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Abstract 

The purpose of this thesis is to discover if there exist some information in the phase of an 

analytic signal, which would allow one to predict or indicate the occurrence of extreme events. In this 

thesis, we use a financial time series from the Nord Pool market, which contains data of the price at 

which electricity was traded at across 7 years from the 1st January 1999 to the 26th January 2007. The 

data contains seasonal changes, where we observe the prices of electricity to continuously fluctuate. 

Alongside these seasonal changes, unexpected extreme prices of electricity are observed. The aim is 

to find information in the phase, in the form of a phase slip, in the neighbourhood of these critical 

events; and deduce if they can allow us to predict massive unexpected changes in the price of a stored 

commodity.  

This thesis will discover the formation of the Nordic power market and understand some of 

the characteristics which make electricity a unique commodity to trade. We will look at the Nordic 

Spot market operates and understand why electricity is a non-storable commodity.  

During this thesis, we will lean on traditional concepts extracted from Electrical Engineering 

and Mathematics as well as, well known results brought to us by the pioneer Joseph Fourier in 1822, 

who is known for the establishment of what we call today a ‘Fourier Transform’. We will explore the 

mathematical elements required to process a signal and extract the amplitude and phase of this 

particular financial time series.   
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1.0 Introduction  

1.1 What is a Signal? 

The Oxford dictionary refers to a signal as “a gesture, action, or sound that is used to convey 

information or instructions” [Oxford Dictionary, 2018]. As humans we are endlessly surrounded by a 

sea of signals. From the occurrence of chemical reactions within us to the information we perceive 

daily.  They convey information which alerts us “about the behaviour or attributes to some 

phenomenon” [Priemer, 1991]. Signals allow energy to be distributed across our nations, keeping us 

connected globally in various ways. Over many decades signals have been recorded, giving us access 

to historical information to analyse as well as the ability to predict future events using certain 

forecasting techniques. Many signals carry information which may be encoded with a message, whilst 

others may require the user to process or decode them in a certain way, to allow an understanding of 

the underlying information that they carry. Cumulating what is known thus far about the intricacies 

and uses of signals, it leads us to the question, why are signals extremely useful to us? 

For many years, signals have been used throughout various fields. They have allowed us to stay 

connected with current time, from delivering live stock prices across our trading floors, to controlling 

our traffic systems, as well as monitoring heart rates in our hospitals. In any form of use, monitoring 

a signal always gives us some information. So, can we sum up exactly what a signal is? 

Not exactly! To define a signal precisely will vary from field to field. As a common backbone across the 

fields, we may say that a signal is a “physical manifestation of information that changed with time 

and/or space” [Moura, 2009]. Understanding what a signal is from a mathematical point of view can 

be defined as “a real (or complex) valued function of one or more real variable(s)” [Anon, n.d.]. In later 

chapters, we shall look at different types of signals and their mathematical form. The main focus of 

the thesis will be around a specific type of signal know as a financial time series. 

Financial time series are continuously brought to our attention [Taylor, 2008]. Information gathered 

from financial time series are published through various platforms such Bloomberg, The Financial 

Times but also our local newspapers, radio and television screens. They give us a vast amount of 

information regarding the events occurring on our financial markets. For many professionals such as 

investors, brokers, analysts, traders and businessmen; it is essential to monitor the frequent behaviour 

of prices and to have the capability to predict the development of these prices in the future. 

A time series in general is “a sequence of observations taken over a period of time, usually at equal 

intervals” [Clapham and Nicholson, 2014]. Thus, a financial time series can be defined as a sequence 

of observations of securities or derivatives on the stock market which has a value attached to it at 

certain time intervals.   

Analysing a financial time series is concerned with identifying factors that influence the variation in 

price differences. Firstly, it is important to understand the behaviour of prices as they may become 

extremely volatile over a certain period. Understanding the behaviour of prices is a difficult concept. 

This is not something that can be concluded from ‘just’ studying the price values at certain times but 

further requires specific and targeted analysis of the information presented. Academics and 

professionals’ use their knowledge of statistical analysis and the benefits from the continuous 

advancement of technology, the ability to store and process large amount of information, to 

investigate the concept of price behaviour.  
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All financial time series contain an element of uncertainty [Tsay, 2006]. As humans we cannot predict 

the shape of the future markets by simply observing a time series alone. Alongside using our 

knowledge of price behaviour, it is crucial to monitor the continuous change in returns of a market. 

This can aid us in making better financial decisions and reduce the risk of future losses. 

The uncertainty of price behaviour has opened many areas of research in finance. In recent years there 

has been advancement in understanding the underlying probability distribution of a financial time 

series and forecasting, the ability to estimate future prices using today’s price. These developments 

have given us the capability to price options on underlying assets, make sound financial decisions and 

allowing us to manage any unwanted risk to our investment portfolio.  

In this thesis, my aim is to use traditional techniques from the field of Electrical Engineering and 

Mathematics to process a financial signal which contains information about hourly electricity prices 

retrieved from the Nord Pool market, over a range of 7 years. I wish to analyse the phase and 

amplitude of the signal, in order to remove any seasonal changes, and discover if there is any 

information shown in the phase that would indicate the occurrence of any extreme events. 

Now that we have aimed to understand what we define a signal as, we may now explore the concept 

of signal processing and understand where the technique widely used by investment banks and 

hedge funds has rooted from, and how can it be applied to finance. 

1.1 What is Signal Processing? 

The notion of signal processing might seem like an impenetrable concept. However, signal processing 

is used unconsciously by humans on a daily basis. Processing a signal may be considered as decoding 

information to extract something useful. When we listen to a sound signal we use our brain, as the 

‘operator’ on the signal, to process the audio paths and extract key details. Essentially, any signal can 

be processed. We may even define signal processing as “acquiring, shaping and transforming data, 

cleaning it for the sake of improved analysis and extraction of useful information.” [Flandrin, 2018] 

Information Engineering and Mathematics are two disciplines that have allowed the advancement of 

signal processing. Development in digital technology and the rate at which we are able to process and 

store data, interwind with theory brought to us by the renowned French mathematician and physicist, 

Joseph Fourier (1768-1830); signal processing has become an extremely sought-after technique in 

many fields especially finance. 

Signal processing can be tracked back to the findings of the pioneer Joseph Fourier (1768- 1830). 

During Fourier’s research on heat propagation in the “The Analytical Theory of Heat”, he developed a 

method known today as the ‘Fourier Transform’. In 1822, Fourier proposed that any function of a 

variable, whether continuous or discontinuous, can be expanded in a series of sines and cosines of 

multiples of the variables [Gray, 2015]. The idea of being able to decompose a function in terms of 

simpler functions was already occasionally used by Leonhard Euler, while “he developed the concept 

of function in mathematical analysis, through which variables are related to each other and in which 

he advanced the use of infinitesimals and infinite quantities” [Boyer, 2018], as well as other 18th 

century mathematicians.  

During the 19th Century, Fourier’s research was a very controversial topic within the science 

community. Fourier’s findings from heat propagation allowed him to present his ideas in several 

stages. Along the way, Fourier received a lot of negative feedback from the board of the Paris Academy 

of Science, where his work was later published. Fourier’s mathematical analysis was distrusted by 

Joseph-Louis Lagrange (17-36-1813) and Pierre-Simon Laplace (1749-1827), who were both on the 
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board of the Paris Academy of Science and are known to have made great contributions to the fields 

of Mathematics and Physics. Their rejections were due to the distrust in Fourier’s expansion of 

functions as a trigonometric series, what we call a Fourier Series today; but also, Fourier discovered 

properties of trigonometric functions which were different to what they had stipulated. They believed 

that Fourier sums implied unusual properties, for example a discontinuous step like function had the 

ability to be rewritten in terms of a nice continuous function consisting of sines and cosines. Later in 

the thesis, we shall see examples of such transformations.  

After several attempts of re-constructing his ideas, in 1822 Fourier published his research. In 1829, a 

German mathematician, Peter Gustav Lejeune Dirichlet (1805-1859), published a famous memoire 

supporting Fourier’s ideas and showing that given some conditions for certain functions, the 

convergence of the Fourier Series holds. This began the wave of a new discovery which is known to be 

the stepping stone to key analysis today. In 1867 Lord Kelvin, a Scots-Irish mathematical physicist and 

engineer said, “Fourier’s theorem is not only one of the most beautiful results of modern analysis, but 

it may be said to furnish an indispensable instrument in the treatment of nearly every recondite 

question in modern physics.” [Jha, 2014] Little did he know that this concept had the ability to stretch 

far beyond the theory of heat propagation and into the world of finance! 

The birth of signal processing was brought to us in 1965 by the American mathematicians, James 

Cooley (1926-2016) and John Tukey (1915- 2000), whilst working for the research division of IBM. 

Fourier’s work had been put into practise by Cooley and Tukey, as they developed the “Fast Fourier 

Transform” (FFT). The FFT is an algorithmic method which allows one to take a time domain signal and 

transform in to a frequency domain signal. Most signals recorded from observed phenomena are 

discrete data points. To perform a Fourier transformation on a discrete signal requires a Discrete 

Fourier Transformation (DFT). The FFT is a fast-computational algorithm for the DFT. The purpose of 

such transformation is to identify whether the signal contains any cyclical components. The Fourier 

transformation deduces the frequencies present in the signal as well as the contribution they make to 

the signal. This leads to the question, how is this transformation and the idea of signal processing 

relevant to the world of finance?  

To understand the application of signal processing to the financial industry, let us consider a very 

simple example from electrical engineering. Suppose we are given data which measures the voltage 

of the current at a time interval of a second. The data is presented in the following table [Nepal, 2015]: 

Time (Seconds) Voltage (Volts) 

0 10 

1 12 

2 14 

3 8 

4 16 

5 10 

6 12 

7 14 

8 8 

9 16 

10 10 

11 12 

12 14 

13 8 

14 16 
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Earlier we defined a signal to be a “physical manifestation of information that changed with time 

and/or space” [Moura, 2009]. The data recorded is an example of a discrete signal. At each time 

interval, we are given the exact value of the voltage. Graphing the signal, we can visualise the 

fluctuations as shown below in figure 1.   

 

Figure 1: Fluctuations of voltage. Source Nepal, 2015.  

However, the information presented tells us very little, which is where signal processing would be very 

helpful to an analyst. Now you may be thinking, how and why can I apply such a concept from 

engineering to the financial world?  The answer is a simple yet profound one. Let us consider the 

dependent variable ‘voltage’ to be the ‘daily returns of a stock’ and the independent ‘time’ variable 

as the ‘day of the week’. Again, we may use the same method to produce a graph to show the 

fluctuations of the returns of the investing stock.  

Day of the week Daily returns of a 
stock (GBP, £) 

0 10 

1 12 

2 14 

3 8 

4 16 

5 10 

6 12 

7 14 

8 8 

9 16 

10 10 

11 12 

12 14 

13 8 

14 16 
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Figure 2: Fluctuations of stock return. Source Nepal, 2015.  

As you can see from figure 2, no matter how the columns of the table are labelled, the method used 

to treat the numbers are the same. It can be said, the “crux of any signal is always in the numbers” 

[Nepal, 2015].  Financial data which is gathered over many years can be very difficult to comprehend, 

just like the voltage or current data presented. However, financial data can benefit from the same 

methods which are currently used in engineering. 

In finance there are two prominent schools of thought [Nepal, 2015]; the fundamental analysis and 

technical analysis. The fundamental school believes in evaluating a securities performance by looking 

closely at the financial and economical impact the security has. For fundamental analyst, their end 

goal is to “produce a quantitative value that an investor can compare with a security’s current price” 

[Investopedia, 2018] in order to understand the value of their investment. Whereas the technical 

school of thought aims to study the historical price movements of a security and use the data to 

forecast future price movements. For the fundamental school there is very little use of signal 

processing as they avoid the use of data, such as daily price movements and rather take a more 

subjective view of the security. Meanwhile, the technical analyst uses a vast amount of historical data 

to find any trends or patterns as well as forecast future prices. The calculation required to perform 

such tasks can be directly applied from the field of engineering. 

Major investment banks and hedge funds use signal processing as an investment strategy. Most 

investment strategies which include signal processing techniques are kept a secret, as banks and 

hedge funds are not required by government regulations to unravel these gems, which give their firms 

a competitive edge over their rivals. According to Robin Wigglesworth from the Financial times, 

Goldman Sachs’ is known to use signal processing as a successful tool for their quantitative analysts 

(also known as quants) to detect small but persistent signals, which they can feed into their trading 

algorithms. In 2017 the firm was able to manage $91.8bn worth of investments using signal processing 

techniques [Wigglesworth, 2018]. In recent years there has be a rapid growth in algorithmic investing 

which is a trading method merrily using some form of computer techniques. High-frequency trading 

is a branch of algorithmic trading which heavily relies on signal processing, as quants take advantage 

of the random fluctuations in the market to generate a profitable return on their investments. There 
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are many other investment strategies where signal processing can be used. These strategies are 

deeply rooted in mathematics and rely on a fast-computational algorithm such as the FFT to pass 

through all the data points of the signal and understand the information they carry about the markets 

or investment portfolios.  

