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Abstract

The spot prices of electricity and the corresponding logarithmic returns provided by the

Nord Pool exchange are analysed. Tests for mean, normality and stationarity are conducted.

Some economic aspects, such as the dynamics of demand and supply of electricity in the

Nordic European countries, and mean reversion are discussed by means of trends in the

autocorrelation function. Attention is also devoted to the analytic rate of the decay of the

autocorrelation function. Finally, the “on-off intermittency” behaviour of the logarithmic

returns is studied and specific focus is paid to the probability distribution of laminar phases.
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Chapter 1

Introduction

Electricity is extremely different to traditional financial instruments and other commodities

such as oil, grains, and metals. The main difference is that the former cannot be stored. As

a consequence, electricity cannot simply be manufactured, transported and delivered. [14]

Therefore, it has to be consumed immediately after it is produced and, in this sense, it can

be considered more as a service than a good. This property makes the electricity market

highly volatile and it is not surprising to observe a large number of extreme price movements.

Another consequence of the non-storability of energy is a strong seasonality pattern in the

data, which is discussed in further detail later. These problems also make it more difficult to

price derivatives with electricity spot prices as the underlying. [1]

In electricity markets, a delicate balance between demand and supply must always be main-

tained in order to set spot prices in equilibrium. However, in practice, it is very difficult

to steadily maintain such a balance. The supply stack is characterised as the ranking of all

production units of a specific commodity in a given area. “Electric power is usually generated

from natural gas, coal, oil, nuclear fuel, falling water, geothermal steam, alternative resources

such as cogeneration and from renewable resources such as wind power, solar energy, and

biomass.” [14]

The supply stack has a dynamical nature and changes over time since there are many factors

that influence it. The demand for electricity, on the other hand, is largely weather depen-

dent. It presents seasonal fluctuations, which are due to climate conditions and the need for

electricity at a specific hour of the day. In Europe, the highest demand usually occurs in the

winter due to excessive heating. In other geographical regions, like the southern states in the

US, demand is at its highest in the summer since humidity and heat are the main reasons for
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CHAPTER 1. INTRODUCTION 6

the excessive use of air-conditioning. [17]

In general, before the nineties, organizations employed long-term fixed price contracts for

electricity. Those contracts, however, were over-the-counter, implying they were very inflex-

ible and difficult to exit, once entered. Therefore, these organisations became increasingly

exposed to price fluctuations. They had to hedge and trade electricity in a speculative way

to tighten their exposure to price risk. In Norway, there was a need to get rid of the above-

described issues. For this purpose, in 1991, the Norwegian parliament decided to deregulate

the market for the trading of electrical energy. In this way, consumers could buy energy from

other sources than their local provider. [11]

Norway was the first Nordic country which deregulated its power markets. The Energy Act of

1991 formed the basis for the deregulation of the power industry and as a consequence, other

Nordic countries employed the same strategy. From this, a global trend started regarding the

commoditization of electric energy. [14]

The deregulation enabled electricity to be traded in the same way as the other commodities,

with risk management and trading as the main tools to run a successful business. [15]

In 1993, a Norwegian commodity exchange for electric power named Statnett Marked AS was

established as an independent company. This provided the possibility to enter short- and

long-term electricity contracts in addition to contracts for next-day or immediate physical

delivery. [11]

The total volume during the first operating year was 18.4 TWh, at a value of NOK 1.55

billion.1

Between 1992 and 1995 only Norway contributed to the market and in 1996 Norway and Swe-

den set up a common market for power. To expand its area of operations, Statnett Marked

AS established a joint Norwegian-Swedish power exchange, which was renamed Nord Pool

ASA. Svenska Kraftnt, an electricity transmission system operator in Sweden, became co-

owner of Nord Pool ASA, which meant Statnett and Svenska Kraftnt each owned 50 percent

of the Nordic power exchange and operated a common power exchange for the Nordic region.2

In January 1998, it was estimated that of all trade in electric power in these two countries,

around 25 percent was managed by Nord Pool. The majority of the electricity trade was still

being organized as bilateral contracts between producers and consumers.

In general, the large industrial electricity consumers are more worried about unexpected in-

creases in spot prices, whereas electricity producers are more concerned with large price drops

1Please refer to “History” at http://www.nordpoolspot.com/ for additional information.
2Please refer to the “Brief history” at http://www.statnett.no/en/ for additional information.

http://www.nordpoolspot.com/
http://www.statnett.no/en/


CHAPTER 1. INTRODUCTION 7

than large price increases. The trading in futures and forward contracts would enable the

above-mentioned actors to hedge their power portfolios and minimize the potential negative

effect of an adverse fluctuation in electricity prices. [1]

For this purpose, electricity futures contracts began trading in Nord Pool, which was already

the worlds most mature Scandinavian power market. It was then followed by the US NYMEX

and the Australian/New Zealand markets. [16]

“Finland started a power exchange market of its own, EL-EX, in 1996 and joined Nord Pool

in 1997”. On the 15th of June 1998, Finland became an independent price area in the Nord

Pool Exchange. Consequently, Denmark also joined the exchange between 1999 and 2000. [4]

At this time, after standard electricity options had already appeared in the NYMEX in 1996,

Nord Pool introduced for the first time exchange traded Asian options on electricity futures.

[16]

Over the years, Nord Pool expanded its activities and included even more participants, such as

The Netherlands, the United Kingdom, Germany and the US. However, only the Norwegian

and Swedish markets were fully integrated. [1]



Chapter 2

Data of Nord Pool

2.1 Empirical findings and contributions

After the deregulation of power markets, spot prices and returns of electricity have interested

many researchers due to their contrast with traditional financial instruments. In particular,

features such as price jumps, volatility, seasonality and mean reversion are recurrent in elec-

tricity markets.

The non-storability of energy is the main reason for extreme movements in prices. To measure

and characterize the nature of such fluctuations, Byström [1] attempted to model electricity

price changes with peaks-over-threshold and block-maxima methods. He applied these meth-

ods to the normal returns of spot prices from 1996 to 2000 using a combination of autoregres-

sive model with a generalized autoregressive conditional heteroscedasticity (GARCH) model.

