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Abstract

There seems to be a lack of easy to follow material which intro-
duces the matrix exponential without overloading the reader with an
unnerving amount of information. In fact there may be ’Nineteen Du-
bious Ways to Compute the Exponential of a Matrix’ [6] however this
project will focus on a single way, namely, through the use of spectral
decomposition. Working over a closed, complex field, we look at two
classes of matrices - diagonalizable and defective - and find an effective
method for each. This requires the introduction of new concepts such
as generalized eigenvectors and the Jordan Canonical form.

1 What is e?

First we start with a very brief history of the number e itself. It is thought
to have naturally arisen through mathematical experiment with compound
interest, pre-calculus. In fact it was already referred to in Edward Wright’s
English translation of John Napier’s work on logarithms, published in 1618.
The number itself was not denoted as e until Leonhard Euler’s work in the
first half of the eighteenth century which gave us it’s more familiar role in
calculus. It is now known as Euler’s number e = 2.71828182845904...[5]. (If
one wishes to learn more about this number they could read “e: The Story
of a Number”, by Eli Maor).

We move swiftly on to the natural exponential function itself.
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Definition 1.1. The natural exponential function exp(x), is defined for
all x ∈ R as the following Taylor series:

f(x) = ex =
∞∑
k=0

xk

k!
, (1)

where the base e, is Euler’s transcendental constant.[8]

The graph of this function is shown below:

Figure 1: Graph of y = ex

Note: We shall refer to the natural exponential function simply as the ex-
ponential function from now onwards.

For completeness we shall now provide properties and applications of the
exponential function.

Proposition 1.2. (Properties of the exponential function).[8]

1. The exponential function (1) is continuous with domain R and range
(0,∞).This means that ex > 0 for all x. Consequently we get the limits

lim
x→−∞

ex = 0 and lim
x→∞

ex =∞, (2)

hence the x-axis is a horizontal asymptote of the exponential function -
one can see this from figure 1.
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2. exp(x) is an inverse to the natural logarithm ln(x).

3. The n-th derivative of the exponential function with respect to x, given
any k, x ∈ R is:

dn

dxn
ekx = knekx

4. For all a, b ∈ (−∞,∞)

ea+b = eaeband ea−b =
ea

eb

5.
(ea)b = eab

Proof. Proofs of these properties can be found in Thomas’ Calculus textbook.[8]

The exponential function is an imperative notion with applications ranging
from mathematics, statistics, natural sciences, and economics. In general e is
the base rate of growth shared by all continually growing processes. It lets you
take a simple growth rate (where all change happens at the end of the year)
and find the impact of continuously compounded growth. The exponential
function is found in all continuously growing systems: population, radioactive
decay, interest calculations, and more. It is the exponent x that determines
the scale of e by which a process increases.

To illustrate the broad reach of the exponential function, we can use an exam-
ple from political economist Thomas Malthus. In Layman’s terms, Malthus
stated that, if left unchecked, the human population would grow exponen-
tially at a rate λ for time t until a natural disaster occurred.[4] This has come
to be known as the Malthusian Catastrophe. The initial exponential growth
in population can be modelled as:

P = P0e
λt

Where, P0 is the initial population size and P is the population size after
time t.
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2 Meet the Matrices

Before delving straight into the matrix exponential it is essential that we
discuss the two forms of matrices we will be dealing with and how they differ
- since each will require different tools for computation of their exponential.

2.1 Diagonalizable Matrix

Traditionally one may have been introduced to the notion of a diagonalizable
matrix with the following definition,

Definition 2.1. A matrix A ∈ Cn×n is said to be diagonalizable if and
only if there exists an invertible matrix P such that

D = P−1AP (3)

where D is a diagonal matrix.[3]

However we shall now give a more applicable definition in terms of the mul-
tiplicity of eigenvalues belonging to a matrix.

First we will define the algebraic and geometric multiplicities of a matrix.