Techniques used in signal processing are not shared widely by firms which use them to their 

advantage. In this thesis, I wish to explore the mathematical element which is the building block to 

signal processing, as I aim to extract information from the frequency signal of the Nord Pool market 

electricity prices; by studying the phase of the frequency signal and deducing if any phase slips may 

give an indication to the occurrence of extreme events.  

2.0 Background of Nord Pool Data Set 

2.1 Nord Pool Market 

In this thesis, we shall be experimenting on data provided by the Nord Pool market. The data is formed 

of electricity prices which have been recorded at an hourly time interval across 7 years, starting from 

the 1st January 1999 until the 26th January 2007. The data may be represented as a financial time series 

as shown below. Figure 3 illustrates the financial time series of the Nord Pool electricity prices which 

has been produced using Matlab, and the code can be found in the appendix of the thesis.  

 

Figure 3: Nord Pool Hourly Electricity Prices. Published with MATLAB® R2017b 

Throughout the course of this thesis, the term ‘Nord Pool’ occurs at various points, and may seem to 

be a cryptic term to those unfamiliar with it. 

The Nordic electricity market, which is the leading power market in Europe, is known as Nord Pool. 

They were created in the 1990s after the Norwegian parliament decided to deregulate the market for 
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trading electricity, and create a single electricity market with a common power exchange in 1991. 

[Erzgräber et al., 2008]. Today, Nord Pool continue to trade and deliver power in the Nordic, Baltic 

(Estonia, Latvia and Lithuania) and UK day-ahead markets.  

The Nordic electricity market are comprised of Denmark, Finland, Norway and Sweden [Bergman, 

2003]. In terms of population, the Nordic countries, who trade in the Nord Pool market, are said to be 

small. However according to Bergman (2003), they are known to have a high level of consumption of 

electricity per capita. The 2001 electricity consumptions stretched as high as 393 TWh [Bergman, 

2003], and in 2017 a total of 512 TWh of power was traded [NordPoolGroup, 2018]. 

During the 1990s the idea of creating a single power market was due to benefiting from eradicating 

the border tariffs on electricity between the countries. The single market is thought to be well 

integrated if and only if there is a single price of electricity or power which can be traded across the 

countries which trade on the Nordic market [Bergman, 2003]. The reforms of the Norwegian electricity 

market had spread across the borders. In 1996 a joint Norwegian-Swedish power exchange was 

established and grew to include Finland in 1998, and lastly Denmark in 2004 [Erzgräber et al., 2008]. 

To some trading on the Nord Pool market can seem quite complicated. Let us see how the electricity 

markets function and how power is traded on the Nord Pool power market. 

When electricity is produced by companies, it is transmitted to a grid. Across the participating 

countries there are many providers who supply electricity. When a switch is turned on, it cannot be 

said where the power was generated. Producers buy and sell electricity on markets such as Nord Pool. 

Nord Pool is a market which allows one to buy and sell physical power contracts and financial 

contracts. When stating that ‘one’ can buy or sell such a contract, the pronoun ‘one’ typically refers 

to large players, such as power suppliers, traders, brokers, energy companies and large-scale 

consumers or enterprises, in the power market that trade directly on the Nord Pool exchange [The 

Norwegian Ministry of Petroleum and Energy, 2015]. Small consumers such as home owners do not 

trade or purchase electricity directly on the Nord Pool marketplace, as the transaction costs of such 

financial contracts can be quite costly. Rather they buy fixed price contracts from electricity suppliers 

which are called the end user market.  

On the Nordic power exchange, a different story is told, and it is not so straightforward. The Nord Pool 

market consists of the exchange Nord Pool ASA, named in 1996 and Nord Pool Spot AS, named in 

2002. Nord Pool ASA is the financial marketplace for those countries who trade on the Nord Pool 

market. It is currently owned by both Nordic (Statnett SF in Norway (50%) and Affärverket Svensa 

Kraftnät (50%)) [Erzgräber et al., 2008] and Baltic transmission operators. Now, Nord Pool Spot AS is 

the marketplace where physical power contracts are traded. A physical power contract is essentially 

a contract for the physical delivery of electricity for the following day. The price at which electricity is 

sold at on the market is determined each day at an hourly rate on the Nord Pool Spot exchange, for 

the following day. Just like any other commodity, the spot price, which is the current price at which 

the commodity trades at, of electricity will depend on the supply and demand which can be affected 

by several factors. These factors include economic growth of the country, production of the electricity, 

transmission costs and conditions between then Nordic regions and other exporting countries.  

The spot market operates in the following manner. There is an auction where buyers and sellers can 

bid to either buy or sell power contracts, where each contract provides one hour of electricity, which 

covers the 24-hours of the following day. There is a deadline at which all the buy and sell orders are 

collected and gathered into a supply and demand curve for each hour of power which is delivered. 

Using these supply and demand curves, an equilibrium price is calculated, which is then known as the 

hourly spot price for electricity for that specific hour [Erzgräber et al., 2008]. This electricity spot 
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market is called the Elspot, which is the day-ahead market, where at 12:00 CET the spot price for each 

power contract is calculated. A day-ahead market is where one can buy or sell a financial contract 

which has a maturity date of the following day. The Elspot market is responsible for nearly 80% of the 

hourly consumed electricity trades for the Nord Pool markets [Knapik, 2017]. The Nord Pool Spot AS 

also consists of Elbas which in the continuous intraday market. An intraday market is a trading 

platform where the buyer or seller of the financial contract must complete all transactions on the 

same day before the market closes. This type of trading is also known as ‘Day Time’ trading. On the 

Nordic markets, Elbas is used to give traders the opportunity to trade in ‘real time’. Trading on Elbas 

take place around the clock until the hour before delivery. The Nordic markets and other similar 

markets are moving towards more of a clean energy source, which is known to be unreliable. Elbas is 

becoming more important with this transition into renewable energy especially with the arrival of 

wind turbines. This is because by nature wind turbines may not deliver a consistent amount of 

electricity unlike traditional methods, and thus production will fluctuate with relations to the 

consumption of electricity on the Elspot [Knapik, 2017]. With Elbas in place, it will allow the markets 

to cover any losses or gains in the production quantity of electricity by giving traders, brokers and 

other large consumers the opportunity to trade within the same day.  

Nord Pool ASA also allows market makers to trade derivatives on electricity as the underlying asset. 

Electricity can also be traded as a method for a trader to hedge their portfolios against some risk 

without physically delivering the asset. It is permissible to write long-term futures and forward 

contracts on electricity which are mark-to-market daily, and can be traded on Elspot where players 

can take opportunities of the price differences between the ‘system price’ (or the equilibrium price) 

[Erzgräber et al., 2008] and the bid-ask spread on each of the contracts, depending on whether the 

market is in backwardation or in contango [Mork, 2006]. With forward contracts there is no settlement 

during the trading period or even before the expiry date of the forward. Nord Pool AS also has a 

clearing house which settles and clears any financial contracts. The clearing house controls the 

transaction between the buyer and seller, in addition to regulating any transaction in accordance to 

the Ministry of Finance regulations. The clearing house reduces any counterparty risk or defaults 

making the Nordic power market an efficient platform to trade in.  

2.2 Characteristics of Electricity Prices 

When we trade commodities such a wheat or metal, using derivatives such as forwards or futures 

which are physically settled, those with insight into the industry are aware of what and how the 

underlying commodity is traded. However, when trading electricity, it may not be as intuitive as one 

may think. Is electricity considered to be a tangible good which can be physically stored in a battery, 

or transferred from one place to another, as opposed to a physical good which cannot be seen or 

touched? To understand how electricity is traded or even priced, it is essential and valuable to firstly 

recognise the unique characteristics of electricity and how one would define what electricity is.  

The Oxford Dictionary defines electricity to be “a form of energy resulting from the existence of 

charged particles (such as electrons and protons), either statically as an accumulation of charge or 

dynamically as a current.” [Oxford Dictionary, 2018]. In this thesis, let us consider electricity to be a 

form of energy which is produced by the flow of charged particles as described above. Today, in some 

areas of the world, electricity has become easily accessible via our distribution system set in place. 

However, it is important to recognise some of the key features which has shaped our current power 

markets and given us the ability to trade electricity using financial contracts.  

Firstly, we must be aware of the inadequacy of transferring electricity across continents. For example, 

electricity produced in the United States is not transferred to the United Kingdom for consumption 
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due to the impracticalities of reaching cables across the North Atlantic Ocean! This feature prevents 

the creation of a global electricity market [Burger, Schindlmayr, Graeber, 2014]. Despite the difficulty 

with countries across oceans, we can build markets comprised of neighbouring countries, just like the 

Nordic power market, as well as trade in different markets which are not located in our home country. 

Another vital characteristic which needs to be recognised is that electricity has a non-storable 

property, as explained by Burger, Schindlmayr, Graeber (2014). The inability to store electricity has 

been a main concern for traders, brokers and large enterprises as this characteristic results in high 

volatility of power prices in the spot market; especially when there is an imbalance of supply and 

demand for the commodity. This is the reason as to why the Nordic Spot AS has two types of trading 

platform, Elspot and Elbas. Gianfreda and Grossi (2012) discusses the same feature of electricity and 

deemed it to be a new commodity with unique characteristics. As electricity prices become highly 

volatile, it is essential for traders, investors, brokers and other business professionals to monitor the 

frequent behaviour of electricity prices, so that they can build models which gives them the ability to 

forecast the future prices, which becomes a key factor in risk management and pricing derivatives on 

the underlying commodity [Gianfreda and Grossi, 2012]. When forward contracts are traded as 

electricity as the underlying asset, according to Burger, Schindlmayr, Graeber (2014) the prices are 

less volatile as the production of power and dependent factors such as weather conditions mean that 

the demand for power is yet unknown.  

When investing in many commodities, as an investor, it is ideal to comprehend the benefits from 

physically holding an asset which is not obtained from holding a futures contract on the asset. This 

benefit is known as the convenience yield [Boyle and McDougall, 2011]. The convenience yield, 𝑦, is 

backed out from the market spot prices by using the reverse operation on the following relationships:  

𝐹0 = 𝑆0 𝑒(𝑟+𝑢−𝑦)𝑇 

Where,  𝐹0- Forward or the future price  

 𝑆0- Spot price of the commodity  

 𝑇- Time to delivery (in years) 

 𝑟- Risk-free rate annualised  

 𝑢- Percentage storage cost of the commodity  

 𝑦- Convenience yield 

According to German and Roncoroni (2006), since there is no technology to store power, the idea of 

having a convince yield for electricity does not make sense, as an investor cannot have any benefit 

from holding electricity and neither is there any storage costs attached to it. We also know that for 

any storable commodity the futures price should converge to the spot price, the closer we get to the 

delivery date. However, for electricity, as it is not a storable commodity this hypothesis does not hold. 

This means that for electricity, the spot price should reflect the properties of power, the fact that it 

cannot be stored, and neither can it be transported in a way to meet the demands of a global power 

market.  

As mentioned earlier, the data set used in this thesis is from Nord Pool market and we shall assume 

that the electricity cannot be stored. As we study the financial time series from the 1st January 1999 

to the 26th January 2007, we see random occurrence of extreme spikes, which can be explained by 

firstly the outcome of the inability to store electricity, but also by the demand for electricity at various 

times of the year. By comparing the financial time series to the different seasons of the year, we can 
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make the conclusion that during the winter periods of the Nord Pool regions, due to the extremely 

cold temperatures there is a higher demand for heating. This would result in a higher electricity 

demand by households within the region. Now looking to the summer periods, we see that there is a 

dip in the prices of electricity, which may explain that there is not a high demand during the summer 

periods. Studying figure 4, which is extracted from the Nord Pool financial time series, we can analyse 

the electricity prices to be increasing and decreasing at certain times during the day. Studying the 

price of electricity across the twelve days we notice a pattern which appears repeatedly. The price of 

electricity is at its lowest for the day around the hours of 00:00. As we begin the day, around early 

morning to midday, we see that the price of electricity starts to increase, with a small drop between 

12:00 and mid-afternoon.  We again see a peak in the price around mid-afternoon to early evening 

before the price of electricity drops again for the cycle to repeat.  