He found that returns are highly not normally distributed with a large number of extreme

observations. Weron et al. [15] applied regime switching models to the logarithm of the spot

prices from 1997 to 2000, and confirmed the presence of jump behaviour.

Perelló et al. [9] used diffusion entropy analysis to logarithmic returns from 1992 to 2004.

The method consists of converting the time series into a sort of probability density func-

tion and find a scaling exponent which may explain the nature of a spiky behaviour in the

time series. They applied this method to a constructed stochastic process based on returns

which are higher than a given threshold. By applying the above-mentioned technique, they

demonstrated that the scaling parameters of the Nordic electricity spot prices are similar to

those of the Dow-Jones and the US Dollar-Deutsche Mark futures. Simonsen [12] analysed

the volatility of the logarithmic returns of Nord Pool from 1992 to 2004. He discovered that
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CHAPTER 2. DATA OF NORD POOL 9

the level of the daily volatility of the power market is 16%, which is very high compared to

other traditional financial markets such as the stock and bond market. This is again because

electricity cannot be stored in an efficient manner.

The mean reversion is another issue which interested several researchers. Such a property

means that a market variable tends to revert to some long-term average level. In general, it

is observable for instance in interest rates and commodities, particularly energy products. A

reason for this is that once the prices of electricity increase, it will normally be consumed less

and produced more, causing disequilibrium. This reduces the prices. On the contrary, as the

price of electricity drops, it will probably be consumed more, but for the supply side, it will

not be economically advantageous. This will cause the prices to increase. ([7], page 804)

Weron, Simonsen, and Wilman [17] applied the “Average Wavelet Coefficient” method to

the spot prices of Nord Pool from 1992 to 2000, which highlighted that the time series is

mean reverting. Very similar methods were used for the same set of data by Simonsen in

the paper [11] with matching results. The mean reversion has also been found by Weron,

Bierbrauer, and Truck [15] with regime switching models, for the years 1997 to 2000. This

property seems to be present not only in Nord Pool but also internationally when considering

electricity. Indeed, Weron, and Przybylowicz [14] discovered mean reversion for electricity

prices of the Californian (CalPX) and Swiss (SWEP) exchanges using Hurst analysis. In the

paper [16] by Weron, the autocorrelations of the lagged differences of the logarithmic returns

of CalPX confirmed the mean reversion. Finally, Erzgräber et al. [4] analysed the hourly

logarithmic returns of Nord Pool from 1992 to 2007 and attempted to determine whether the

data presents long-range correlations using Hurst exponents. Without going into too much

detail, such an analysis consists of computing the so-called R/S ratio and finding a specific

power law which such a ratio should present. The ratio should behave as R(τ)/S(τ) ∼ τH ,

where τ is a time window of the series considered, and H is the Hurst exponent. The ideal

case would be H = 1/2, meaning the series is a Brownian Motion, whereas if H < 1/2 or

H > 1/2 the increments are anti-correlated or positively correlated, respectively. In this case,

they did not find consistent and unequivocal results, since for different time ranges the Hurst

exponent was different. For instance, exponents of 0.44, 0.33 and 0.23 were found for different

time frames. These results showed that the time series is mainly anti-persistent. However, it

was not possible to recognize a single Hurst exponent.
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2.2 Description of the data

In this dissertation, data provided by the spot market operated by Nord Pool will be analysed

with the statistical programming language R. For further details there is a section of the

Appendix where the code applied to the data is shown.

As previously introduced, Nord Pool is an exchange market where participants trade power

contracts for physical delivery the next day. Therefore, it is a short-term (one day) futures

market. [1]

Elspot is the Nord Pool auction market which enables to trade electricity contracts. Players

who want to buy/sell power on the Elspot market must send their purchase orders/sale offers

to Nord Pool Spot the day before the power is delivered. The purchase orders and the sale

offers are aggregated to demand and supply curve, respectively. The intersection of the two

curves gives the market price for one specific hour. At noon, in the offices of Nord Pool in

Oslo, computers calculate and publish the day-ahead prices. At the same time, they report

to participants how much electricity they have bought or sold for each hour of the following

day.1

In addition to being an indicator of the current price for electricity, spot prices are also crucial

for the pricing of derivatives. Forwards, futures, and options on electricity are traded in Nord

Pool. When electricity spot prices serve as the underlying for these derivatives, they are

usually collected over time; daily, weekly and monthly prices are computed from the hourly

prices. [1]

There are 70,752 hourly spot prices, from which 70,751 hourly logarithmic returns can be

calculated. From here, the 70,751 observations are denoted as n∗. Note that in one week and

one year there are approximately 176 and 8,766 observations respectively. The analysis will

focus on these returns, which are computed as

r∆(t) = ln(S(t)/S(t−∆)),

where t ∈ {1, 2, . . . , n∗} is a specific hour inside the time frame between 01/01/1999 and

26/01/2007 and S(t) denotes the spot price at hour t. From now on, the distance between

hours will be ∆ = 1 and the analysis will focus on the logarithmic returns r(t) = r1(t).

In Figure 2.1 a time plot, which shows the data on the y-coordinate and the time index on

1For additional information on this, please refer to pages 9 and 10 from the following booklet called

“The Nordic electricity exchange and the Nordic model for a liberalized electricity market” from Nord

Pool’s official website.

http://www.nordpoolspot.com/globalassets/download-center/rules-and-regulations/the-nordic-electricity-exchange-and-the-nordic-model-for-a-liberalized-electricity-market.pdf
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the x-coordinate, is shown. The electricity prices S(t) are quoted in e/MWh (Megawatt

hour). In general, it may be useful to determine whether there is a trend and seasonality to

Figure 2.1: Top: Hourly spot electricity prices. Bottom: Hourly logarithmic returns

from January 1999 to January 2007.

make predictions and create an adjusted set of data for simplicity purposes. A model which

decomposes the spot prices in the trend and seasonality component is the following:

S(t) = m(t) + s(t) + ε(t),

where at time t ∈ {1, 2, . . . , n∗}, S(t) is the spot price, m(t) is the trend, s(t) is the seasonal

effect and ε(t) is the remainder or residual series. This is also known as the classical decom-

position model.

