+θ2 = −(A1 −A2)
2(A3

1 +A3
2)(A1 +A2) +A1(A1 −A2)

2(A3
1 +A3

2)−
3A3

1(A1 −A2)
2(A1 +A2) + (A1 +A2)

4(A1 −A2)
2 −

4A1(A1 −A2)
2(A1 +A2)

3 + 6A2
1(A1 −A2)

2(A1 +A2)
2 (6.4)

multiplying out all the brackets and collecting the like terms within them gives the following

e2θ1+θ2 = −A6
1 −A6

2 − 2A3
1A

3
2 +A5

1A2 +A2
1A

4
2 +A4

1A
2
2 +A1A

5
2

+A6
1 +A3

1A
3
2 − 2A5

1A2 − 2A2
1A

4
2 +A4

1A
2
2 +A1A

5
2

−3A6
1 + 3A5

1A2 + 3A4
1A

2
2 − 3A3

1A
3
2

+A6
1 + 2A5

1A2 −A4
1A

2
2 −A2

1A
4
2 + 2A1A

5
2 +A6

2 − 4A3
1A

3
2

−4A6
1 − 4A5

1A2 + 8A4
1A

2
2 + 8A3

1A
3
2 − 4A2

1A
4
2 − 4A1A

5
2

+6A6
1 + 6A2

1A
4
2 − 12A4

1A
2
2

= 0. (6.5)

Above we have collected the remaining like terms and we eventually obtain 0 as everything
cancels out.

eθ1+2θ2 = a(−A4
2 − (A1 +A2)(A

3
1 +A3

2)) + a(A2(A
3
1 +A3

2) +A3
2(A1 +A2)) +

a(A4
2 + (A1 +A2)

4)− 4a(A2(A1 +A2)
3 +A3

2(A1 +A2)) +

3a(A2
2(A1 +A2)

2 +A2
2(A1 +A2)

2

making the substitution for a gives the following

eθ1+2θ2 = −A4
2(
A1 −A2

A1 +A2
)2 − (A1 −A2)

2(A3
1 +A3

2)

(A1 +A2)
+
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2(A3
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A3
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2
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+A4
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)2 + (A1 +A2)
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4A3
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2.
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To get rid of the denominator we can multiply throughout by (A1 +A2)
2 which gives us

eθ1+2θ2 = −(A1 −A2)
2(A3

1 +A3
2)(A1 +A2) +A2(A1 −A2)

2(A3
1 +A3

2)−
3A3

2(A1 −A2)
2(A1 +A2) + (A1 +A2)

4(A1 −A2)
2 −

4A2(A1 −A2)
2(A1 +A2)

3 + 6A2
2(A1 −A2)

2(A1 +A2)
2

(6.6)

multiplying out all the brackets and collecting the like terms within them gives us the
following

eθ1+2θ2 = −A6
1 −A6

2 − 2A3
1A

3
2 +A5

1A2 +A2
1A

4
2 +A4

1A
2
2 +A1A

5
2

+A6
2 +A3

1A
3
2 − 2A1A

5
2 − 2A4

1A
2
2 +A5

1A2 +A2
1A

4
2

−3A6
2 + 3A1A

5
2 + 3A2

1A
4
2 − 3A3

1A
3
2

+A6
1 + 2A5

1A2 −A4
1A

2
2 −A2

1A
4
2 + 2A1A

5
2 +A6

2 − 4A3
1A

3
2

−4A6
2 − 4A5

1A2 + 8A2
1A

4
2 + 8A3

1A
3
2 − 4A4

1A
2
2 − 4A1A

5
2

+6A6
2 + 6A4

1A
2
2 − 12A2

1A
4
2

= 0. (6.7)

Above we have collected the remaining like terms and we eventually obtain 0 as everything
cancels out.

Finally looking at the last term we can collect the coefficients

e2θ1+2θ2 = −a2(A1 +A2)(A
3
1 +A3

2) + a2(A1 +A2)(A
3
1 +A3

2)

+a2(A1 +A2)
4 − 4a2(A1 +A2)

4 + 3a2(A1 +A2)
4

= 0 (6.8)

Thus we have shown that (4.77) is satisfied by η.
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6.4 Appendix 4

Applying the quotient rule for differentiation gives the following fraction

(−18ex−t−72e2x−8t−18e3x−9t)(9+9ex−t+9e2x−8t+e3x−9t)−(−18ex−t−36e2x−8t−6e3x−9t)(9ex−t+18e2x−8t+3e3x−9t)
(9+9ex−t+9e2x−8t+e3x−9t)2

The brackets can be expanded and simplified and the coefficients of e2x−2t, e4x−16t and
e6x−18t are cancelled out. This leaves us with the following solution of u

u(x, t) =
−162ex−t − 324e3x−9t − 72e4x−10t − 648e2x−8t − 18e5x−17t

(9 + 9ex−t + 9e2x−9t + e3x−9t)2

6.5 Appendix 5

The following are the intermediate calculations for the second two-soliton solution. The
calculation we need to carry out is written as follows:

u(x, t) = −2
(
49ex−t+122.5e2.5x−15.625t+31.5e3.5x−16.625t

49+49ex−t+49e2.5x−15.625t+9e3.5x−16.625t

)
x

To this we can apply the quotient rule for differentiation which gives us

(−98ex−t−612.5e2.5x−15.625t−220.5e3.5x−16.625t)(49+49ex−t+49e2.5x−15.625t+9e3.5x−16.625t)
(49+49ex−t+49e2.5x−15.625t+9e3.5x−16.625t)2

−

(−98ex−t−245e2.5x−15.625t−63e3.5x−16.625t)(49ex−t+122.5e2.5x−15.625t+31.5e3.5x−16.625t)
(49+49ex−t+49e2.5x−15.625t+9e3.5x−16.625t)2

.

The brackets above can be expanded, and the terms can be simplified. This give us the
following required solution

u(x, t) = 2401ex−t+10804.5e3.5x−16.625t+15006.25e2.5x−15.625t+2756.25e4.5x−17.625t+441e6x−32.25t

(49+49ex−t+49e2.5x−15.625t+9e3.5x−16.625t)2
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