 

Figure 4: Repetition in Nord Pool’s electricity prices between 22 Nov 1999 and 03 Dec 1999. Published 

with MATLAB® R2017b 

Looking at these extreme spikes which occur at random times in figure 3, it can be useful to investors, 

traders and large market players, to be able to predict the occurrence of these spikes in order to 

maximise their investment portfolios. In this thesis our goal is to decompose the financial time series 

containing electricity prices traded on the Nord Pool market, using methods which will be explained 

in later chapters; to extract information from the frequency signal and study if the occurrence of any 

phase slips may give any indication to the existence of any if these extreme events. 
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3.0 Mathematical Background of Signal Processing  

In this section of the thesis, I shall explore the mathematical elements which form the building block 

to signal processing. It is an ideal place to begin by clearly defining what a signal is mathematically and 

the different components needed to construct a signal. 

3.1 Simple Harmonic Functions: Amplitude and Phase 

In many areas of Mathematics and Physics, the term ‘Simple Harmonic Motion’ surfaces on many 

occasions. Let us go back in time to recall the idea of Simple Harmonic Motion (SMH) and further 

explore how the concept can be defined mathematically.  

Going back to high school, in our physics courses we always tend to study the motion of an object 

which oscillated to and fro, either side of an equilibrium position. The equilibrium position is defined 

to be the midpoint of the object’s motion. As the object moves from side to side, the distance from 

the midpoint is measured and called the displacement of the object. When an object moves back and 

forth there is always a restoring force pulling or pushing the object. This restoring force makes the 

object accelerate towards the equilibrium position, which is the centre of mass of the object. A simple 

example to consider is a swinging pendulum. When the pendulum is at rest, the object is in equilibrium 

position, as shown in the figure 5 below. Now, when a small force is applied to the pendulum, we 

measure a smaller displacement from the equilibrium position than when a large force is applied 

which is clearly seen in the diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Swinging pendulum in motion. 

Object in equilibrium position. 

Small displacement therefore a 

small force 

Large displacement therefore a 

large force 

Pendulum at 

rest. 

A small force 

applied to the 

pendulum. 

A large force 

applied to 

the 

pendulum. 
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The swinging of a pendulum is the simplest form of an oscillatory motion which is in Simple Harmonic 

Motion. We may define Simple Harmonic Motion to be an oscillation in which the acceleration of an 

object is directly proportional to its displacement from its equilibrium position and is directed towards 

the equilibrium. It is possible for one to draw graphs to show the displacement, velocity and 

acceleration of an oscillating object which is in simple harmonic motion. Such graphs will consist of 

functions which include sine and cosine waves as demonstrated below in figure 6. 

 

 Figure 6: Displacement of object in SMH. Published with MATLAB® R2017b 

Taking this concept from physics we may now define a simple harmonic function mathematically. A 

function 𝑥(𝑡) is called a simple harmonic function (or harmonic oscillation) if  

𝑥(𝑡) = 𝑎 cos(𝜙(𝑡))  or 𝑥(𝑡) = 𝑎 sin(𝜙(𝑡)) 

And 

𝜙(𝑡) = 𝜔𝑡 

Where we can define, 

𝑎- The amplitude or the argument of the trigonometric function and 𝑎 𝜖 ℝ, 𝑎 > 0 

𝜙(𝑡)- The phase shift 

 

 

 

 

 

 

Amplitude of the signal  
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Figure 7: Graph of 𝑥(𝑡) = sin(6𝑡) and 𝑥(𝑡) = sin (𝑡). Published with MATLAB® R2017b 

The amplitude is defined to be the height of the peaks and the phase determines the number of cycles 

in the same distance along the x-axis. If the phase increases by a factor of 𝜋 then the function 𝑥(𝑡) 

moves from one zero to the next. The zeros of the function are the points where the curve crosses the 

x-axis. The phase of the function tells us about the distribution of the zeros, maxima and minima. 

Figure 7 above illustrates the amplitude, phase and the zeros of a signal. We may see that 𝑥(𝑡) =

sin (6𝑡) has 6 times as many cycles in the same distance along the x-axis than 𝑥(𝑡) = sin (𝑡), which 

helps us identify the phase of the signal. 

In Physics and Engineering, a signal is simply a function which is composed of sine and cosine waves. 

A simple harmonic function is a general signal. In this thesis, we shall use the terms function and signal 

interchangeably.  

Now that we have defined what a simple harmonic function is, our aim is to decompose a general 

signal 𝑥(𝑡) and find the instantaneous amplitude and phase of the signal. Let us work with the function 

𝑥(𝑡) such that, 

𝑥(𝑡) = 𝐴(𝑡) cos(𝜙(𝑡)) 

There is no unique way to decompose such a signal. By this we mean that, if we compare 𝑥(𝑡) to our 

definition of a simple harmonic function, we could either let 𝐴(𝑡) = 𝑎 and 𝜙(𝑡) = 𝜔𝑡 or we may even 

consider 𝐴(𝑡) = 𝑎 cos(𝜔𝑡) and 𝜙(𝑡) = 0. Either method would have been suitable to decompose the 

signal, however in our case let us define 𝐴(𝑡) to be the amplitude and 𝜙(𝑡) to be the phase of the 

signal.    

To produce an algorithm to find the amplitude 𝐴(𝑡) and the phase 𝜙(𝑡) of such a signal, let us consider 

the following example. Let, 

Amplitude 

of the signal 

Zeros of the signal. 

𝑥(𝑡) = sin(6𝑡) 

𝑥(𝑡) = sin(𝑡) 



18 
 

𝑥(𝑡) = 𝐴(𝑡) cos(𝜙(𝑡)) where 𝐴(𝑡) = 𝑎 and 𝜙(𝑡) =  𝜔𝑡 

⇒    𝑥(𝑡) = 𝑎 cos(𝜔𝑡), where 𝑎 ˃ 0 

Just like in the definition of a simple harmonic function. Now, to make our computation easier we wish 

to express cosine in terms of complex exponential. We know from our first-year calculus course, the 

relationship between cosine, sine and complex exponentials, which is brought to us by Euler’s formula: 

𝑒±𝑖𝜃 = cos(𝜃) ± 𝑖 sin(𝜃) for any  𝜃 𝜖 ℝ 

Thus, 

cos(𝜃) =
1

2
(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) 

sin(𝜃) =
1

2
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃) 

We may now express 𝑥(𝑡) in terms of a complex exponential Fourier polynomial. A Fourier polynomial 

is simply a Fourier series which is the expansion of a periodic function 𝑓(𝑥) in terms of an infinite sum 

of simple function such as sine and cosine. Here we have taken a step further and used Euler’s formula 

to further expand the signal in terms of complex exponentials. Thus, we get that  

𝑥(𝑡) = 𝑎 (
𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡

2
) 

⇒   𝑥(𝑡) =
𝑎

2
𝑒𝑖𝜔𝑡 +

𝑎

2
𝑒−𝑖𝜔𝑡 

To define a new time dependent complex signal, we wish to only consider the positive frequency part 

of 𝑥(𝑡). To be precise, we wish to have twice the positive frequency. The new time dependent complex 

signal (or also referred to as an analytic signal) will be denoted by 𝑧(𝑡), where 

𝑧(𝑡) = 𝑎𝑒𝑖𝜔𝑡  where 𝑡 𝜖 ℝ, 𝑎 𝜖 ℝ, 𝑎 > 0 

The new analytic signal 𝑧(𝑡) is in polar form. Let 𝑍 𝜖 ℂ (a complex number), where    𝑍 = 𝑟𝑒𝑖𝜃. Then if 

• 𝑍 ≠ 0 

• |𝑍| = 𝑟 (the absolute value of Z) 

• arg(𝑍) = 𝜃 

𝑍 is said to be in polar form.  

Now that we have defined what a polar form is, we may use properties of complex numbers to find 

the absolute value and the complex argument of 𝑧(𝑡). We find the absolute value of 𝑧(𝑡) by: 

|𝑧(𝑡)| = |𝑎 𝑒𝑖𝜔𝑡| 

⇒ |𝑧(𝑡)| = |𝑎||𝑒𝑖𝜔𝑡|                                 (As 𝑎 is a real number) 

⇒ |𝑧(𝑡)| = |𝑎||cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡)|    (Expanding 𝑧(𝑡) using Euler’s formula) 

⇒ |𝑧(𝑡)| = |𝑎|√cos2(𝜔𝑡) + sin2(𝜔𝑡)  (Using identity cos2 𝑥 + sin2 𝑥 = 1) 

⇒ |𝑧(𝑡)| = |𝑎|√1 

⇒ |𝑧(𝑡)| = |𝑎|                                                 (assuming 𝑎 > 0) 
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⇒ |𝑧(𝑡)| = 𝑎 

⇒ |𝑧(𝑡)| = 𝐴(𝑡) 

As 𝑧(𝑡) is in polar form, we know that arg(𝑧(𝑡)) = 𝜔𝑡 = 𝜙(𝑡). Thus, we have found the amplitude of 

the signal, 𝐴(𝑡) = 𝑎, and the complex argument arg(𝑧(𝑡)) = 𝜔𝑡 which is the phase of the signal. We 

can further analyse that  

𝑥(𝑡) = 𝑅𝑒(𝑧(𝑡)) 

This relationship will become important in our next section. Using the simple harmonic function, we 

can now generate the general algorithm of how to decompose a signal to find the amplitude and 

phase. The general algorithm is:  

• Given a signal 𝑥(𝑡), rewrite the signal in terms of a complex exponential Fourier polynomial. 

• Define a new analytic signal, 𝑧(𝑡) ensuring to keep twice the positive frequency part only. 

• To find the amplitude 𝐴(𝑡), 𝐴(𝑡) = |𝑧(𝑡)|. 

• To find the phase 𝜙(𝑡), 𝜙(𝑡) = arg (𝑧(𝑡)) 

3.2 An Analytic Signal Example 

Let us illustrate the general idea of extracting the amplitude and phase of a signal, by applying the 

algorithm described above to an expression containing two harmonic functions. Let us start with the 

signal 𝑥(𝑡) which is defined as, 

𝑥(𝑡) = 0.5 cos(0.9𝑡) + 1.5 cos (1.1𝑡), where 𝑡 𝜖 ℝ 

Where 𝑡 is defined to be the time dependent variable. 
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Figure 8: Graph of signal 𝑥(𝑡). Published with MATLAB® R2017b 

The signal 𝑥(𝑡) has been plotted on a graph using Matlab and show in figure 8 above. The code can 

be found in the appendix of the thesis. Functions used in Matlab code will be explained as we go along 

the thesis. 

Now, using the algorithm above, our first step is to write the signal 𝑥(𝑡) in terms of a complex 

exponential Fourier polynomial. Before we do so, let us define each component of 𝑥(𝑡) in terms of a 

complex exponential. We know that by using Euler’s formula we can express cosine as: 

cos(𝑥) =  
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
 , 𝑥 𝜖 ℝ 

Thus,  

cos(0.9𝑡) =  
𝑒𝑖0.9𝑡 + 𝑒−𝑖0.9𝑡

2
, 𝑡 𝜖 ℝ 

cos(1.1𝑡) =
𝑒𝑖1.1𝑡 + 𝑒−𝑖1.1𝑡

2
, 𝑡 𝜖 ℝ 

Substituting each of the above terms into the signal 𝑥(𝑡) gives us, 

𝑥(𝑡) = 0.5 (
𝑒𝑖0.9𝑡 + 𝑒−𝑖0.9𝑡

2
) + 1.5 (

𝑒𝑖1.1𝑡 + 𝑒−𝑖1.1𝑡

2
) 

⇒ 𝑥(𝑡) =  
0.5

2
𝑒𝑖0.9𝑡 +

0.5

2
𝑒−𝑖0.9𝑡 +

1.5

2
𝑒𝑖1.1𝑡 +

1.5

2
𝑒−𝑖1.1𝑡 

Now that we have written the signal in terms of a Fourier polynomial, our aim is to define a new 

analytic signal by only keeping the positive frequency part. The new signal is denoted as 𝑧(𝑡) and is 

defined as,  

𝑧(𝑡) = 0.5𝑒𝑖0.9𝑡 + 1.5𝑒𝑖1.1𝑡, 𝑡 𝜖 ℝ 

As we mentioned, the relationship 𝑥(𝑡) = 𝑅𝑒(𝑧(𝑡)) will become important. We may now show why 

this relationship holds. In order to demonstrate this, we must use Euler’s formula to rewrite the terms 

𝑒𝑖0.9𝑡 and 𝑒𝑖1.1𝑡 as  

𝑒𝑖0.9𝑡 = cos(0.9𝑡) + 𝑖 sin(0.9𝑡) 

And,  

𝑒𝑖1.1𝑡 = cos(1.1𝑡) + 𝑖 sin(1.1𝑡) 

Substituting the two terms into 𝑧(𝑡) gives us  

𝑧(𝑡) = 0.5[cos(0.9𝑡) + 𝑖 sin(0.9𝑡)] + 1.5[cos(1.1𝑡) + 𝑖 sin(1.1𝑡)] 

⇒ 𝑧(𝑡) = [0.5 cos(0.9𝑡) + 1.5 cos(1.1𝑡)] + 𝑖[0.5 sin(0.9𝑡) +  1.5 sin(1.1𝑡)] 

 

If you look at 𝑧(𝑡), you will notice it is of the form of a complex number, where 𝑧(𝑡) consists of a real 

part namely 0.5 cos(0.9𝑡) + 1.5 cos(1.1𝑡) and an imaginary part 0.5 sin(0.9𝑡) +  1.5 sin(1.1𝑡). Thus, 

𝑅𝑒(𝑧(𝑡)) =  0.5 cos(0.9𝑡) + 1.5 cos(1.1𝑡) = 𝑥(𝑡) 

Real part Imaginary part 
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We have shown that 𝑥(𝑡) = 𝑅𝑒(𝑧(𝑡)) holds. 