In order to perform a decomposition of the spot prices, first of all the trend m(t) is estimated

using a moving average over the years. This means that in the case of hourly data, with 8,766

observations per year, the yearly trend is estimated as:

m̂(t) =
r(t− 8766) + r(t− 8765) + · · ·+ r(t) + r(t+ 1) + · · ·+ r(t+ 8766)

8766
.
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Figure 2.2: Decomposition of trend, seasonal and random components of electricity

spot market prices.

In the Appendix, Figure C.1 shows how the daily, weekly and yearly trend calculated with

moving averages for a better understanding and visualisation of the data.

To have a reliable estimation of the seasonal effect ŝ(t), first one has to find

ŝ(t) = r(t) − m̂(t). Then, by taking the average of the values for each season, it is possible

to estimate a single component. For instance, for weekly data there may be n observations

ŝ(i), ŝ(168 + i), . . . , ŝ(168(n− 1) + i) for each week i, which can be combined to estimate the

single weekly seasonal component as

s̄(i) =
ŝ(i) + ŝ(168 + i) + · · ·+ ŝ(168(n− 1) + i)

n
.

Finally, the residual ε(t) can be obtained by subtracting the trend m̂(t) and seasonal compo-

nents s̄(t) from the original spot prices S(t). An alternative to finding the estimators described

above is to fit a polynomial of order q, i.e.:

m̂(t) = α0 + α1t+ α2t
2 + · · ·+ αqt

q

where α0, α1, . . . , αq are estimated coefficients. If q = 1, this model reduces to a linear

regression, which will be used later in the analysis.

In Figure 2.2 the decomposition of the logarithmic returns can be observed; the trend and

seasonal components have been estimated using methods based on moving averages. ([2],

pages 26-29)

The trend m(t) is upward sloping throughout the years, with some falls at the beginning
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Figure 2.3: Electricity spot prices quoted in e/MWh for one week. The daily periodicity

is observable.

of 2002 and mid-2003, and with the largest portions of growth observed between the end

of 2002 and the beginning of 2003, and at the end of 2005. It appears to be difficult to

understand the nature of these movements, but explanations for the mainly upward sloping

trend can be found. One potential reason for this is that throughout the years more and

more countries joined the Nord Pool exchange, causing a steady increase in the demand.

Another reason may be inflation, which has a significant influence on all commodities’ prices.

Coming to seasonality, an evident seasonal component s(t) can be observed. The peak of

such a component is the beginning of the year, between autumn and winter, when days are

shorter. In summer, the seasonal trend is lower. The most sensible economic reason for such

a peak is that in winter, in Norway, people need more artificial light and heating, making

the demand for electricity higher and causing the spot prices to increase. In the summer,

when days are longer and the need for electricity is less pronounced, spot prices decrease

accordingly. However, the winter peak of seasonality is not always the case across countries.

For instance, in California, the highest consumption is in summer since there is a very high

use of air conditioning and therefore much more electricity production is needed. [11]

The seasonality shown in Figure 2.2 is of a yearly nature. Looking at Figure 2.3, a daily rhythm

is observable. During the day, the spot prices are higher due to increasing demand and high

industrial activity. At night instead, there is not a great need for electricity and the spot
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prices decrease accordingly. Electricity demand also has different dynamics throughout the

week. During the weekdays from Monday to Friday the spot prices are higher than during the

weekend. Clearly, there is more industrial activity during the weekdays and consequently this

results in higher prices. Later, during the analysis of the autocorrelation function presented

in Chapter 3, it will be possible to observe that there is also a seasonality of a weekly nature.

Unexpected weather conditions can cause sudden and dramatic spikes in the prices. As soon

as the weather phenomenon is over, the demand normally returns to its normal level. [17]

This kind of behaviour, also present in the logarithmic returns, is an irregular variation of two

states of the data. In one state, the returns behave quietly and there are no big surprises in

the fluctuations. The other state is triggered by a burst in the returns, and such bursts can

last for longer periods of time, for instance during adverse weather conditions. This kind of

behaviour is also known as intermittency, which will be analysed in more detail later. However

before analysing the complex features of the data, some fundamental values will be computed

and commented in the next chapter.



Chapter 3

Preliminary Computations

In this chapter, the calculations of descriptive statistics are explained and some specific tests

are performed, in order to come up with several considerations about the time series.

Before starting, a short review of the distributional properties of returns is exposed. The

material for the next section is primarily taken from [13] pages 7-10.

3.1 Review of statistical concepts

Let X be a continuous random variable.

The expectation of X is formally defined as

µX = E[X] =

∫ +∞

−∞
xfX(x)dx

where fX(x) is the density of the random variable X. More generally the lth moment of a

random variable is defined as:

E[X l] =

∫ +∞

−∞
xlfX(x)dx.

The lth central moment of X is defined as:

E
[
(X − E[X])l

]
=

∫ +∞

−∞
(x− µX)lfX(x)dx.

The variance of a random variable X, which measures its variability, is defined as

σX
2 = Var(X) = E

[
(X − E[X])2

]
= E[X2]− (E[X])2 .

The standard deviation of X is defined as the positive square root of the variance, σX .

The mean and the variance of a random variable uniquely characterise a normal distribution.

15
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For other kinds of distributions, it may also be useful to calculate higher order moments.

The skewness measures the symmetry of X with respect to the mean and the kurtosis is used

to measure the tail thickness of a random variable. They are respectively defined as:

S(X) = E

[
(X − µX)3

σX3

]
,K(X) = E

[
(X − µX)4

σX4

]
.

Since K(X) = 3 for a random variable X which is normally distributed, the quantity K(Y )−3

is called excess kurtosis for a general random variable Y . Thus, the excess kurtosis of a normal

random variable is zero. A distribution of a random variable with positive excess kurtosis is

said to have fat tails, meaning that such distribution has a higher probability to present

extreme results. Such a distribution is said to be leptokurtic. If a time series of returns

presents a very high kurtosis, it is a signal that the normal distribution may be inappropriate.

Note that both skewness and kurtosis are third and fourth normalised central moments.