Definition 2.2. Let A be a complex n× n matrix with eigenvalue λ.

1. The algebraic multiplicity of λ is the number of times it is repeated
as root of the characteristic polynomial pλ(x).[3] Let us denote the al-
gebraic multiplicity of λ as

hλ(A) = max[h : pλ(x) = (x− λ)hk(x)].

2. the geometric multiplicity of λ is the dimensions of the eigenspace
of λ i.e. the dimensions of the nullspace of (A− λI).[3] Let us denote
the geometric multiplicity of lambda as

gλ(A) = dimN(A− λI).

Definition 2.3. Let A be a complex n × n matrix. A is said to be diago-
nalizable if and only if each eigenvalue of A has an algebraic multiplicity
equal to it’s geometric multiplicity.[1]
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[Note that for the following examples we have omitted the explicit calculation
of the characteristic polynomials, eigenspaces and eigenvectors. If one would
like to familiarize themselves with these notions, one can look at chapter 9,
Schaum’s Outline of Linear Algebra. [3]]

Example 2.4. Let

A =

(
0 1
−2 −3

)
Since

pλ(x) = (λ+ 1)(λ+ 2)

Thus, the eigenvalues of A are λ1 = −1;λ2 = −2. Corresponding to eigenspaces

E−1 = span

(
−1
1

)
and E−2 = span

(
−1
2

)
.

Each eigenvalue has hλ = gλ = 1 which means A is diagonalizable (by defi-
nition 2.3).

Example 2.5. Let

A =

1 1 0
0 2 0
0 −1 4

 .

we get,
pλ(x) = (1− λ)(2− λ)(4− λ)

Thus, the eigenvalues of A are λ1 = 1, λ2 = 2, λ3 = 4.

corresponding to eigenspaces

E1 = span

1
0
0

E2 = span

2
2
1

 and E4 = span

0
0
1

 ,

respectively. Hence A is diagonalizable since each eigenvalue has h = g = 1.

Remark: For simplicity we shall use notation h and g for the respective
algebraic and geometric multiplicity of an eigenvalue.
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2.2 Defective Matrix

In order to define a non-diagonalizable (defective) matrix in a similar fashion,
we must give the following proposition.

Proposition 2.6. The following is true;

hλ(A) ≥ gλ(A)

i.e. the algebraic multiplicity of λ is at least as large as it’s geometric multi-
plicity. [1]

Proof. A proof of this result can be found in chapter 8 of the Advanced
Linear Algebra textbook. [7]

Definition 2.7. Let A be a complex n × n matrix. A is said to be non-
diagonalizable if there exists at least one eigenvalue λ for which

hλ(A) > gλ(A)

i.e. there is at least one eigenvalue with an algebraic multiplicity greater than
its geometric multiplicity.[1]

Example 2.8. Let

A =

(
1 0
1 1

)
.

We have,

pλ(x) = (1− λ)(1− λ).

Thus, there is only one distinct eigenvalue of A, namely, λ1 = 1 with alge-
braic multiplicity h = 2 and geometric multiplicity g = dimE1 = 1. Now
since h > g, A is non-diagonalizable (by definition 2.7).

Example 2.9.

A =

1 1 0
0 2 0
0 1 2

 ,

where
pλ(x) = (1− λ)(2− λ)2.

The characteristic polynomial gives us eigenvalue λ1 = 1 and defective eigen-
value λ2 = 2 with h = 2 and g = dimE2 = 1 therefore h > g and A is
non-diagonalizable.
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Example 2.10.

A =


3 0 0 0
0 3 1 0
0 0 3 0
1 0 0 3

 ,

where
pλ(x) = (λ− 3)4.

Hence our only eigenvalue is λ = 3 with h = 3 > g = 2 hence A is non-
diagonalizable.

3 The Matrix Exponential

Now we arrive at the matrix exponential itself. The exponential function
of a matrix is analogous to the ordinary exponential function, the difference
simply being that the exponent is instead a square matrix instead of a real
number.