Now going back to the next step of the algorithm, we may denote the instantaneous amplitude to be 

𝐴(𝑡) = |𝑧(𝑡)| and the phase of the signal to be 𝜙(𝑡) = arg (𝑧(𝑡)). We defined earlier that the new 

analytic signal will hold the form  

𝑧(𝑡) = 𝐴(𝑡)𝑒𝑖𝜙(𝑡), 𝑡 𝜖 ℝ 

Hence, using the property which we just showed, 𝑥(𝑡) = 𝑅𝑒(𝑧(𝑡)), we have that  

𝑥(𝑡) = 𝑅𝑒(𝐴(𝑡)𝑒𝑖𝜙(𝑡))           (Using Euler’s formula to expand) 

⇒ 𝑥(𝑡) = 𝐴(𝑡)cos (𝜙(𝑡)) 

Our aim is to explicitly find 𝐴(𝑡) and 𝜙(𝑡). We can easily compute the amplitude, 𝐴(𝑡) and the phase, 

𝜙(𝑡) from 𝑧(𝑡) = 0.5𝑒𝑖0.9𝑡 + 1.5𝑒𝑖1.1𝑡. Before we compute the amplitude, we must prove a property 

of complex numbers which will be used in our calculations. This proposition was extracted from 

Beheshti (2016). 

Proposition 1: 

Given two complex numbers 𝑧, 𝑤 𝜖 ℂ. Then 

|𝑧𝑤| = |𝑧||𝑤| 

 

Proof: 

Consider 

|(𝑧𝑤)2| = (𝑧𝑤)(𝑧𝑤̅̅̅̅ )  (By property of complex numbers, |𝑧|2 = 𝑧𝑧̅) 

Where, 𝑧𝑤̅̅̅̅  is the complex conjugate of 𝑧𝑤. 

⇒  |(𝑧𝑤)2| = (𝑧𝑤)(𝑧̅𝑤̅) (By closure property of complex numbers, ℂ) 

⇒ |(𝑧𝑤)2| = (𝑧𝑧̅)(𝑤𝑤̅)    (By commutativity of complex numbers, ℂ) 

⇒ |(𝑧𝑤)2| = |𝑧|2|𝑤|2   (By property of complex numbers, |𝑧|2 = 𝑧𝑧̅) 

⇒ |(𝑧𝑤)2| = |𝑧||𝑤| 

 We may now use the above, proposition 1, to compute the amplitude 𝐴(𝑡): 

𝐴(𝑡) = |𝑧(𝑡)| = |0.5 𝑒𝑖0.9𝑡 + 1.5𝑒𝑖1.1𝑡| 

⇒ 𝐴(𝑡) = |1.5𝑒𝑖1.1𝑡 (1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡)| 

⇒ 𝐴(𝑡) = |1.5𝑒𝑖1.1𝑡||1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡|                   (Using Proposition 1) 

 

 

 

 

1 2 
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Let us compute each part separately: 

 

|1.5𝑒𝑖1.1𝑡| = |1.5(cos(1.1𝑡) + 𝑖 sin (1.1𝑡))|        (Using Euler’s Formula) 

⇒ 1.5|cos(1.1𝑡) + 𝑖 sin(1.1𝑡)| 

⇒ 1.5√cos2(1.1𝑡) + sin2(1.1𝑡)  (Using definition of modulus of a complex number) 

⇒ |1.5𝑒𝑖1.1𝑡| = 1.5            (using the identity cos2 𝑥 + sin2 𝑥 = 1) 

 

 

|1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡| = |1 +

0.5

1.5
(cos((1.1 − 0.9)𝑡) + 𝑖 sin((1.1 − 0.9)𝑡))| 

⇒ |1 +
0.5

1.5
cos((1.1 − 0.9)𝑡) + 𝑖

0.5

1.5
sin((1.1 − 0.9)𝑡)| 

 

 

⇒ |1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡| = √(1 +

0.5

1.5
cos((1.1 − 0.9)𝑡))

2

+ (
0.5

1.5
sin((1.1 − 0.9)𝑡))

2

 

 

Where the last step was calculated by applying the definition of the modulus of a complex number. 

We may now define the amplitude, 𝐴(𝑡) to be: 

𝐴(𝑡) =  1.5√(1 +
0.5

1.5
cos((1.1 − 0.9)𝑡))

2

+ (
0.5

1.5
sin((1.1 − 0.9)𝑡))

2

 

We may verify that 𝐴(𝑡) is indeed the amplitude of the signal 𝑥(𝑡), by plotting both the amplitude 

and the signal on the same graph as shown in figure 9 below: 

  

2 

1 

Real part Imaginary part 
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Figure 9:Graph of signal 𝑥(𝑡) with Amplitude enveloping. Published with MATLAB® R2017b 

As you can see from the graph in figure 9, the amplitude 𝐴(𝑡) which is highlighted in blue, is a perfect 

envelope of the signal 𝑥(𝑡); which is shown on the graph as the orange oscillating curve. An envelope 

of an oscillating signal is a smooth curve which outlines the extremes of the signal. Here the amplitude 

is a perfect envelope for the signal.  

Before we move further to find the phase 𝜙(𝑡), we need to prove another property of complex 

numbers. This proposition was extracted from Beheshti (2016). 

Proposition 2: 

Let 𝑧, 𝑤 𝜖 ℂ both be non-zero. Then, 

arg(𝑧𝑤) = arg(𝑧) + arg (𝑤) (modulo 2𝜋) 

 

Proof: 

Let 𝜃 = arg(𝑧) and 𝜑 = arg (𝑤). Then  

𝑧𝑤 = |𝑧|(cos(𝜃) + 𝑖 sin(𝜃))|𝑤|(cos(𝜑) + 𝑖 sin (𝜑)) 

⇒ 𝑧𝑤 = |𝑧||𝑤|[(cos(𝜃) cos(𝜑) − sin(𝜃) sin(𝜑)) + 𝑖(sin(𝜃) cos(𝜑) + sin (𝜑)cos (𝜃))] 

⇒ 𝑧𝑤 = |𝑧||𝑤|[cos(𝜃 + 𝜑) + 𝑖 sin (𝜃 + 𝜑)] 

As the final equality is in modulus-argument form |𝑧𝑤| = |𝑧||𝑤| as proved earlier in propostion 1, and 

𝜃 + 𝜑 = arg(𝑧) + arg (𝑤) which is the argument of zw.  
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We may now use proposition 2 in finding the phase 𝜙(𝑡) of the signal. By using the definition of phase, 

we calculate 𝜙(𝑡) as: 

𝜙(𝑡) = arg(𝑧(𝑡)) = arg(0.5𝑒𝑖0.9𝑡 + 1.5𝑒𝑖1.1𝑡) 

⇒ 𝜙(𝑡) = arg (1.5𝑒𝑖1.1𝑡 (1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡)) 

⇒ 𝜙(𝑡) = arg(1.5𝑒𝑖1.1𝑡) + arg (1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡)        (By Proposition 2) 

⇒ 𝜙(𝑡) = 1.1𝑡 + arg (1 +
0.5

1.5
𝑒𝑖(1.1−0.9)𝑡) 

The last term of the phase is bounded between −
𝜋

2
 and 

𝜋

2
 , and the real part of the argument is positive.  

We may plot the phase 𝜙(𝑡) on a graph using a special command in Matlab called ‘unwrap’. By just 

plotting 𝜙(𝑡), as the 𝑎𝑟𝑔 function operates modulo 2𝜋, this function will look like a sawtooth as it 

produces jumps every time the phase increases by 𝜋. The unwrap command will correct the phase 

angle by adding multiples of ±2𝜋 when the absolute value of the phase jumps between consecutive 

elements are greater than or equal to the ‘jump tolerance’, 𝜋. If the phase is less the 𝜋, then the 

unwrap command will choose the correct value of the phase [Uk.mathworks.com, 2018]. Figure 10 

below shows the phase 𝜙(𝑡) which has been plotted without using the unwrap command. You can 

clearly see the jumps which are made every time the phase increases by 𝜋. 

 

Figure 10: Graph of Instantaneous Phase without using unwrap command. Published with MATLAB® 

R2017b 
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Figure 11: Graph of Instantaneous Phase using unwrap command. Published with MATLAB® R2017b 

Figure 11 shows the phase 𝜙(𝑡), which has been plotted using Matlabs unwrap command. Analysing 

the phase from figure 11, we may simply conclude that the phase is a straight line. However let us 

zoom into the graph and carefully observe small bumps as shown in figure 12 below. 

 

Figure 12: Graph of Instantaneous Phase using unwrap command. Published with MATLAB® R2017 

Small bumps in the line. 
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Looking carefully the phase is not a complete straight line and contains small bumps. These small 

bumps are due to the phase angle repeating every 2𝜋. However, as 𝑥(𝑡) is a periodic function, we do 

not see any extreme values as we would when working with real data. Thus, we do not see any specific 

phase slips, which is identified by a sudden change in the phase angle, to indicate these extreme 

events. 

3.3 Zero Frequency Part 

All the signals we have looked at so far have had a vanishing time average. Let us understand how we 

can deal with a constant offset using the following example. Let us consider a signal 𝑥(𝑡) which is 

defined as: 

𝑥(𝑡) = 𝑐 + 𝑎 cos (𝜔𝑡), where 𝑐 is a constant such that 𝑐 𝜖 ℝ 

Thus, we may rewrite 𝑥(𝑡) in terms of a Fourier polynomial:  

𝑥(𝑡) = 𝑐 +
𝑎

2
𝑒𝑖𝜔𝑡 +

𝑎

2
𝑒−𝑖𝜔𝑡 

The constant 𝑐 𝜖 ℝ is a constant which happens t be the average of the function 𝑥̅: 

𝑥̅ =
1

𝑇
∫ 𝑥(𝑡) 𝑑𝑡

𝑇

0

 

Where, T is the period of the signal. Now, this may seem bizarre at first but in fact 𝑥̅ is the term 

corresponding to the zero-frequency part of the Fourier polynomial. To understand where this 

statement appears from, simply consider  

𝑥(𝑡) − 𝑐 = 𝑥(𝑡) − 𝑥̅ 

What we have done here is simply subtract the time average from the signal. In this thesis, we will 

always assume the time average has been subtracted so that the signal has a zero average. 

3.4 Fourier and Hilbert Transform  

So far, we have implemented our algorithm to simple harmonic functions in order to extract the 

amplitude and the phase of a signal. To implement our algorithm to a general function 𝑥(𝑡), we must 

rewrite all the terms of the function 𝑥(𝑡) in terms of complex exponentials as such: 

𝑥(𝑡) = 𝑎1 cos(𝜔1𝑡) + 𝑎2cos (𝜔2𝑡) =
𝑎1

2
𝑒𝑖𝜔1𝑡 +

𝑎1

2
𝑒−𝑖𝜔1𝑡 +

𝑎2

2
𝑒𝑖𝜔2𝑡 +

𝑎2

2
𝑒−𝑖𝜔2𝑡 

To write any general signal, whether continuous or discontinuous, in terms of complex exponentials 

we must use the Fourier transform. As explained earlier, the Fourier Transform proposed by Joseph 

Fourier in 1822, is a method which allows one to take any continuous or discontinuous function and 

expand the function in terms of simpler functions, sine and cosine (or in our case further expand each 

sine and cosine function in terms of complex exponentials using Euler’s formula).  