In applications, estimators of the above defined statistics are used. In reality, it would be too

difficult to construct a random variable which is continuous because it would have infinitely

many values. Therefore, it is easier to sample random variables spaced between a certain

time frame, which could be hourly (as in the case of the logarithmic returns), daily, monthly,

etc. The following estimators for a random sample of n observations X(1), X(2), · · · , X(n)

of the variable X are used. These are estimators for the expectation, variance, skewness and

kurtosis, respectively:

µ̃X =
1

n

n∑
t=1

X(t)

σ̃2
X =

1

n− 1

n∑
t=1

(X(t)− µ̃X)2

S̄(X) =
1

(n− 1)σ̃3
X

n∑
t=1

(X(t)− µ̃X)3

K̄(X) =
1

(n− 1)σ̃4
X

n∑
t=1

(X(t)− µ̃X)4.

A traditional assumption made in financial studies is that the simple returns

R(t) =
S(t)− S(t− 1)

S(t− 1)

for t ∈ {1, . . . , n} are normally distributed, i.e. R(t) ∼ N (µ, σ2), where the mean and the

variance are fixed. This means that the returns have the following probability density function:

F (x) = P (R(t) ≤ x) =
1√
2πσ

∫ +∞

−∞
exp

[
(x− µ)2

2σ2

]
dx,
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with mean E[R(t)] = µ and variance Var(R(t)) = σ2. However, the normal distribution

encounters several problems and in reality, it is very difficult for the returns to behave as a

normal distribution.

Another commonly used assumption is that the logarithmic returns are normally distributed.

To explain briefly why it is so, the stochastic process W = (W (t) : t ≥ 0), called standard

Brownian motion, is introduced.

The standard Brownian motion has the following properties:

(i) W (0) = 0 almost surely.

(ii) W (t) is a continuous function of t.

(iii) For 0 ≤ s ≤ t the increments W (t)−W (s) ∼ N (0, t− s).

(iv) For any finite set of times 0 = t0 < t1 < · · · < tn the increments W (ti) −W (ti−1) are

independent for all i ∈ {1, 2, . . . , n}.

The stochastic process which could better describe the movements of spot prices is the concept

of geometric Brownian motion, where prices are defined by the following formula:

S(t) = xeRt+σW (t).

where x is a value greater than zero, R > 0 is the fixed interest rate , σ is the volatility and

W (t) is a standard Brownian motion.

With this notation, the ratio of the spot prices is given by:

S(t)/S(t− 1) = eRt+σW (t)−R(t−1)−σW (t−1) = eR+σ(B(t)−B(t−1)).

Applying the natural logarithm, it is simplified to

ln(S(t)/S(t− 1)) = R+ σ(W (t)−W (t− 1)),

with mean and variance:

E [ln(S(t)/S(t− 1))] = R

Var(ln(S(t)/S(t− 1))) = σ2,

since W (t)−W (t− 1) ∼ N (0, 1).

From this, it follows that ln(S(t)/S(t− 1)) ∼ N (R, σ2).

As will be seen in the next section, unfortunately with the data in question it is not possible

to make the assumption that the logarithmic returns behave as a geometric Brownian motion.
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3.2 Tests for the mean and normality

In this section, two questions have to be answered: Is the mean significant?

Is the time series normally distributed?

For the logarithmic returns of Nord Pool, the random process r is defined as

r = (r(t) : t ∈ {1, 2, . . . , n∗}). The results are shown in the following table:

Mean Variance Skewness Kurtosis

6.69267e-06 0.003491878 1.930468 89.42235

Taking a quick look at the mean and kurtosis, one could make an approximate guess. Indeed,

the mean is very close to zero and therefore one should expect that it is not significant. Also

the huge kurtosis indicates the presence of fat tails, meaning that extreme events occur much

more often than in a normal distribution.

To confirm these guesses, the following hypothesis testing for the mean is applied, namely:

• H0: µ̃r = µ0, “mean is equal to µ0”.

• H1: µ̃r 6= µ0, “mean is different from µ0”.

H0 is called the null hypothesis, whereas H1 is the alternative.

Using the test statistic

T (r) =
µ̃r − µ0√

σ̃2
r
n∗

=

√
n∗(µ̃r − µ0)

σ̃r

The H0 hypothesis is rejected at the α significance level if T (r) ∈ [zα/2, z1−α/2], where zα is

the α quantile of the normal distribution. The level α is chosen between the interval (0, 1)

and if α = 0.05, this means that in 5 over 100 times, the test would wrongly reject the H0

hypothesis.

Using the standard α = 0.05, T should lie outside the interval [−1.96, 1.96] to reject the null

hypothesis.

For r, the test for the mean is done by setting µ0 = 0. The test statistic is

T (r) =
√

70751
0.00000669267

0.05909211
= 0.03012561.

Since T (r) ∈ [zα/2, z1−α/2], it follows that the mean is not significant and H0 is true. From

this, the conclusion is

µ̃r = 0.

Now the test for the normality of the logarithmic returns is conducted. Looking at Figure 3.1,
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Figure 3.1: Comparison of the distribution of the logarithmic returns (black) with the

normal distribution (blue).

one can definitely observe that the distribution of the logarithmic returns differs a lot from

the normal distribution. However, it is very difficult from the figure to tell if the distribution

is symmetric and if it has heavy tails. In order to do this, two other tests, namely the tests

for skewness and kurtosis, are applied. The test for skewness is as follows:

• H0: S̄(r) = 0, “skewness is equal to 0”.

• H1: S̄(r) 6= 0, “skewness is different from 0”.

For this purpose, the following test statistic is used:

T (r) =
S̄(r)√
6/n∗

.

The decision rule is the same as for the mean. The null hypothesis is rejected if

T (r) /∈ [−1.96, 1.96]. With the data in question, the test statistic for the skewness is

T (r) =
1.930468√

6/70751
= 209.6299

which obviously does not lie inside [−1.96, 1.96]. Therefore, the logarithmic returns do not

have a symmetric distribution on the contrary to a normal one. From Figure 3.1, one might

have told that the distribution of the returns is symmetric, but the test drastically rejects this

hypothesis.

The test for the kurtosis is:

• H0: K̄(r)− 3 = 0, “excess kurtosis is equal to 0”
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• H1: K̄(r)− 3 6= 0, “excess kurtosis is different from 0”.