Definition 3.1. Given a square matrix A ∈ Cn×n, the exponential of A,
denoted eAt, is the n× n matrix given by the power series,

eAt =
∞∑
k=0

Aktk

k!
,

where t is a constant.[1]

Proposition 3.2. (Properties of the matrix exponential function)[2]

Given that A and B are square matrices, P is a non-singular matrix and t
is a real number, we have:

1. If AB = BA then eAteBt = e(A+B)t;

2. If AB = BA then eAtB = BeAt;

3. (eAt)−1 = e−At;

4. ePAP−1t = PeAtP−1;

Proof. The proofs of these properties can be found in Hall (2003). [2]
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Definition 3.3. If A ∈ Cn×n has n distinct eigenvalues, each with the prop-
erty that hλ(A) = gλ(A) then we let matrix S form the basis of the linearly
independent eigenvectors of A.[3]

S =

 ↑ ↑ ↑
~v1 ~v2 · · · ~vn
↓ ↓ ↓

 ,
i.e. S has columns constructed from the eigenvectors of A.

Proposition 3.4. Given a diagonalizable matrix A ∈ Cn×n, with its basis of
linearly independent eigenvectors S, then

(S−1AS)n = S−1AnS,

holds true for all n ∈ R.[2]

Proof.
(S−1AS)n =(S−1AS)(S−1AS) · · · (S−1AS)

=S−1A(SS−1)A(SS−1) · · · (SS−1)AS

=S−1A(I)A(I) · · · (I)AS

=S−1AnS.

The matrix exponential is most applicable as the solution to initial value
problems in differential equations. Namely, given

~x′(t) = A~x(t),

where A is a known, fixed, matrix in Cn×n. One seeks the solution vector
which satisfies the initial condition

~x(0) = ~x0.

This solution can be obtained as

~x(t) = eAt~x0,

where eAt can be defined as the power series in definition 3.1.[6]

Remark : This project will not focus on the application of the matrix expo-
nential but the computation only. However we compute the matrix exponen-
tial with constant t, so that this project can be applied, by the reader, to
differential equations if needed.
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4 Solving the Matrix Exponential

We shall split the following section into the diagonalizable and defective cases,
providing a concise method to solving the matrix exponential for each case,
and finally showing how they are intertwined.

4.1 Case 1: Diagonalizable Matrix

The simplest case is when matrix A is already diagonal. One can compute
the exponential of an arbitrary diagonal matrix as shown below:

Proposition 4.1. Given a square n× n matrix in the complex field,

A =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,

the exponential of A is computed as follows:

eAt =


∑∞

k=0
λk1 t

k

k!
0 · · · 0

0
∑∞

k=0
λk2 t

k

k!
· · · 0

...
...

. . .
...

0 0 · · ·
∑∞

k=0
λknt

k

k!



=


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 .

Proof. Directly from definition 3.1.

However A may not be diagonal but diagonalizable. To compute the expo-
nential of such a matrix one can use the following theorem.

Theorem 4.2. Given a diagonalizable matrix A ∈ Cn×n. The matrix expo-
nential of A is given by

eAt = SeDtS−1. (4)

where D is a diagonal matrix similar to A and S is a basis of A.[6]
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Proof. If A is diagonalizable then by definition 2.3 all eigenvalues λ have
algebraic multiplicities equal to their geometric multiplicities which means
there corresponds n linearly independent eigenvectors ~vi, for i = 1 · · ·n.
Hence we can form a basis S and find diagonal matrix D through spectral
decomposition to be

D = S−1AS =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 (5)

where λ1, · · ·λn are constants.

Now as with any arbitrary diagonal matrix we can calculate the exponential
of matrix D as given in proposition 4.1:

eDt =


eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 .