The Fourier coefficients of the signal under a Fourier transform are defined as, 

𝑥(𝜔) =
1

√2𝜋
∫ 𝑒−𝑖𝜔𝑡′

𝑥(𝑡′) 𝑑𝑡′
∞

−∞

   

Thus, the signal 𝑥(𝑡) can be written as, 
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𝑥(𝑡) =
1

√2𝜋 
∫ 𝑒𝑖𝜔𝑡𝑥̂(𝜔) 𝑑𝜔

∞

−∞

   

Now, 𝑥(𝑡) is defined in terms of complex exponentials of the form, 𝑒𝑖𝜔𝑡, where 𝜔 are the frequencies 

which can be both positive and negative. Our aim was to construct an analytic signal by only 

considering the positive frequencies and setting all negative frequencies to 0. We may introduce the 

new signal, 𝑧(𝑡), by integrating only over the positive frequencies. Thus, 𝑧(𝑡) can be defined as: 

𝑧(𝑡) = 2
1

√2𝜋
∫ 𝑒𝑖𝜔𝑡𝑥̂(𝜔)𝑒−𝜀𝜔 𝑑𝜔

∞

0

 

At the start of the new signal, we have the term 2 to account for only the positive frequency part of 

the signal, as we mentioned earlier, and to be more precise we want twice the positive frequency part.  

Now you may have noticed the expression 𝑒−𝜀𝜔 in the signal 𝑧(𝑡). It may not be apparent as to where 

this term appeared from. The expression has been introduced to simplify some of the subsequent 

steps in our calculations. As we are integrating over an infinite domain, to ensure that the integrals 

converge, we must introduce a small exponential cut off which will vanish once we take the limit 𝜀 →

0.   

Now let us express the new signal 𝑧(𝑡) in terms on the original signal 𝑥(𝑡) by simply substituting the 

expression 𝑥(𝑡) into 𝑧(𝑡). This can be done in the following manner: 

𝑧(𝑡) = 2
1

√2𝜋
∫ 𝑒𝑖𝜔𝑡𝑥̂(𝜔)𝑒−𝜀𝜔 𝑑𝜔

∞

0

 

⇒ 𝑧(𝑡) = 2
1

√2𝜋
∫ 𝑒𝑖𝜔𝑡

1

√2𝜋
∫ 𝑒−𝑖𝜔𝑡′

𝑥(𝑡′) 𝑑𝑡′𝑒−𝜀𝜔 𝑑𝜔
∞

−∞

 
∞

0

 

⇒ 𝑧(𝑡) = 2
1

2𝜋
∫ 𝑑𝜔

∞

0

∫ 𝑥(𝑡′)𝑒𝑖𝜔(𝑡−𝑡′)−𝜀𝜔
∞

−∞

𝑑𝑡′ 

⇒ 𝑧(𝑡) =
1

𝜋
∫ 𝑥(𝑡′)

∞

−∞

∫ 𝑒(𝑖(𝑡−𝑡′)−𝜀)𝜔
∞

0

 𝑑𝜔 𝑑𝑡′ 

 

 

Let us first calculate the sub-integral using the method of integration by substitution. Let 

𝑢 = (𝑖(𝑡 − 𝑡′) − 𝜀)𝜔 

Then,  

𝑑𝑢

𝑑𝜔
= 𝑖(𝑡 − 𝑡′) − 𝜀 

⇒ 𝑑𝜔 =
𝑑𝑢

𝑖(𝑡 − 𝑡′) − 𝜀
 

Now, let us find the new limits of integration. When 𝜔 → ∞, 𝑢 → −∞ and when 𝜔 → 0, 𝑢 → 0. Our 

integral now becomes: 

∫ 𝑒𝑢 
−∞

0

𝑑𝑢

𝑖(𝑡 − 𝑡′) − 𝜀
= − ∫ 𝑒𝑢

𝑑𝑢

𝑖(𝑡 − 𝑡′) − 𝜀

0

−∞

 

Integration by substitution  
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= −
1

𝑖(𝑡 − 𝑡′) − 𝜀
∫ 𝑒𝑢

0

−∞

𝑑𝑢 

= −
1

𝑖(𝑡 − 𝑡′) − 𝜀
 𝑒𝑢|−∞

0  

= −
1

𝑖(𝑡 − 𝑡′) − 𝜀
[𝑒0 − lim

𝑢→−∞
𝑒𝑢] 

= −
1

𝑖(𝑡 − 𝑡′) − 𝜀
[1 − 0] 

= −
1

𝑖(𝑡 − 𝑡′) − 𝜀
 

Where we have used the results 𝑒0 = 1 and lim
𝑢→−∞

𝑒𝑢 = 0.  

Now we can input our results into 𝑧(𝑡) as such: 

𝑧(𝑡) =
1

𝜋
∫ 𝑥(𝑡′)

∞

−∞

−1

𝑖(𝑡 − 𝑡′) − 𝜀
𝑑𝑡′ 

Now, we may separate the fraction −
1

𝑖(𝑡−𝑡′)−𝜀
 as such: 

−
1

𝑖(𝑡 − 𝑡′) − 𝜀
=

−𝑖(𝑡 − 𝑡′) + 𝜀

(𝑖(𝑡 − 𝑡′) − 𝜀)2
=

𝜀

(𝑡 − 𝑡′)2 + 𝜀2
+ 𝑖

𝑡 − 𝑡′

(𝑡 − 𝑡′)2 + 𝜀2
 

Alongside using the fact 𝑖2 = 1.  

Thus, our signal 𝑧(𝑡) can be expressed as, 

𝑧(𝑡) =
1

𝜋
∫ (

𝜀

(𝑡 − 𝑡′)2 + 𝜀2
+ 𝑖

𝑡 − 𝑡′

(𝑡 − 𝑡′)2 + 𝜀2) 𝑥(𝑡′)𝑑𝑡′
∞

−∞

 

⇒ 𝑧(𝑡) =
1

𝜋
[∫

𝜀

(𝑡 − 𝑡′)2 + 𝜀2
𝑥(𝑡′)𝑑𝑡′

∞

−∞

+ ∫ 𝑖
∞

−∞

𝑡 − 𝑡′

(𝑡 − 𝑡′)2 + 𝜀2
𝑥(𝑡′)𝑑𝑡′] 

⇒ 𝑧(𝑡) = ∫
1

𝜋

∞

−∞

𝜀

(𝑡 − 𝑡′)2 + 𝜀2
𝑥(𝑡′)𝑑𝑡′ +

𝑖

𝜋
∫

𝑡 − 𝑡′

(𝑡 − 𝑡′)2 + 𝜀2
𝑥(𝑡′)𝑑𝑡′

∞

−∞

 

Let us introduce the abbreviations, 𝛿𝜀 which is a function, and 𝑃 which is the principal value 

distribution. Each of the abbreviations are defined as, 

𝛿𝜀(𝑥) =
1

𝜋

𝜀

𝑥2 + 𝜀2
, 𝑃 (

1

𝑥
) =

𝑥

𝑥2 + 𝜀2
 

We may rewrite 𝑧(𝑡) in terms of the two new functions: 

𝑧(𝑡)= ∫ 𝛿𝜀(𝑡 − 𝑡′)
∞

−∞
𝑥(𝑡′)𝑑𝑡′ +

𝑖

𝜋
∫ 𝑃 (

1

𝑡−𝑡′) 𝑥(𝑡′)𝑑𝑡′∞

−∞
  

For each of the new functions we must consider the limit 𝜀 → 0. Let us begin by looking at the first 

integral of 𝑧(𝑡). Considering the limit 𝜀 → 0 

lim
𝜀→0

𝛿𝜀(𝑥) = lim
𝜀→0

1

𝜋

𝜀

𝑥2 + 𝜀2
= 0  
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When 𝑥 = 0, the function 𝛿𝜀(𝑥) has a very sharp peak, which means that in the first integral of 𝑧(𝑡), 

only the value of 𝑥(𝑡′) when 𝑡 = 𝑡′ will matter. Thus, the limit as 𝜀 → 0 will become: 

lim
𝜀→0

∫ 𝛿𝜀(𝑡 − 𝑡′)𝑥(𝑡′)𝑑𝑡′ = 𝑥(𝑡) ∫ 𝛿𝜀(𝑡 − 𝑡′)𝑑𝑡′
∞

−∞

∞

−∞

 

= 𝑥(𝑡) ∫
1

𝜋

∞

−∞

𝜀

(𝑡 − 𝑡′)2 + 𝜀2
 𝑑𝑡′  

=
𝑥(𝑡)

𝜋
 𝜀 ∫

1

(𝑡 − 𝑡′)2 + 𝜀2
𝑑𝑡′

∞

−∞

 

Using integration by substitution we may calculate the value of the integral. Let 𝑢 = 𝑡 − 𝑡′. Thus,  

𝑑𝑢

𝑑𝑡′ = −1 ⇒ 𝑑𝑢 = −𝑑𝑡′ 

⇒ ∫
1

(𝑡 − 𝑡′)2 + 𝜀2
𝑑𝑡′

∞

−∞

= − ∫
1

𝑢2 + 𝜀2
𝑑𝑢

∞

−∞

 

As you can see the limits will remain the same. Now to solve the integral we need to use integration 

by substitution again alongside the standard result:  

• ∫
1

𝑥2+1
 𝑑𝑥 = arctan(𝑥) + 1 

• lim
𝑥→∞

arctan (𝑥) =
𝜋

2
 

• lim
𝑥→−∞

arctan (𝑥) = −
𝜋

2
 

 

Now, letting 𝑣 =
𝑢

𝜀
 , we get 𝑑𝑢 = 𝜀 𝑑𝑣. The limits will not change. Our integral now becomes: 

− ∫
1

𝑢2 + 𝜀2
𝑑𝑢

∞

−∞

= − ∫
𝜀

𝜀2𝑣2 + 𝜀2

∞

−∞

 𝑑𝑣 

= −
1

𝜀
∫

1

𝑣2 + 1
𝑑𝑣

∞

−∞ 

 

= −
1

𝜀
arctan (𝑣) 

= −
1

𝜀
arctan (

𝑢

𝜀
) 

= −
1

𝜀
arctan (

𝑡 − 𝑡′

𝜀
) 

Now inputting our calculations thus far we have: 

lim
𝜀→0

∫ 𝛿𝜀(𝑡 − 𝑡′)𝑥(𝑡′)𝑑𝑡′ =
∞

−∞

𝑥(𝑡)

𝜋
 𝜀 ∫

1

(𝑡 − 𝑡′)2 + 𝜀2
𝑑𝑡′

∞

−∞

 

=
𝑥(𝑡)

𝜋
 𝜀 (−

1

𝜀
arctan (

𝑡 − 𝑡′

𝜀
)|

−∞ 

∞

) 

= −
𝑥(𝑡)

𝜋
arctan (

𝑡 − 𝑡′

𝜀
)|

−∞

∞
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=
𝑥(𝑡)

𝜋
[ lim

𝜀→∞
(− arctan (

𝑡 − 𝑡′

𝜀
)) − lim

𝜀→−∞
(− arctan (

𝑡 − 𝑡′

𝜀
))  ] 

=
𝑥(𝑡)

𝜋
[
𝜋

2
− −

𝜋

2
] 

= 𝑥(𝑡) 

The first integral of 𝑧(𝑡) has now been calculated. In the second integral, the expression 𝑃 (
1

𝑥
) is 

1

𝑥
 if 

𝑥 ≠ 0 while 𝑃 (
1

𝑥
) tends to 0 in a small interval around 𝑥 = 0.  The nonintegrable singularity has been 

removed which leaves us with the new time dependent complex signal to hold the form:  

𝑧(𝑡) = 𝑥(𝑡) +
𝑖

𝜋
∫

𝑥(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′

∞

−∞

 

The imaginary part of the integral transform of 𝑥(𝑡) is called the Hilbert transform. In Matlab, we may 

produce the signal 𝑧(𝑡) using a single command called ‘Hilbert’. The Hilbert command takes a given 

signal, applies a Fourier transform, set all the negative frequencies to 0, then applies the inverse 

Fourier transform, which give us our required signal to extract the amplitude 𝐴(𝑡) and phase 𝜙(𝑡) in 

such a manner: 

𝐴(𝑡) = |𝑧(𝑡)|,      𝜙(𝑡) = arg (𝑧(𝑡)) 

Where the amplitude and phase a related to the signal by: 

𝑥(𝑡) = 𝑅𝑒(𝑧(𝑡)) = 𝐴(𝑡)cos (𝜙(𝑡)) 

As 𝑧(𝑡) = 𝐴(𝑡)e𝑖𝜙(𝑡).  