In this case, the following test statistic is used:

T (r) =
K̄(r)− 3√

24/n∗
.

These test statistics are asymptotically normal random variables. Again, the decision rule is

the same as before. Calculating the test statistic from the logarithmic returns, the result is

T (r) =
89.42235− 3√

24/70751
= 4692.311

which differs dramatically from zero. This is an indication of the presence of fat tails. Again,

from Figure 3.1, the heavy tails cannot be captured. It seems that the normal distribution

has heavier tails. This is because a data set of 70,751 points is very large and it is not possible

from an image to observe this detail. One reason for the fat tails is that the electricity market

is a volatile market, where big price changes occur relatively often, and sometimes these may

be very extreme. Nevertheless, these extreme changes may occasionally occur in the data,

and for the rest of the time, the returns behave “quietly”. [1]

The extreme price changes may also be caused by the impossibility to store electricity. It is

not possible to have a perfect balance between demand and supply, since as soon as electricity

is produced, it should be immediately consumed.

Another issue is that in the image only the (−0.2, 0.2) range of the x-coordinate is shown.

Some of the above-described extreme returns are not included in this range.

Jarque and Bera combine the above two tests in just one test:

• H0: “the time series is normally distributed”.

• H1: “the time series is not normally distributed”.

To apply this test, the following statistic is used:

JB(r) =
S̄2(r)

6/n∗
+

(K̄(r)− 3)2

24/n∗
.

The Jarque Bera statistic is asymptotically distributed as a chi-squared random variable with

2 degrees of freedom. The hypothesis H0 is rejected if the p-value of JB(r) is less than the

significance level α = 0.05. In other words, the p-value of a statistic is an estimation of

the probability that a more extreme result than the result observed has occurred by chance,

supposing that the null hypothesis is true. [3]

To explain this in more detail, suppose that an arbitrary random variable X has the same
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distribution as the Jarque-Bera test statistic. The p-value is the probability that |X| is bigger

than JB(r). Therefore, if a very small p-value is observed, it is very unlikely to get more

extreme values than the test statistic and the null hypothesis could be rejected.

For the logarithmic returns, the Jarque-Bera statistic is JB(r) = 22062000 and the p-value

is very close to zero and obviously smaller than the significance level 0.05. As a consequence,

the hypothesis H0 has to be rejected. From the tests conducted above, one can see that in

this case, the normal distribution may not correctly describe the set of logarithmic returns.



Chapter 4

Analysis of Autocorrelation

Function

Correlations between the variable of interest and its past values is one of the main issues of

linear time series analysis. These correlations are known as serial correlations or autocorrela-

tions. They are of fundamental importance for studying a stationary time series. [13]

In this chapter, tests regarding the stationarity of the time series in question are conducted

and the autocorrelation function of the logarithmic returns is analysed. Before this, there is

a quick introduction to covariance and correlation from probability theory.

The covariance of two random variables X and Y is defined as

Cov(X,Y ) = E [(X − µX)(Y − µY )] = E[XY ]− µXµY ,

where E[X] = µX and E[Y ] = µY .

The correlation coefficient of two random variables X and Y is defined as

ρX,Y =
Cov(X,Y )√

Var(X)Var(Y )

4.1 Weakly stationarity

The covariance of the logarithmic returns is denoted as

γ(k) = Cov(r(t), r(t− k)) and is called the lag-k autocovariance of r(t).

It has two important properties:

(i) γ(0) = Var(r(t))

22
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(ii) γ(−k) = γ(k).

A main concept for studying autocorrelations is the weakly stationarity. The returns r(t) are

said to be weakly stationary if:

(i) E[r(t)] = µr for all t ∈ {1, . . . , n}, the mean does not depend on time.

(ii) Cov(r(t), r(t− k)) = γ(k), the autocovariance depends only on the k-lag.

In this dissertation, the term stationarity is linked to weak stationarity.

A descriptive interpretation of stationarity is that a stationary stochastic process is in a

“stochastic equilibrium”, meaning that the subsections of a sample path have similar features,

the results obtained across the subsections are consistent and the statistical fluctuations are

purely random. [8], [13]

The empirical or sample autocovariance of the time series data r = (r(t) : t ∈ {1, 2, . . . , n∗})

is defined as

γ̃(k) =
1

n∗

n∗−k∑
t=1

(r(t+ k)− µ̃r)(r(t)− µ̃r), 0 ≤ k < n∗.

The empirical or sample autocorrelation function (ACF) of the time series r is defined as

ρ̃(k) =
γ̃(k)

γ̃(0)
, 0 ≤ k ≤ n∗.

The question to be answered is: Is the time series of logarithmic returns stationary? As men-

tioned previously, the stationarity is characterised by consistent results within the subsections

of a sample path. A straightforward example for this would be that the mean of the data is

equal to zero, not only for the whole period, as already tested in Chapter 2, but also for every

year. Looking at Figure 2.1, it appears that the mean for every year is zero within statistical

fluctuations. However, from 2000 to 2002 there are several extreme movements. It is therefore

better to conduct hypothesis testing again. The values for every year are shown in Table B.1

in the Appendix. The testing procedure is the same as for the mean. Again, one can see that

here all these test statistics also lie inside the interval (−1.96, 1.96), confirming that for every

year, the mean is not significant.

So, from this, it can be supposed that the series is stationary. However, more evidence is

needed to confirm the stationarity.

To do this, another test called the “differences sign test” is introduced. The following has to

be tested:

• H0: “No trend in the data”.
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• H1: “There is a trend in the data”.

First, the set S is defined as

S : = {i : r(i) > r(i− 1), i = 2, . . . , n}

= {i : r(i)− r(i− 1) > 0, i = 2, . . . , n}

for a series of independent, identical distributed random variables, the cardinality of S is

binomial distributed, namely |S| ∼ B(1/2, n− 1) with

µS = E[|S|] =
1

2
(n− 1)

σS
2 = Var(|S|) =

1

12
(n+ 1)

and most important is that

T (S) =
|S| − µS
σS

converges in distribution to a standard normal distribution N (0, 1) as n goes to infinity.

Again, taking the significance level α as 0.05, H0 has to be rejected if T (S) > z1−α/2 ≈ 1.96.