For the next step one needs to remember the following fact:

Using Definition 3.1 with Proposition 3.4 we can show

eDt =
∞∑
n=0

tn(S−1AS)n

n!
= S−1

∞∑
n=0

tnAn

n!
S = S−1eAtS

rearranging this we finally get

eAt = SeDtS−1.

We will illustrate this result using the earlier examples stated in section 2.1.

Example 4.3. Given matrix

A =

(
0 1
−2 −3

)
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with eigenvectors

~v1 =

(
−1
1

)
~v2 =

(
−1
2

)
.

Hence our basis and its inverse are

S =

(
−1 −1
1 2

)
S−1 =

(
−2 −1
1 1

)

Now diagonalising A, as shown in equation 3, we arrive at

D =

(
−2 −1
1 1

)(
0 1
−2 −3

)(
−1 −1
1 2

)
=

(
−1 0
0 −2

)
.

Next we use the matrix exponential function on diagonal matrix D to get

eDt =

(
e−t 0
0 e−2t

)
.

Finally using equation 4 we find the matrix exponential of A to be

eAt =

(
−1 −1
1 2

)(
e−t 0
0 e−2t

)(
−2 −1
1 1

)

=

(
2e−t − e−2t e−t − e−2t
−2e−t + 2e−2t −e−t + 2e−2t

)
.

Example 4.4. Given matrix

A =

1 1 0
0 2 0
0 −1 4


with eigenvectors

~v1 =

1
0
0

~v2 =

2
2
1

~v3 =

0
0
1

 .

Hence our basis and its inverse are:

S =

1 2 0
0 2 0
0 1 1

S−1 =

1 −1 0
0 1

2
0

0 −1
2

1

 .
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Now we find diagonal matrix D such that

D =

1 −1 0
0 1

2
0

0 −1
2

1

1 1 0
0 2 0
0 −1 4

1 2 0
0 2 0
0 1 1

 =

1 0 0
0 2 0
0 0 4

 .

Using the matrix exponential function on D we get

eDt =

et 0 0
0 e2t 0
0 0 e4t


Finally we find the matrix exponential of A to be

eAt =

1 2 0
0 2 0
0 1 1

et 0 0
0 e2t 0
0 0 e4t

1 −1 0
0 1

2
0

0 −1
2

1

 =

et e2t − et 0
0 e2t 0

0 e2t−e4t
2

e4t



4.2 Case 2: Non-diagonalizable Matrices

As we can see in the previous section, when a matrix is diagonalizable there
exists a basis of linearly independent eigenvectors. However when a given
matrix is non-diagonalizable, by definition, there is an insufficient quantity
of linearly independent eigenvectors to form a basis. In this case we must
find ‘generalized eigenvectors’ to complete the basis.

Definition 4.5. Given a complex n× n matrix A, the vector ~u is a gener-
alized eigenvector of rank m corresponding to eigenvalue λ if it satisfies

(A− λI)m~u = 0, (6)

but
(A− λI)m−1~u 6= 0,

where m ∈ Z+, and the generalized eigenspace of rank m is the null
space of (A− λI)m, denoted by Km

λ .[1]

Key Lemma 4.6. One can denote the basis of eigenvectors and basis com-
pleted by generalized eigenvectors, both by S.

Proof. By definition 4.5 if we set m equal to 1 then the eigenvectors of A
are also generalized eigenvectors. By this fact S is the basis of generalized
eigenvectors for both diagonalizable and non-diagonalizable matrices.
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For simplicity - and in order to produce a replicable method for calculating
the exponential of a defective matrix - we do not want our choice of general-
ized eigenvectors to be an arbitrary matter. We want to choose generalized
eigenvectors that will enable us to write A in a specific form. As we already
know, defective matrices do not have an equivalent diagonal representation
however we can find the next best canonical form, namely the Jordan canon-
ical form.

Before defining the Jordan canonical form, we must introduce the concept of
a nilpotent matrix.