4.0 Signal Processing using Matlab 

4.1 Signal Processing of a Simple Harmonic Function  

In this section of the thesis, I shall be illustrating the algorithm established in section 3.1 to process 

the financial time series of Nord Pool electricity prices, by implementing the Matlab command 

‘Hilbert’. 

Before we attempt to implement the Hilbert command to the Nord Pool Data set, we shall first test 

the command on a simple harmonic signal, 𝑥(𝑡) which is defined as, 

𝑥(𝑡) = 0.5 sin(0.9𝑡) + 1.5sin (1.1𝑡) 

to explain the output delivered by the Hilbert command.  

The Hilbert command in Matlab is used to extract the analytic signal from a discrete time data sets of 

a finite block of data [Uk.mathworks.com, 2018]. In other words, the Hilbert function will take the 

finite data set, perform a Fourier transform on the data set, set all the negative frequencies to 0, and 

then finally apply the inverse Fourier transform on the data set; all within one function. The Matlab 

syntax for the Hilbert function is  

𝑥 = ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥𝑟) 

Where,  
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𝑥𝑟- a real data sequence 

𝑥- the return which is an analytic signal 

Using the output of the Hilbert function, our aim is to find the instantaneous amplitude and phase of 

the analytic signal, which is the new time dependent complex signal which has been explained in 

section 3.1.  

Due to the Hilbert function performing numerous steps at once, we shall explain the method used to 

produce our results and the Matlab code used at each stage of the algorithm. 

Using a similar example to which we studied by hand in section 3.2, let the signal 𝑥(𝑡) be defined as: 

𝑥(𝑡) =  0.5 sin(0.9𝑡) + 1.5sin (1.1𝑡) 

The period of this harmonic function will be defined between 0 and 500 on an interval if 0.0001. The 

signal 𝑥(𝑡) has been plotted on a graph using Matlab as shown in figure 13. 

 

Figure 13: Simple harmonic signal. Published with MATLAB® R2017b 

As we gave identifies the simple harmonic signal, we can continue to the next step and apply Matlab’s 

Hilbert command to the signal in order to extract the analytic signal, 𝑧(𝑡). As the analytic signals 

elements are from the complex number system, ℂ, we cannot directly plot 𝑧(𝑡) on a graph like we 

would have done with a real valued signal.  

Firstly, let us verify the components of the signal 𝑧(𝑡) are elements of ℂ (complex numbers) and 

compare the elements to the components of the real signal 𝑥(𝑡). This can be done using the following 

commands in Matlab: 
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%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the analytic 

%signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us check the output of signal z are complex numbers 

z(1:3) %This command is asking Matlab to display first 3 values of signal z 

 

%We may compare this to the first 3 values of the original real valued 

%signal 

x(1:3) 

Figure 14: Matlab code to produce an analytic signal of 𝑥(𝑡) using Hilbert command. Published with 

MATLAB® R2017b 

The results produced in Matlab’s command window is: 

 

ans = 

 

  -0.0000 - 2.2027i   0.0002 - 1.7768i   0.0004 - 1.7778i 

 

 

ans = 

 

   1.0e-03 *0    0.2100    0.4200 

 

 

The Hilbert function has indeed produced an analytic signal with components from ℂ. The Matlab 

commands, 𝑎𝑏𝑠 and 𝑎𝑛𝑔𝑙𝑒 may now be used to find the absolute value (the amplitude) and the phase 

of the signal 𝑧(𝑡) respectively.    

Let us begin with finding the amplitude 𝐴(𝑡), using the following Matlab code: 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

Output of the first 

three terms of the 

signal 𝑧(𝑡) which 

are all elements of 

ℂ 

Output of the first three 

terms of the signal 𝑥(𝑡) 

which are all elements of ℝ 
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%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us now use the Matlab command abs to plot the ampltude of the signal 

figure 

plot(t,x) %Plotting the orginal signal to check whether the amplitude envlopes it. 

hold on 

plot(t,abs(z)) 

hold off 

title('Amplitude of the signal x(t)') 

xlabel('Time') 

ylabel('Signal value at each time interval') 

 

Figure 15: Amplitude of the signal extracted using the Hilbert command. Published with MATLAB® 

R2017b 

As you can see we have extracted the amplitude which perfectly envelopes the signal by clearly 

highlighting the extremes of the signal as shown by the orange curve in figure 15. 

As we have found the amplitude of the signal, 𝑥(𝑡), we may continue to extract the phase of the signal 

and plot it on a graph using the following Matlab code: 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 
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t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us now plot the instantaneous phase of the signal using Matlabs angle 

%command. 

figure 

plot(t, angle(z)) 

title('Instantaneous Phase') 

xlabel('Time, t') 

ylabel('Phase') 

 

 

Figure 16: Instantaneous Phase. Published with MATLAB® R2017b 

As you can see from figure 16, the phase angle jumps in absolute value whenever the angle increases 

by 𝜋. Using the unwrap command in Matlab, which was mention in section 3.2, we may ‘untangle’ the 

phase angle and plot it in a manner which can be analysed. The Matlab code below demonstrates who 

to use the unwrap command: 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 
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%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%plotting the phase using Matlab's unwrap command 

figure 

plot(t, unwrap(angle(z))) 

title('Instantaneous Phase') 

xlabel('Time') 

ylabel('Phase') 

 

 

 

Figure 17: Instantaneous Phase using unwrap command. Published with MATLAB® R2017b 

Analysing figure 17, you first assume this is simply a straight line. However, if we zoom into the graph 

as shown below in figure 18, you may notice that the instantaneous phase is not exactly a straight line. 

These small bumps are due to the phase angle repeating every 2𝜋. However, as 𝑥(𝑡) is a periodic 

function, we do not see any extreme values as we would when working with real data. Thus, we do 
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not see any specific phase slips, which is identified by a sudden change in the phase angle, to indicate 

these extreme events.  

 

Figure 18: Instantaneous Phase using unwrap command on a smaller scale. Published with MATLAB® 

R2017b 

4.2 Signal Processing with Nord Pool Electricity Prices  

Reflecting on what we have done thus far, by successfully demonstrating how to use the Hilbert 

command in Matlab and applying it to a simple harmonic function, to extract the amplitude and the 

phase of the signal. Let us now apply this method to a real discrete-time data set to extract the same 

information from the signal. Using the Nord Pool data set for electricity prices, which have been 

recorded at an hourly interval across seven years, starting from the 1st January 1999 at 00:00 till the 

26th January 2007; we may decode the signal in the following manner. 

To start processing the signal, we must first import the data from the text file (.txt) into a variable in 

Matlab. To import that data, follow these steps: 

• Under ‘Home’ tab, click on ‘Import data’ icon. 

• Next, search the text file under which the data is stored in, for example 

‘NordPoolElectricityData.txt’ 

• Matlab will automatically recognise the layout of the data. 

• Insure to import the data in a ‘Column vector’ form. 

• Next, rename the variable. The electricity prices have been stored as NordPoolElecPrices.  

• Once the above steps have been completed, click the ‘Import Selection’ button to complete 

the importing of the data set. 

There are small bumps in the phase here  
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To know if you have successfully imported that data, in the right-hand column under the tab 

‘Workspace’, the variable has been named and been given a specific value. This verifies that the data 

has been imported and stored in named variable.  

As the data has been successfully imported, we may plot the financial time series on a graph. Figure 

19.1 shows us the Nord Pool electricity prices which have been recorded at hourly intervals. The time 

variable has been stored as dates ranging from 1st January 1999 to 26th January 2007. There are exactly 

70,752 data points. The appendix contains the related Matlab code used to produce the financial time 

series. 

 

Figure 19.1: Nord Pool Hourly Electricity Prices. Published with MATLAB® R2017b 

Studying figure 19.1 shows us the extreme data points contained in the signal. By adjusting the time 

series on a finer scale, we can observe some properties of the Nordic electricity prices. The greatest 

price witnessed at which Nordic electricity was traded at was 238.00 EUR/MWh on the 5th February 

2001, at 09:00 as shown in figure 19.1 above and in more detail in figure 19.2 below. We must make 

awareness of the fact that the discrete time series is a non-stationary, non-periodic time series. 

However, when we study the time series on a finer scale, we can begin to see a form of periodicity in 

the electricity prices. Inspecting figure 19.3, between 22nd November 1999 to 3rd December 1999, we 

can analyse the electricity prices to be increasing and decreasing at certain times during the day. 

Analysing the price of electricity across the twelve days we notice a pattern which appears repeatedly. 

The price of electricity is at its lowest for the day around the hours of 00:00. As we begin the day, 

around early morning to midday, we see that the price of electricity starts to increase, with a small 

drop between 12:00 and mid-afternoon.  We again see a peak in the price around mid-afternoon to 

early evening before the price of electricity drops again for the cycle to repeat. We can see a similar 

pattern again in March 2004 as illustrated in figure 19.4. Let us take a closer look at the prices of 

electricity between 10th March 2004 at 00:00 till 12th March 2004 at 00:00, as shown in figure 19.5. 
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The maximum and minimum prices of electricity can be clearly seen with indication to the time at 

which they occur at each day. We can observe that the power prices are at a maximum just before 

midday and reach a minimum between 00:00 and the early hours of the morning.  

 

Figure 19.2: Nord Pool’s highest price at which electricity is traded at. Published with MATLAB® R2017b 

 

 

Figure 19.3: Repetition in Nord Pool’s electricity prices between 22 Nov 1999 and 03 Dec 1999. 

Published with MATLAB® R2017b 
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Figure 19.4: Repetition in Nord Pool’s electricity prices in March 2004. Published with MATLAB® R2017b 

 

Figure 19.5: Identifying the maximum and minimum prices of Nord Pool electricity between 10th March 

and 12th March 2004. Published with MATLAB® R2017b 

Analysing the time series, we have been able to identify patterns in the data set, as well as the 

occurrence of extreme data point of where Nordic electricity prices have increased at an unexpected 

rate. The purpose of this thesis is to find evidence in the phase of the signal, which may or may not 

provide information regarding the occurrence of these extreme events. Once analysing the phase of 

the time series, we hope to see if there exist any phase slips, which is identified by a sudden change 

in the phase angle, which will indicate the occurrence of any extreme events.   

Let us now begin by decomposing the signal in order to define the analytic signal, 𝑧(𝑡) using the Hilbert 

command in Matlab. In Matlab, to create the time dependent signal, we must save the time variable 

as shown below in the Matlab code. Just like before, we know that the analytic signal 𝑧(𝑡) has complex 

elements. We may verify this as shown in the Matlab code and compare the signal elements to the 

original time series data.  

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 
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%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

z=hilbert(NordPoolElecPrices); 

%Let us check the output of the signal z are complex numbers 

z(1:3) %This command is asking Matlab to display first 3 values of signal z 

 

%We may compare this to the first 3 values of the original real valued 

%signal(which is the first 3 prices from the data set) 

NordPoolElecPrices(1:3) 

Figure 20: Matlab code to produce an analytic signal of the financial time series using Hilbert 

command. Published with MATLAB® R2017b 

The results produced in Matlab’s command window is: 

ans = 
 
  15.2900 +61.7409i 
  15.1400 +55.5470i 
  14.9000 +55.1734i 
 
 
ans = 
 
   15.2900 
   15.1400 
   14.9000 
 

As we have verified that the Hilbert command has indeed produced an analytic signal with complex 

elements, we may now use Matlab commands, 𝑎𝑏𝑠 and 𝑎𝑛𝑔𝑙𝑒 to find the absolute vaue (the 

amplitude) and the phase of the signal 𝑧(𝑡) respectively.    

Let us begin with finding the amplitude: 

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%Let us now use the Matlab command abs to plot the ampltude of the complex 

%signal 

figure 

plot(Time,NordPoolElecPrices)%Plotting the orginal signal to check whether 

%the amplitude envlopes it. 

hold on 

plot(Time,abs(z)) 

hold off 

title('Amplitude of the Nord Pool electricity prices') 

Output of the first three terms of the signal 

𝑧(𝑡) which are all elements of ℂ 

Output of the first three terms of the signal 𝑥(𝑡) 

which are all elements of ℝ 
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xlabel('Time') 

ylabel('Electrcity Prices (EUR/MWh)') 

 

 

Figure 21: Amplitude of the Nord Pool electricity prices signal using Hilbert command. Published with 

MATLAB® R2017b 

We mentioned earlier that the financial time series was non-periodic. In figure 21, the amplitude is 

highlighted in orange, while the signal is emphasised by the blue curve. Due to the real data set not 

having periodicity, the amplitude is not a perfect envelope of the signal. This is due to the real data 

set having many extreme points, and an envelope is a smooth curve which outlines the extremes of 

the signal. However, the main purpose of the amplitude has been achieved, which is to highlight the 

extreme value of the financial time series. 