Such a testing procedure is also described in [8] page 12.

Below is a direct application of the test to the data in question. However, it would be

difficult to apply it to the complete set of data with n∗ = 70, 751 observations, because the

data presents evident seasonality and this would greatly affect the reliability of this test.

Indeed, the seasonality effect is that in the data there are frequent switches of direction of the

logarithmic returns, making the cardinality of S too large or too small. In this case,

µS =
1

2
(70751− 1) = 35375

σS
2 =

1

12
(70751 + 1) = 5896

σS =
√

5896 ≈ 76.78.

Performing the calculation of |S| with n∗ observations, the cardinality of S is 37,177, resulting

in more upswings in the returns than decreases. Therefore,

T (S) =
||S| − µS |

σS
=
|37177− 35375|√

5896
≈ 23.468.

The hypothesis H0 is rejected since 23.468 is far larger than 1.96.

To partly get rid of the seasonality problem, the same test for every year from 1999 to 2006

is applied and only the daily returns of a specific hour are considered. In this case there are
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365 observations and

µS =
1

2
(365− 1) = 182

σS
2 =

1

12
(365 + 1) = 30.5

σS =
√

30.5 =

√
122

2
≈ 5.522.

The cardinalities of S and T (S) for the years from 1999 to 2006 are shown in Table B.3 from

the Appendix. In the year 2001, the value 1.9917864 is slightly greater than 1.96, so in this

case it might be difficult to determine whether there is a trend. However, it is still close to

1.96 and this is why in this case the H0 hypothesis will not be rejected. Looking at Figure 2.1,

it can be observed that the most extreme price changes occur in 2001. For all the other years,

the H0 hypothesis is definitely not rejected. From this, the fact that the data is stationary is

accepted.

4.2 Autocorrelation of logarithmic returns

Figure 4.1: Autocorrelation function for n∗ lags.

In Figure 4.1, the autocorrelation function with n∗ lags is shown. The averages

ρ̃ = (ρ̃(k) : k ∈ {0, 1, . . . , n∗}) have been computed according to the following equation, i.e:

ρ̃(k) =
1

n∗γ̃(0)

n∗−k∑
t=1

(r(t+ k)− µ̃r)(r(t)− µ̃r), 0 ≤ k < n∗.
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where γ̃(0) is the variance of r. In the x-coordinate, the lags are shown in terms of years for

the sake of simplicity. Each year, which in the figure is represented as one unit, comprises

approximately 8,766 lags. A clear yearly rhythm is observable. Under the condition that the

picture displays reliable results, it can be argued that the data shows long-range correlations.

However, from the figure, it is very difficult to capture another kind of correlations, for in-

stance within days and weeks. To make such correlations observable, a period of respectively

24, 168, 336 and 672 lags is analysed.

Suppose that, for one week, the price of electricity is in equilibrium, which means that the

supply perfectly meets the needs of the demand. In such a market, extreme weather condi-

tions which would seriously affect production and consumption patterns, are excluded. The

expectation of the daily trend of electricity spot prices in Northern Europe, during a weekday,

would be the following. From approximately 11 p.m. to 6 a.m., there is hardly any demand

for electricity since people usually sleep during these hours and industrial activity is low. [17]

In the morning, from 6 a.m. to 10 a.m., a considerable increase in the prices would occur

since the demand rises in the morning when people wake up and start working. Then from

approximately 9-10 a.m. to 6 p.m., one would predict that electricity prices follow a stable

trend without too many sudden fluctuations since industrial productivity mainly remains con-

stant for those hours. After this, from 6 p.m. to 11 p.m. there should be a steady decrease

in prices. Those phases where the prices increase or decrease more than usual can be named

transition phases. During the day, there are two of these phases, one in the morning and one

in the evening, and they last approximately 4-5 hours each. This means that electricity prices

are in a transition phase almost 8 hours per day. The more stable phases are respectively

from 10 a.m. to 5 p.m. and from 11 p.m. to 6 a.m.

When prices are in equilibrium, the above-described cycle should repeat itself throughout the

weekdays. As already mentioned, this kind of trend may differ in magnitude at the weekend

due to different patterns of demand and supply.

In a power market, one would also expect to have recurrent events every 24 hours, since de-

mand dynamics at a specific hour of one day are very similar to the dynamics of one day later,

in the same hour. Also, a weekly trend would not be surprising since the intensity of work on

a specific day from Monday to Sunday repeats itself throughout the weeks. For instance, on

Monday it is expected to have more industrial activity than on Friday or Saturday. How is it

possible to empirically observe the above-described scenarios? One answer could be related

to the autocorrelation function.
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Figure 4.2: Autocorrelation function of hourly logarithmic returns of Nord Pool elec-

tricity spot prices with (i) 24 lags (one day), (ii) 168 lags (one week), (iii) 336 lags (two

weeks) and (iv) 672 lags (one month).

After the reasoning above, it is expected to have higher positive correlations every 24 hours

(daily) and 168 hours (weekly). Figure 4.2 shows the autocorrelation function for several time

lags. In (ii), the expected daily positive correlation is observable since there are 7 “humps”

at every 24-hour distance, meaning that movements in the spot prices of one day at a specific

hour are correlated with the movements of prices of the day before at the same hour. In (iii)

and (iv), even the expected weekly positive correlation is observable. The movements of the

positive daily correlations within one week are comparable to a parabola function. Indeed,

the positive correlation decreases slightly after the first 4-5 days, before increasing again until

the 7th day.

So far, it seems that the autocorrelation function confirms the intuitions made above. How-

ever, there are some surprises caused by unexpected movements in the autocorrelation function

within one day. Looking again at Figure 4.2 (i), two well pronounced negative correlations

are observable at time lags 6 and 18. Such negative correlations are somehow unanticipated.

Every 6 hours, the returns behave mainly in an opposite way. The reason for this could be

that in the electricity prices, both transition phases mentioned above could last for several

hours per day, approximately 4 hours each. If the considered hour is in the range from 6 a.m.

to 10 a.m, six hours later the returns would escape from the transition phase and enter a
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more stable phase. Therefore, in the stable phase, smaller returns would be observable, and

these could cause a negative correlation with the larger returns observed during the transition

phase.