Definition 4.7. A matrix A for which Aρ = 0, where ρ is a positive integer,
is called nilpotent. If ρ is the least positive integer for which Aρ = 0, then
A is said to be nilpotent of index ρ.[3]

Proposition 4.8. If A ∈ Cn×n is a strictly upper triangular matrix, then it
is nilpotent of index n (corresponding to its dimension).[3]

Proof. The characteristic polynomial of any n × n strictly upper triangular
matrix A is pλ(x) = λn therefore by the Cayley-Hamilton Theorem we get
An = 0

Definition 4.7 and proposition 4.8 will not only help us define the Jordan
canonical form but also help in computing its exponential.

Definition 4.9. An n × n matrix J is in Jordan Canonical Form if it
is a block diagonal matrix such that

J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk


where each Ji is a Jordan Block of form

Ji = λiI + N =



λi 1 0 · · · 0 0

0 λi 1
. . . 0 0

0 0 λi
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi


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where each λi is the only eigenvalue of each Ji, I is the identity matrix, and
N is a nilpotent matrix with ones on the super-diagonal and zeros everywhere
else.[1]

Theorem 4.10. Given any n× n complex matrix A. There exists an n× n
basis S of n linearly independent generalized eigenvectors, such that

J = S−1AS

where J is in Jordan Canonical form of A.[1]

Proof. Detailed proof can be found in chapter 7.1 of Friedberg et al. (2003).[1]

The following is a method to compute such a basis S from 4.10 that has been
simplified and adapted, for this project, from the works of Friedberg et al.
(2003).[1]

Algorithm 4.11. Given a matrix A ∈ Cn×n, using the following steps one
can create an ordered basis S of specific generalized eigenvectors, that will
transform A to it’s associated Jordan canonical form J.

Step 1

Calculate the distinct eigenvalues λi of A and each of their corresponding
algebraic and geometric multiplicities, hλi and gλi respectively.

Step 2

For each eigenvalue λi with algebraic and geometric multiplicities hλi and gλi
respectively, calculate the generalized eigenspaces and their corresponding di-
mensions until we get to Kj

λi
which has dimension equal to the algebraic

multiplicity of λi:
dimKj

λi
= hλi .

Step 3

At this step we introduce new notation in the form of a dot plot to help
visualise how we calculate our generalized eigenvectors. To start we calculate:
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r1 =dimK1
λi

r2 =dimK2
λi
− dimK1

λi

...

rj =dimKj
λi
− dimKj−1

λi

Now we make a plot of r1 dots in row 1, r2 dots in row 2, and so on until rj
dots in the j-th row.

We now want find a generalized eigenvector corresponding to each dot.

Step 4

Working from the bottom of the plot, for each dot in row j, find linearly
independent generalized eigenvectors belonging to Kj

λi
but not Kj−1

λi
.

Everytime a dot has a corresponding generalized eigenvector ~u, the dot di-
rectly above corresponds to (A− λiI)~u.

All dots must have a corresponding generalized eigenvector which is not in
the generalized eigenspace of the row above, and is linearly independent to all
other generalized eigenvectors in its row.

Step 5

We now form a matrix Pi corresponding to the the dot plot of λi in the
following way.

Starting at the top of the first column on the left and working downwards,
each generalized eigenvector becomes a column of Pi. After we reach the
bottom of a column we move on to the next until all generalized eigenvectors
in each dot plot have been exhausted.

Step 6

We can now form our basis S of generalized eigenvectors using our matrices
Pi from above. Namely the k columns of P1 become the first k columns of S
and so on until all Pi are exhausted.

Step 7

Now that we have our completed basis S we can find the Jordan Canonical
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Form of matrix A as follows

J = S−1AS.

Now we know how to find the Jordan Canonical form of a matrix, we can
introduce key concepts which will help us find the exponential of J and
therefore the exponential of our initial non-diagonalizable matrix.