Let us now continue to extract the phase of the signal using the following Matlab command: 

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating the time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%Let us now plot the instantaneous phase of the complex signal using 
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%Matlabs angle command 

figure 

plot(Time, angle(z)) 

title('Instantaneous Phase of complex signal') 

xlabel('Time') 

ylabel('Phase') 

 

 Figure 22: Instantaneous Phase of the complex signal. Published with MATLAB® R2017b 

As you can see from figure 22, the phase angle jumps in absolute value whenever the angle increases 

by 𝜋. Using the unwrap command in Matlab, which was mention in section 3.2, we may ‘untangle’ the 

phase angle and plot it in a manner which can be analysed. The Matlab code below demonstrates who 

to use the unwrap command: 

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%plotting the instantaneous phase using Matlab's unwrap command 

figure 



43 
 

plot(Time, unwrap(angle(z))) 

title('Instantaneous Phase using unwrap command') 

xlabel('Time') 

ylabel('Phase') 

 

Figure 23: Instantaneous Phase of the complex signal using unwrap command. Published with 

MATLAB® R2017b 

Now looking at the phase in figure 23 you must be thinking how is this different to the phase plot 

shown in figure 22. On the first attempt of analysing, the phase may just seem like squiggles on a 

graph! However, why don’t we try to plot the graph of the orginal financial time series, highlighted by 

the blue oscillating function, alongside the instantaneous phase, highlighted by the orange line, as 

shown in figure 24. 
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Figure 24.1: Graph of instantaneous phase and Nord Pool electricity signal. Published with MATLAB® 

R2017b 

Observing figure 24.1, we are now able to study the phase of the signal. In order to anaylse the phase, 

we will pick extreme observations, as indicated on the financial time series, and study the 

corresponding phase in order to deduce whether or not the phase of the signal revels any information 

about the occurrence of these particular events. In figure 24.1, each of the extreme observations have 

been labelled in the order they are analysed.  

The first extreme observation studied occurred on the 24th January 2000. Figure 24.2 below, shows us 

the electricity prices and the phase value between the 31st December 1999 to the 25th February 2000. 

Between the 31st December 1999 and 14th January 2000, the electricity prices are fairly periodic, and 

the corresponding phase value during this period is a fairly straight line. However, after this period we 

analyse an unusual, but interesting piece of information in the phase of the signal. Up to the 23rd 

January 2000, the phase of the signal seems to be quite constant, however on the 24th January 2000 

we see a rapid increase in electrcity prices. This rapid increase in electricity prices caused a disturbance 

in the phase of the signal. This distrubance is known as a phase slip. The phase slip occurred on the 

24th January at 07:00 and stabilised on the 25th January at 19:00. We observed a peak price of 

electricity on the 24th January at 09:00. Electricity prices stablised on the 26th January at around 00:00. 

Gathering this information, we observed a phase slip which lasted for 36 hours, around 2 hours before 

the electricity prices hit a peak of 224.60 EUR/MWh. As we can see, once the electricity prices 

stabilised, the phase of the signal returns to being a fairly straight line. We must analyse further 

extreme observations in the Nord Pool data set, in order to have evidence to suport our results. 

 

 

1 

2 3 

4 

5 
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Figure 24.2: Analysis of the first extreme observation. Published with MATLAB® R2017b 

The second extreme observation studied occurred on the 5th February 2001 at 09:00. This was the 

highest price electricity has been traded at on the Nordic market between the 1st January 1999 and 

the 26th January 2007. Figure 24.3 below, shows us the electricity prices and the phase value between 

the 19th January 2001 and 23rd February 2001. Between the 19th January 2001 and 2nd February 2001, 

the electricity prices are oscillating with some periodicity, and the corresponding phase value during 

the period is a fairly stright line. However, on the 2nd February 2001, there is a rapid increase in price 

at which electricity was traded at. This rapid increase caused a phase slip. In figure 24.3, we observe 

two distinct phase slips. The first occurred on the 2nd February at 08:00 and stabilised on the 3rd 

February at 02:00, and the second occurred on the 5th February at 07:00 and stabilised on the 6th 

February at 20:00. Comparing this to the peak prices, the first peak in electricity prices appeared on 

the 2nd February at 09:00, which is preciely an hour after the first phase slip. The second peak occurred 

on the 5th February at 09:00, which occurred 2 hours after the second phase slip was observed. Even 

after 2 observation, it is not enough to conclude our results. Let us take a look at further extreme 

observations in electricity prices in order to establish as pattern. 

Phase slip 

Unexpected rise in 

Nord Pool electricity 

prices. 
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Figure 24.3: Analysis of the second extreme observation. Published with MATLAB® R2017b 

Observing the data between July 2002 and May 2003, we examine electricity prices to be slowly 

increasing and decreasing as the weather changes. During the colder months, electricity is traded at a 

higher price, than during the warmer months. Between December 2002 and February 2003, we notice 

the electricity prices fluctuate as they increase and then decrease, with two distinct peaks observed 

during the period; as shown in figure 24.4. The rate at which prices are changing is not dramatic, as 

we can see electricity prices gradually increase and decrease, and this has been reflected in the phase 

of the signal. Between December 2002 and February 2003, there has been no evidence of the 

occurence of a phase slip, even though we have seen large fluctuations in electricity prices.   

However, electricity prices saw an unxpected rise on the 6th February 2003 at 09:00 which then peaked 

at 129.80 EUR/MWh on the 6th February at 18:00; which can be clearly seen in figure 24.5. A phase 

slip was first recorded on the 6th February at 07:00, which was 2 hours before the unexpected rise, 

and lasted till the 6th February at 20:00. Druring this period, the phase saw a further depreciation in 

its value on the 6th February at 17:00, which was an hour before the the electricity prices peaked at 

129.80 EUR/MWh. Comapring this to the results found earlier, we are starting to notice that the phase 

slips mainly occur around a few hours before we see the electrcitity prices to peak or increases to an 

unexpected price. 

Fist phase slip  Second phase slip 

First unexpected peak in 

electricity prices  

Second unexpected peak 

in electricity prices  
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Figure 24.4: Analysis of the fluctuations of electricity between December 2002 and January 2003. 

Published with MATLAB® R2017b 

 

Figure 24.5: Analysis of distinctive unexpected rise in Nord Pool electricity prices on the 6th February 

2003. Published with MATLAB® R2017b 

Before any conclusions are made, I wish to observe the phase of the signal when there is an 

unexpected depreciation in electricity prices. Studying the time series between January 2004 and 

January 2005, as shown in figure 24.6, rather than having an extreme increase in electricity price; the 

opposite has occurred. As you can see from the time series, on three occasions we observe an 

Two distinct peaks 

observed 

No evidence of occurrence of an extreme phase slip 

Unexpected rise in 

electricity price 

Phase slip 
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unexpected decrease in electricity prices. Studying the corresponding phase of the signal, we may 

clearly see the phase slip which occurs on all three individual events. Analyisng the middle trough 

closely, as shown in figure 24.7, we see a distrubance in the phase. During this period the electricity 

prices are at a minimum of 4.64 EUR/MWh on the 18th July 2004 at 08:00. A dramatic increase in the 

phase is detected on the 17th July at 23:00, which then peaks on the 18th July at 03:00 and then rapidly 

decreases to a minimum on the 18th July at 08:00, the same time the electricity prices hit a minimum 

during this period. A similar pattern also occurred in May 2004 as shown in figure 24.8. 

 

Figure 24.6: Dpreciation in Nord Pool electricity prices occurring between January 2004 and Jan 2005. 

Published with MATLAB® R2017b 

Figure 24.7: Analysis of the middle trough on figure 17. Published with MATLAB® R2017b 

Unexpected decrease in 

Nord Pool electricity prices. 

Occurrence of phase 

slips on three 

individual events 

Disturbance in 

the phase of the 

signal 

Electricity prices 

decreasing 

unexpectedly 
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Figure 24.8: Showcasing similar phase slip pattern in May 2004, when Nord Pool electricity prices 

depreciates. Published with MATLAB® R2017b 

Studying the time series has allowed us to identify a disturbance in the phase slips which has provided 

us with useful information in regards to the observations of extreme events in the Nord Pool electricity 

prices time series. 
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5.0 Conclusion  

In this thesis, our aim was to discover if there exist some information in the phase of an analytic signal, 

which would allow one to predict or indicate the occurrence of any extreme events. We used the Nord 

Pool data set which contained the hourly prices of electricity at which they traded at across 7 years 

from 1st January 1999 to 26th January 2007. In this thesis, we assumed, that electricity is a non-storable 

commodity as well as the time average has been subtracted so the signal has a zero average. 

We explored techniques brought to us from Electrical Engineering and applied it to a financial time 

series. In doing so, we were able to analyse the phase of the financial time series containing the Nord 

Pool electricity prices and discover some unusual but interesting information, which was embedded 

in the phase. Over the 5 extreme observations studied, we found the occurrence of phase slips, 

indicated by a disturbance in the phase, in the neighbourhood of these critical events. Moreover, we 

found that the phase slips occurred a few hours before the price of electricity peaked, in each of the 

cases studied. In either case, whether the electricity prices dramatically increased or decreased, the 

phase gave indication as to massive change in the price. 

However, in this thesis, we analysed a time series for a specific type of commodity which has unique 

characteristics. Before, we make a definite deduction that the phase of a signal for sure provides 

information regarding critical events, we may need to further our research and consider different 

factors.  

In future work, I would like to consider, firstly if we can apply this methodology to all financial time 

series of commodities which are both storable and non-storable? Secondly, does having a signal with 

a non-zero average give us the same results as we found in this thesis? Lastly, the most important 

factor which would require further research, is there a definite time period in which one would expect 

to see the occurrence of these phase slip before the existence of critical events, and how will we able 

to implement such method of extracting the phase of a signal to live data prices extracted from the 

current markets. 
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6.0 Appendix 

An appendix contains the Matlab code used to produce graphs and output which has been explained 

in this thesis. Each figure below corresponds to a figure which can be found in the main body of the 

thesis. 

Figure 3: Nord Pool Hourly Electricity Prices 

%Let us begin by plotting the Nord Pool electricity prices as a fiancial 

%time series 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows and save this as Time. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Let us now plot the financial time series of Nord Pool electricity prices. 

figure 

plot(Time,NordPoolElecPrices) 

title('Nord Pool Hourly Electriciy Prices') 

xlabel('Time') 

ylabel('Electrcity Prices (EUR/MWh)') 

Figure 4 has been obtained by using in the ‘zoom in’ and ‘zoom out’ functions, provided by Matlab, 

on the graph produced by the code above. 

Figure 6: Displacement of object in SMH 

%Let us plot an example of the displacement of an object in Simple Harmonic 

%Motion. 

t=0:1e-4:50; 

%t is the time dependent variable which will vary from 0 to 50 

%measured in seconds 

 

%Now we wish to plot the displacement of the object, which we will assume 

%follows a sine curve. 

 

figure, plot(t,sin(t)), title('Displacement of object in SMH') 

xlabel('Time') 

ylabel('Displacement') 

Figure 7: Graph of 𝑥(𝑡) = sin (6𝑡) and 𝑥(𝑡) = sin (𝑡) 

%here we wish to produce an example of a simple harmonic function. 

%we will plot the function x(t)=sin(wt) 

 

t=0:1e-4:2*pi; 

%The variable t is the time dependent variable. 

%In this example we will assume w is 6. 

 

figure, plot(t, sin(6*t)) 

hold on 

plot(t,sin(t)) %let us plot the function sin(t)in order to compare the phase 

hold off 

title('Graph of x(t)=sin(6t) and x(t)=sin(t)') 
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xlabel('Time, t') 

ylabel('x(t)') 

Figure 8: Graph of signal 𝑥(𝑡) 

%Here we wish to plot the signal 

%x(t)=0.5cos(0.9t)+1.5cos(1.1t) 

 

%let the variable t be the time dependent variable 

%For this purpose we shall restrict the value of t from 0 to 500. 

t=0:1e-4:500; 

 

%let us define the signal x(t) 

x= (0.5*cos(0.9*t)) +(1.5*cos(1.1*t)); 

 

%plotting the graph 

figure, plot(t,x) 

title('Graph of signal x(t)') 

xlabel('Time, t') 

ylabel('Signal, x(t)') 

Figure 9: Graph of signal 𝑥(𝑡) with Amplitude enveloping 

%Here we wish to plot the signal 

%x(t)=0.5cos(0.9t)+1.5cos(1.1t) 

 

%let the variable t be the time dependent variable 

%For this purpose we shall restrict the value of t from 0 to 500. 

t=0:1e-4:500; 

 

%let us define the signal x(t) 

x= (0.5*cos(0.9*t)) +(1.5*cos(1.1*t)); 

 

%Defining our new analytic signal: 

z= 0.5*exp(1i*0.9*t) + 1.5*exp(1i*1.1*t); 

%Now we can plot our orginal signal x and over lap it with the amplitude 

%A(t) which we have calculated to check whether the amplitude is indeed 

%enveloping the signal. 