Instead, from 12 p.m. to 5 p.m. the returns would turn from the stable to the transition

phase of the evening, from 6 p.m. to 11 p.m. Continuing with this reasoning for every hour

of the day, it would be possible to determine that the only immune ranges from the change

of phases would depart from 10 a.m, 11 a.m, 11 p.m. and 12 a.m. These are only 4 out of 24

possible ranges. The other 20 ranges clearly have a more intense weight in the computation of

the autocorrelation function. The second well pronounced negative correlation is in the 18th

lag, i.e. 12 hours after the first one. In this case, it is possible to make the same reasoning

as before. The only difference is that if returns are in a stable phase, after 18 hours they will

not enter in the first coming transition phase, but rather in the second. This is one possible

explanation for the negative correlation in the 6th and 18th lags.

Interestingly at lag 12, the returns are uncorrelated. This makes absolute sense since the

demand and supply dynamics during the day are completely different and independent from

those during the night. The exception could come from the ranges 7 a.m.-7 p.m. and 8 a.m.-8

p.m. since they are in between day and night. However, these are only 2 over 24 ranges.

When analysing autocorrelations, it is also important to consider the property of mean rever-

sion. Since the one-day-ahead dependencies in the autocorrelation last for almost all the data

points in question, it is reasonable to consider the daily logarithmic returns differenced by a

lag of 7, again in order to adjust for seasonality. For the whole period, from the beginning of

1999 to the beginning of 2007, the n∗ = 70, 751 hours correspond to approximately ñ = 2, 947

days. To apply the differencing method explained above, one considers the modified returns

z(t∗) = r(t∗ + 7) − r(t∗) for t∗ = 24t, where t ∈ {1, 2, . . . , ñ}. The mean reversion can be

detected once the covariance of differences of logarithmic returns over two disjoint periods in

negative. ([5], page 22)

More precisely, this means that

Cov (r(s+ 7)− r(s), r(u+ 7)− r(u)) < 0 for all t < t+ 7 ≤ u < u+ 7.

In [16], it was discovered that mean reversion applies to the returns of the California Power

Exchange (CalPX) after differentiation of 7 days. Therefore, since electricity markets behave

in a similar manner across the world, it is expected that the logarithmic returns of the Nord

Pool exchange will also show mean reversion. However, it has to be noted that in California

the peak of electricity prices comes in summer, due to the strong use of air conditioning,
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Figure 4.3: Lagged autocorrelation function for Nord Pool logarithmic returns after

differentiation by 7 days.

while in Norway it is in winter, due to a greater need for heating. Figure 4.3 shows the

autocorrelation function of zt. The blue dashed lines show the 95% confidence interval for

the autocorrelation function, i.e.:
[
−1.96/

√
ñ, 1.96/

√
ñ
]

= [−0.03614784, 0.03614784]. The

interval is chosen as this since it can be shown that
√
ñρ̃(k) ∼ N (0, 1) for a considerably large

number of observations.1 There are some small positive correlations in the first two lags and

a negative correlation in the seventh lag. The remainder of the autocorrelation function is

not significant. Therefore, also in the case of the Nord Pool logarithmic returns, the mean

reversion is observable since the autocorrelation at the 7th lag is negative and not significant

after it.

Another interesting feature of the autocorrelation function is the rate of the decay over several

years. Normally, when lags k are considerably large, then γ(k) tends to decay and approach

to zero. Also, in the case of the autocorrelation function of logarithmic returns, this decay

is observable in Figure 4.4. However, it decays rather slowly over the years. To understand

the analytic rate of decay of the autocorrelation function, only every 24 hours are considered

to suppress the daily periodicity. The simplest way to recognize the nature of the decay

is to check whether the autocorrelation is linear on a semi-logarithmic scale, meaning it is

exponential, or linear in a double-logarithmic scale, and it is a power-law. In Appendix C.2,

1For more details, please refer to [13] page 27.
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the decay for the daily autocorrelation for every year is observable, both on the linear and

double logarithmic scale. There is a very similar decay across the autocorrelation functions.

When looking at the plots, on the double logarithmic scale the trend of the decay seems to be

linear at the beginning, and then it plummets at the end. This may suggest there is a cutoff

k∗ in the lags, where for all k < k∗, the decay follows a power law, and for all k ≥ k∗ the decay

is rather exponential. In the case of the daily autocorrelation function with n∗ observations,

k∗ is found to be approximately 1,700. Here, lags smaller than the cutoff k∗ ≈ 1700 are

considered. In order to explicitly compute the rate of the decay, one needs to determine the

value of r from the following equation:

ρ̃(k) = λkr.

Applying the natural logarithm to the above formula, one obtains:

log(ρ̃(k)) = log(λkr) = log(λ) + r log(k).

Note that this formula has the same form as a linear regression

y = α0 + α1x,

where the dependent variable y is log(ρ̃(k)), the independent variable x is log(k) and the

coefficients are α0 = log(λ) and α1 = r. To find α1, a linear regression of the above form is

performed. In Figure 4.4, the decay of the autocorrelation with n∗ observations on a double

logarithmic scale is observable. Applying the above-described linear regression, it turns out

that the decay of the autocorrelation function α1 is approximately a power law of -0.30794553

≈ −0.3, and the intercept α0 is −0.09331027 ≈ −0.09. In order to find λ, one just needs to

calculate eα0 ≈ 0.91. Summing up, the absolute value of the autocorrelation function with n∗

observations behaves approximately as:

ρ̃(k) ∼ 0.91k−3/10 for k < k∗.

Instead, if one considers the decay just for the autocorrelation of one year, different results

would be observable. It turns out that the decay of the autocorrelation function over several

years is also a power law. However, the rate of such decay is different across the years and

ranges approximately from -3/5 to -2/5. A computation of every rate of decay has been

computed and can be found in Table B.2 in the Appendix.

In section C.2 in the Appendix, one can also find the plots of decay of the autocorrelations

are shown with the respective power law for better understanding.
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Figure 4.4: Plot of the absolute value of the daily autocorrelation function for the whole

period in both the normal and double logarithmic scales.