Definition 4.12. Let A1,A2, · · · ,Am be square matrices of respective order
n1, n2, · · · , nm. The block diagonal matrix A is called the direct sum of all
Ai, for i = 1, 2, · · · ,m.[3]

We denote this as

A =
m⊕
i=1

Ai = diag(A1,A1, · · · ,Am) =


A1 0 · · · 0
0 A2 · · · 0
...

. . .
...

0 0 · · · Am

 .

Key Lemma 4.13. The Jordan Canonical matrix J, is the direct sum of
each Jordan Block Jλi. Therefore eJ is the direct sum of each eJλi .

Proof. By definition 4.12.

Proposition 4.14. The exponential of a Jordan block can be written as

eJλi t = eλiI
n−1∑
k=1

Nktk

k!
.

Proof. By definition 4.9 we have that,

eJλi t = e(λiI+N)t.

We know that all square matrices commute with the identity matrix i.e.

(λiI)N = λiIN = λi(IN) = λi(NI) = λiNI = (λiN)I.

Hence, by proposition 3.2,

e(λiI+N)t = eλiIteNt.

Now, since λiI is a diagonal matrix, eλiI will simply follow from proposition
4.1. The n×n matrix N is neither diagonal nor diagonalizable, however it is
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nilpotent and we know, by proposition 4.8, that Nρ = 0 when ρ = n. This
means that eNt can be written as the power series in definition 3.1, but with
finite upper limit n− 1,

eNt =
n−1∑
k=0

Nktk

k!

this is because every entry in the infinite power series, with k ≥ n, will equal
0. Finally, we have our desired result,

eJλi t = eλiI
n−1∑
k=0

Nktk

k!
.

We now hold necessary information to define the exponential of a non-
diagonalizable matrix.

Theorem 4.15. Given a non-diagonalizable matrix A ∈ Cn×n, the exponen-
tial of A is calculated as,

eAt = SeJtS−1.

where J is the Jordan Canonical matrix similar to A and S is the basis
formed from linearly independent generalized eigenvectors of A.[6]

Proof. The proof is analogous with the diagonalizable case, except now we
have a Jordan Canonical matrix J instead of a diagonal matrix D.

eAt = eSJS
−1t =

∞∑
k=0

(SJS−1)
k
tk

k!
= S

∞∑
k=0

Jktk

k!
S−1 = SeJtS−1

We shall culminate all of these new concepts and illustrate them in the fol-
lowing examples from section 2.2.

Example 4.16. Given

A =

(
1 0
1 1

)
.

The first thing we want to do is find the matrix J similar to A using algorithm
4.11.
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Step 1: We have our only eigenvalue λ1 = 1 with h = 2 and g = 1.

Step 2: Now we find our generalized eigenspaces and compute their dimen-
sions.

Solving (A− I)~v = 0 gives

K1
1 = span

(
0
1

)
,

therefore dimK1
1 = 1.

Solving (A− I)2~u = 0 gives

K2
1 = span{

(
0
1

)(
1
0

)
},

So dimK2
1 = 2 = hλ = 2 therefore we stop.

Step 3: We now create our dotplot by finding

r1 = dimk11 = 1and r2 = dimK2
1 − dimk11 = 2− 1 = 1.

Hence our dot plot has a single column, with two rows containing one dot
each,

•
•

Step 4: Now we assign a generalized eigenvector to the bottom dot. It must
be in K2

1 but not K1
1 . It is clear to see that,

~u1 =

(
1
0

)
,

complies with this rule.

Now we find the eigenvector (A− I)~u1 corresponding to our top dot.

~u2 = ~v1 =

(
0 0
1 0

)(
1
0

)
=

(
0
1

)

Step 5: Hence our dot plot now looks like

• ~v1
• ~u1
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and so we form our matrix P1 as

P1 = [~v1 ~u1] =

(
0 1
1 0

)
.

Step 6: Since we only had 1 eignevalue our basis S = P1.

Step 7: We now find our Jordan Canonical matrix J similar to A through
spectral decomposition as follows,

J = S−1AS =

(
1 1
0 1

)
= I + N,

where N =

(
0 1
0 0

)
.