 

%Defining A(t) in steps: 

s= power((1+ (0.5/1.5)*cos((1.1-0.9)*t)),2); 

d= power((0.5/1.5)*sin((1.1-0.9)*t),2); 

A=1.5* sqrt(s+d); 

 

%Now plotting graph and amplitude on the same axis 

figure 

plot(t,A) 

hold on 

plot(t,x) 

hold off 

xlabel('Time, t') 

ylabel('Signal, x(t)') 

title('Graph of signal x(t) with Amplitude enveloping') 
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Figure 10: Graph of Instantaneous Phase of signal 𝑥(𝑡) without using unwrap command 

%Here we wish to plot the signal 

%x(t)=0.5cos(0.9t)+1.5cos(1.1t) 

 

%let the variable t be the time dependent variable 

%For this purpose we shall restrict the value of t from 0 to 500. 

t=0:1e-4:500; 

 

%let us define the signal x(t) 

x= (0.5*cos(0.9*t)) +(1.5*cos(1.1*t)); 

 

%Defining our new analytic signal: 

z= 0.5*exp(1i*0.9*t) + 1.5*exp(1i*1.1*t); 

 

%let us plot the phase, which is the arg(z) using no unwrap command 

figure, plot(t, angle(z)) 

title('Graph of Instantaneous Phase of signal x(t)') 

xlabel('Time, t') 

ylabel('Phase') 

 

Figure 11: Graph of Instantaneous Phase of signal 𝑥(𝑡) using unwrap command 

%Here we wish to plot the signal 

%x(t)=0.5cos(0.9t)+1.5cos(1.1t) 

 

%let the variable t be the time dependent variable 

%For this purpose we shall restrict the value of t from 0 to 500. 

t=0:1e-4:500; 

 

%let us define the signal x(t) 

x= (0.5*cos(0.9*t)) +(1.5*cos(1.1*t)); 

 

%Defining our new analytic signal: 

z= 0.5*exp(1i*0.9*t) + 1.5*exp(1i*1.1*t); 

 

 

%let us plot the phase, which is the arg(z) using unwrap command 

figure, plot(t, unwrap(angle(z))) 

title('Graph of Instantaneous Phase of the signal x(t)') 

xlabel('Time, t') 

ylabel('Phase') 

Figure 12 has been obtained by using in the ‘zoom in’ and ‘zoom out’ functions, provided by Matlab, 

on the graph produced by the code above. 

Figure 13: Simple harmonic signal 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 
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%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%Let us plot the signal x(t) 

figure, plot(t,x) 

title('Simple harmonic signal') 

xlabel('Time') 

ylabel('Signal value at each time interval') 

Figure 14: Matlab code to produce an analytic signal of 𝑥(𝑡) using Hilbert command 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

%implementing Matlab's Hilbert command in order to extract the analytic 

%signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us check the output of signal z are complex numbers 

z(1:3) %This command is asking Matlab to display first 3 values of signal z 

 

%We may compare this to the first 3 values of the original real valued 

%signal 

x(1:3) 

 

Figure 15: Amplitude of the signal extracted using the Hilbert command 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us now use the Matlab command abs to plot the ampltude of the signal 

figure 

plot(t,x) %Plotting the orginal signal to check whether the amplitude envlopes it. 

hold on 

plot(t,abs(z)) 
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hold off 

title('Amplitude of the signal x(t)') 

xlabel('Time') 

ylabel('Signal value at each time interval') 

Figure 16: Instantaneous Phase: 

%Let us show an example of the application of the Hilbert command 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%Let us now plot the instantaneous phase of the signal using Matlabs angle 

%command. 

figure 

plot(t, angle(z)) 

title('Instantaneous Phase') 

xlabel('Time, t') 

ylabel('Phase') 

 

Figure 17: Instantaneous Phase using unwrap command 

%Let us show an example of the application of the Hilbert function 

%on a discrete-time signal x(t), where t is the time dependent variable 

 

%First we shall define the time period on which the simple harmonic 

%function will be defined on 

t=0:1e-4:500; %1e-4 is Matlab code for 0.0001 

 

x=0.5*sin(0.9*t)+1.5*sin(1.1*t); 

 

%implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(x); 

 

%plotting the phase using Matlab's unwrap command 

figure 

plot(t, unwrap(angle(z))) 

title('Instantaneous Phase') 

xlabel('Time') 

ylabel('Phase') 
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Figure 18 has been obtained by using in the ‘zoom in’ and ‘zoom out’ functions, provided by Matlab, 

on the graph produced by the code above. 

 

Figure 19.1: Nord Pool Hourly Electricity Prices 

%Let us begin by plotting the Nord Pool electricity prices as a fiancial 

%time series 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows and save this as Time. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Let us now plot the financial time series of Nord Pool electricity prices. 

figure 

plot(Time,NordPoolElecPrices) 

title('Nord Pool Hourly Electriciy Prices') 

xlabel('Time') 

ylabel('Electrcity Prices (EUR/MWh)') 

Figure 19.2-19.5 have all been obtained by using in the ‘zoom in’ and ‘zoom out’ functions, provided 

by Matlab, on the graph produced by the code above. 

Figure 20: Matlab code to produce an analytic signal of the financial time series using Hilbert 

command 

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

z=hilbert(NordPoolElecPrices); 

%Let us check the output of the signal z are complex numbers 

z(1:3) %This command is asking Matlab to display first 3 values of signal z 

 

%We may compare this to the first 3 values of the original real valued 

%signal(which is the first 3 prices from the data set) 

NordPoolElecPrices(1:3) 

 

Figure 21: Amplitude of the Nord Pool electricity signal using Hilbert command 

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 
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z=hilbert(NordPoolElecPrices); 

 

%Let us now use the Matlab command abs to plot the ampltude of the complex 

%signal 

figure 

plot(Time,NordPoolElecPrices)%Plotting the orginal signal to check whether 

%the amplitude envlopes it. 

hold on 

plot(Time,abs(z)) 

hold off 

title('Amplitude of the Nord Pool electricity prices') 

xlabel('Time') 

ylabel('Electrcity Prices (EUR/MWh)') 

Figure 22: Instantaneous Phase of the complex signal  

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating the time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%Let us now plot the instantaneous phase of the complex signal using 

%Matlabs angle command 

figure 

plot(Time, angle(z)) 

title('Instantaneous Phase of complex signal') 

xlabel('Time') 

ylabel('Phase') 

Figure 23: Instantaneous Phase of the complex signal using unwrap command  

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating a time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%plotting the instantaneous phase using Matlab's unwrap command 

figure 

plot(Time, unwrap(angle(z))) 

title('Instantaneous Phase using unwrap command') 

xlabel('Time') 

ylabel('Phase') 
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Figure 24.1: Graph of instantaneous phase and Nord Pool electricity signal.  

%Let us begin by creating the Nord Pool electricity prices as a financial 

%time series by creating the time variable. 

%The time vaiable will be stored as 'time'. We must insure to transpose the 

%variable as Matlab will store this as rows. We shall save the transposed variable as ‘Time’. 

time=datetime(1999,1,1,1,0,0):hours(1):datetime(2007,1,27,0,0,0); 

 

%Implementing Matlab's Hilbert command in order to extract the time 

%dependent complex signal which will be defined by z 

 

z=hilbert(NordPoolElecPrices); 

 

%plotting the phase using Matlab's unwrap command and the orginal time 

%series on the same graph 

figure 

plot(Time, NordPoolElecPrices) 

hold on 

plot(Time, unwrap(angle(z))) 

hold off 

title('Instantaneous Phase and orginial Nord Pool electricity ') 

xlabel('Time') 

ylabel('Phase') 

Figure 24.2-24.8 has been obtained by using in the ‘zoom in’ and ‘zoom out’ functions, provided by 

Matlab, on the graph produced by the code above. 
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7.0 Glossary 

Throughout the thesis, we have used some financial terms which are explained in more depth below.  

Ask Price: This is the price at which the seller of a financial instrument is willing to accept for their 

goods or services. The ask price is referred to as the offer price [Boyle, 2018]. 

Backwardation: A market is said to be in backwardation, when the futures spot price is less than the 

expected future spot price. Speculators who are in a long position want the markets to be in 

backwardation as they want the futures prices to increase [Ventimiglia, 2018]. 

Bid price: This is the highest price a buyer (also known as the bidder) is offering to pay for the financial 

instrument [Boyle, 2018]. 

Bid-ask spread: A bid-ask spread (or the bid-offer spread) is the difference in price at which a market 

maker is willing to buy an asset from the opposing party or sell it to an opposing party [Boyle, 2018]. 

Broker: A broker is an individual or a brokerage firm that arranges transactions between buyers and 

sellers and in return receives a commission when the deal is executed [Boyle, 2018]. 

Clearing house: A clearing house is a separate entity from the market participants buying or selling 

the assets. They are set up to enhance market participants assurance against failure to pay on behalf 

of the losing counterparties. In other words, a clearing house reduces the risk of any clearing firm 

failing to honour its trade settlement obligations [Boyle, 2018]. 

Contango: A market is said to be in contango, when the futures prices are greater than the expected 

future spot price. When the market is in contango, futures prices are falling over time as new 

information brings them in line with the expected future spot price [Ventimiglia, 2018]. 

Convenience Yield: This is the benefit for a user to hold an underlying asset rather than a contract or 

a derivative product on the underlying asset [Boyle, 2018]. 

Day-ahead market: A day-ahead market is where one can buy or sell a financial contract which has a 

maturity date of the following day. [Boyle, 2018] 

Derivative: Also known as a financial derivative, is an economic contract whose value depends on the 

value of another instrument or underlying asset [Boyle, 2018]. 

End user market: An end user market is a place where an individual or a small institution are able 

purchase goods for their personal use. 

Forward Contract: A forward contract is a non-standardised contract between two parties to buy or 

sell an asset at a specified future time at a price agreed upon today. Forward contracts are private 

contracts; thus, they do not trade on an organised exchange and the contract specifications are 

customised according to the parties involved [Boyle, 2018]. 

Futures Contract: A futures contract is a standardised financial contract obligating the buyer to 

purchase an asset, and the seller to sell an asset at a predetermined date and price. The contract must 

specify the quality and quantity of the underlying asset. Futures contracts are traded on a futures 

exchange and the contract may call for physical delivery of the asset (or even cash-settled) [Boyle, 

2018]. 
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Hedge: Hedging refers to all trading activity that reduces risk and minimises unwanted financial 

exposure or neutralises portfolio risk. A “well-hedged book” is a portfolio that should experience very 

few gains or losses regardless to the movement of the market [Boyle, 2018]. 

Intraday market: An intraday market is a trading platform where the buyer or seller of the financial 

contract must complete all transactions on the same day before the market closes [Boyle, 2018]. 

Long-term futures: Also known as long futures, is a type of financial contract which is used when the 

company will have to buy the underlying asset in the future [Boyle, 2018]. 

Market maker: A market maker is a company or an individual that quotes both a buy and a sell price 

of a financial instrument, hoping to make a profit on the bid-offer spread [Boyle, 2018]. 

Mark-to-market: This is the fair value of a financial instrument which has the ability to change over a 

period of time [Investopedia, 2018]. 

Physical power contract: This is essentially a contract for the physical delivery of electricity for the 

following day [Boyle, 2018]. 

Portfolio: A portfolio is composed of a range of investments held by a person or an organisation. 

[Zachariadis, 2017] 

Security: A financial instrument, such as goods or assets, which holds a value and the property that 

the asset or goods can be swapped with other assets or goods which possess an equivalent value 

[Investopedia, 2018]. 

Single market: A single market is a trading bloc, consisting of countries, in which policies and 

regulations which have been put in place to remove border tariffs on goods traded between these 

countries. The Nord Pool market is an example of a single market [Boyle, 2018]. 

Spot price: This is the current prevailing value of any goods or services on the market [Boyle, 2018]. 

Trader: An individual or an institution such as an investment bank, who partake in the financial 

markets by either buying or selling financial instruments [Boyle, 2018]. 
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