Now that we have J we find its matrix exponential to be

eJt = eIt
1∑

k=0

Nktk

k!
=

(
et 0
0 et

)
(I + Nt) =

(
et tet

0 et

)

and finally we have

eAt = SeJtS−1 =

(
et 0
tet et

)
.

Example 4.17. Given

A =

1 1 0
0 2 0
0 1 2

 ,

where
p(λ) = (1− λ)(2− λ)2.

We have simple eigenvalue λ1 = 1 with h=g=1 and defective eigenvalue
λ2 = 2 with h=2, g=1.

Dealing with λ1 = 1 first, we can skip straight to finding its corresponding
eigenvalue and then set it equal to P1. Solving (A− I)~v = 0 we get,

~v1 = P1 =

1
0
0

 .
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Next we deal with our degenerate eigenvalue λ2 = 2.

Solving (A− 2I)~v = 0 gives us,

K1
2 = span

0
0
1

 ,

therefore dimK1
2 = 1.

Solving (A− 2I)2~u = 0 gives us,

K2
2 = span{

0
0
1

1
1
0

},
therefore dimK2

2 = 2, so we stop.

As in the previous example, we find r1 = 1and r2 = 1. Hence our dot plot is
identically,

•
•

Now we seek a generalized eigenvector in K2
2 that is linearly independent to

K1
2 , namely ~u1 =

1
1
0

. Consequently we find ~u2 = (A − 2I)~u1 =

0
0
1

.

Hence we have

P2 = [~u2 ~u1] =

0 1
0 1
1 0

 ,

which completes our basis,

S = [P1 P2] =

1 0 1
0 0 1
0 1 0

 .

Computing our Jordan Canonical Matrix gives us,

J = S−1AS =

1 0 0
0 2 1
0 0 2

 = J1

⊕
J2,
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where our first Jordan block is the 1 × 1 matrix J1 =
(
1
)

and our second

Jordan block is the 2× 2 matrix J2 =

(
2 1
0 2

)
.

By lemma 4.13 we know that the exponential of our Jordan canonical matrix
J is the direct sum of the exponential of each Jordan block J1 and J2.

Since J1 is a diagonal matrix we can directly compute its exponential as

eJ1t =
(
et
)
.

Next we rewrite our second Jordan block as

J2 = λ2I + N =

(
2 0
0 2

)
+

(
0 1
0 0

)
,

therefore

eJ2 = e(2I+N)t = e2IteNt =

(
e2t 0
0 e2t

)(
1 t
0 1

)
=

(
e2t te2t

0 e2t

)
.

By direct sum, we have

eJ = eJ1

⊕
eJ2 =

et 0 0
0 e2t te2t

0 0 e2t

 .

Finally, we can conclude that the exponential of A is,

eAt = SeJtS−1 =

et e2t − et 0
0 e2t 0
0 te2t e2t

 .

N.B. If we had constructed our basis as S = [P1 P2], we would have had an
alternative Jordan Canonical Matrix where J1 and J2 had swapped positions
on the diagonal, namely,

J =

2 1 0
0 2 0
0 0 1

 .

However our eAt would still have remained the same.

For simple matrices we may not need our dot plot to visualize the generalized
eigenvectors but it will be of more use when dealing with matrices of higher
dimensions such as our next example.
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Example 4.18. Given

A =


3 0 0 0
0 3 1 0
0 0 3 0
1 0 0 3

 ,

where
p(λ) = (λ− 3)4.

We have defective eigenvalue λ = 3 with h = 4 and g = 2.

Solving (A− 3I)~v = 0 we get,

K1
3 = span{


0
0
0
1

 ,


0
1
0
0

},
hence dimK1

3 = 2.

Next solving (A− 3I)2~u = 0 yields,

K2
3 = span{


0
0
0
1

 ,


0
0
1
0

 ,


0
1
0
0

 ,


1
0
0
0

},
therefore dimK2

3 = h = 4, so we can stop.

We find r1 = r2 = 2 therefore our dot plot has two columns of two dots,

• •
• •

Now starting with the bottom left dot we find a corresponding generalized

eigenvector in K2
3 but not in K1

3 . It is easy to see that ~u1 =


0
0
1
0

 is suitable.

Consequently we find ~u2 = (A− 3I)~u1 =


0
1
0
0

.
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Now moving on to our second column, we need to find, for the bottom right
dot, a generalized eigenvector in K2

3 , but not in K1
3 and linearly independent

to ~u1. Once again this is easily found to be ~u3 =


1
0
0
0

. So our last eigenvalue

is therefore ~u4 = (A− 3I)~u3 =


0
1
0
0

.

We can now redraw our dot plot as,

• ~u2 • ~u4
• ~u1 • ~u3

which means our basis is,

S =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Our Jordan canonical matrix can now be computed as:

J = S−1AS =


3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3

 = J1

⊕
J2,

where our Jordan blocks are J1 = J2 =

(
3 1
0 3

)
.

The next step is to compute the exponential of each Jordan block,

eJ1t = eJ2t =e3It(
1∑

k=0

Nktk

k!
)

=

(
e3t 0
0 e3t

)(
1 t
0 1

)
=

(
e3t te3t

0 e3t

) ,
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therefore

eJt =


e3t te3t 0 0
0 e3t 0 0
0 0 e3t te3t

0 0 0 e3t

 .

Finally, we compute the exponential of our defective matrix as,

eAt = SeJtS−1 =


e3t 0 0 0
0 e3t te3t 0
0 0 e3t 0
te3t 0 0 e3t

 .

Remarks :

1. Algorithm 4.11, and the Jordan canonical form as a whole, are not
unique to defective matrices. In fact, diagonalizable matrices too have
a Jordan Conical form, where each diagonal entry represents a 1 × 1
Jordan block. To illustrate this, look back to example 4.4. The matrix
A is similar to the diagonal matrix

D =

1 0 0
0 2 0
0 0 4

 ,

which is actually a Jordan canonical matrix and the direct sum of 3
Jordan blocks of dimension 1: J1 = (1), J2 = (2) and J3 = (4).

2. We don’t have to explicitly compute J = S−1AS to find J. Instead
we use algorithm 4.11 intuitively as follows. The number of blocks
in J will equal the total number of columns in all our dot plots. The
diagonal entries of each block are given by the corresponding eigenvalue,
and the dimension of the block is equal to the number of dots in the
equivalent column. The blocks are then ordered along the diagonal of
J in the same way that we ordered our basis S. To illustrate, take
our last example. Here we see that the dot plot has two columns both
containing two dots, hence our Jordan canonical matrix has two blocks
both of dimension two. We can also see in this example that the number
of blocks corresponding to a single eigenvalue is equal to the geometric
multiplicity of said eigenvalue.
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5 conclusion

In this project we have determined a method by which to solve the exponen-
tial of diagonalizable matrices and by introducing the concept of generalized
eigenvectors and Jordan canonical form, we have been able to adapt this
method for defective matrices. Specifically we have shown that there is an
intuitive way to find non-arbitrary generalized eigenvectors and order them
correctly into a basis, so that any square matrix, on a complex field, can be
transformed into its Jordan canonical form.

Future work could lead down two paths, namely exploring the applications
of the matrix exponential in more detail. Or expanding upon the matrix
exponential itself. An aim of this project was to focus on the matrix expo-
nential itself instead of introducing it as a concept in differential equations, as
much literature does. For that reason I would most likely explore the second
route and introduce concepts such as functions of the matrix exponential e.g.
the matrix-matrix exponential. I would also look into finding methods that
wouldn’t be restricted to matrices on a closed, complex field e.g. using the
rational canonical forms of matrices.
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