Chapter 5

On-off Intermittency

In this chapter, a specific kind of intermittent behaviour of a stochastic process, known as

“on-off intermittency”, is explained. The paper [6] deals with the characterisation of on-off

intermittency and explains in detail the underlying theory.

Such behaviour has two different states. When the time series is in the so-called “off-state”,

it means that it is almost constant within statistical fluctuations and quite close to its mean.

To characterise the “off-state”, one needs to find suitable thresholds for the left and right

endpoint of an arbitrarily chosen interval. This interval should be centred around the mean

of the series. After this, one needs to check whether the data lies within this interval and count

how many consecutive points are in this state to characterize the lengths of the respective

“off-states”. This state is nearly constant and can remain so for very long periods of time.

Such events are also called laminar phases of a time series. The “on” state is a burst, departing

quickly from, and returning quickly to, the off state.

The main aim is to find the distribution of laminar phases. But how can such laminar

phases be characterised? In general, a laminar phase is defined as the number of consecutive

observations which are in the off-state. For this purpose, one has to choose an arbitrary

threshold ε > 0 for a time series Y = (Y (t) : t ∈ {1, 2, . . . , n}) with mean µY , and check

how many consecutive observations lie within the interval [µY − ε, µY + ε]. Therefore, the

laminar phases are series of consecutive numbers which are smaller than a chosen value. As

soon as one value is larger than the threshold, the on-state starts and one should wait for

the start of the next laminar phase. The laminar phases of the series Y are defined here as

Lt, where t ∈ {1, 2, . . . , n} is the starting point of the off-state. For example, consider the

following series Ỹ = (1/10, 3/10, 7/10, 1/2, 2/5). Then the mean is µỸ = 2/5. If ε is chosen as

32
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1/5, the interval reduces to [1/5, 3/5]. In this case only two laminar phases would be present,

namely L2 = {3/10} and L4 = {1/2, 2/5} with respective lengths |L2| = 1 and |L4| = 2.

Of particular interest is the probability that a laminar phase has precisely length τ . This

probability is denoted as φ(τ).

For many cases studied, it can be shown1 that the asymptotic distribution of this probability

fits well with a power-low with exponent -3/2. The meaning of this is

φ(τ) ∼ λτ−3/2

where λ > 0 is a constant.

Now, the above-described theory will be applied to the data in question. Looking back at

Figure 2.2, it can be observed that the trend is almost linear from the middle of 2003 to the

end of 2005. In the years from 2000 to 2002 instead, there are many extreme movements

in the prices, as can be seen in Figure 2.1. Therefore, this is the period with the highest

likelihood to present longer laminar phases. The logarithmic returns of the electricity prices

of Nord Pool are particularly well suited to an on-off intermittency analysis since there is an

abundance of extremely large fluctuations in the prices. Indeed, once the prices reach a peak,

it could last just a few hours for them to return to the usual level. One of the most extreme

jumps occurred on the 5th of February 2001, when the spot price reached an overall high

of 1951.76 NOK/MWh. After only three hours, the spot price reduced to 200 NOK/MWh,

which at that time was the normal level for the spot prices. In the case of Nord Pool, which

includes Scandinavian countries, the period of major consumption is winter and this is the

season where dramatic price variations happen. During low consumption periods, there are

typically enough sources to produce energy and the supply can easily meet the demand. How-

ever, when there is a high need for electricity, “only a minor increase in the demand can have

dramatic consequences for the electricity prices”. As soon as the demand is higher than ex-

pected, it is more costly to produce additional energy since the production units may not be

sufficient. Clearly, this has a dramatic impact on the spot prices and implies the volatility is

higher during winter seasons, and lower during summer seasons. [9]

To empirically observe that the largest fluctuations occur in winter, Figure 5.1 shows the

frequencies of the 100 largest absolute values of the logarithmic returns observed for every

month. One can observe that the more frequent extreme movements happen in January,

February, and October. It is not surprising that the largest frequency is in February, since the

event described above in February 2001 presented several consecutive large price movements,

1Please refer to [6], section III for further details.
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Figure 5.1: Frequencies of the 100 largest price fluctuations for every month.

making the frequency higher. A large number of observations in October is somehow unex-

pected, but is still sensible since winter is approaching and the season is changing. Therefore,

the demand will increase more in October, compared to the previous months when the log-

arithmic returns are quite stable and the volatility is not particularly high, as shown in the

figure.

Now it is time to show how the laminar phases behave in the logarithmic returns. As al-

ready mentioned, one should choose an arbitrary threshold ε > 0, and check if the returns

r = (r(t) : t ∈ {1, 2, . . . , n∗}) are within the interval r(t) ∈ [µ̃r − ε, µ̃r + ε]. From the test of

the mean in Chapter 2, it holds µ̃r = 0. From this, the interval simplifies to r(t) ∈ [−ε, ε].

For the data in question, the threshold is chosen as ε ∈ {0.05, 0.1, 0.2, 0.3}. The following

modified logarithmic returns are defined:

r∗(t) =


|r(t)|, if r(t) ∈ [−ε, ε]

0, otherwise.

In Appendix, the intermittent behaviour of rt
∗ for ε ∈ {0.05, 0.1, 0.2, 0.3} is shown. The

probability density function φ(τ) is computed using the Kernel density estimation.2

After the Kernel density is computed, the zeros in the function are removed for simplicity

purposes and an estimation φ̃(τ) is computed. Finally, the main aim here is to figure out the

analytic rate of decay of the probability density function for different εs. In other words, the

2For additional information about the algorithm used by R to compute the den-

sity function, please refer to the following website: https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/density.html.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/density.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/density.html
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aim is to find r from the equation

φ̃(τ) = λτ r,

The ideal case would be r = −3/2. Again, according to the procedure used for the autocor-

relation function, applying the logarithm to the above formula, one obtains:

log(φ̃(τ)) = log(λτ r) = log(λ) + r log(τ),

which has the same form as

y = α0 + α1x,

where the dependent variable y is log(φ̃(τ)), the independent variable x is log(τ) and the

coefficients are α0 = log(λ) and α1 = r. To find α1, a linear regression of the above form is

performed. In Figure 5.2, the decays of φ̃(τ) for several εs are depicted. For ε = 0.05, it seems

that the decay is rather fast. This makes sense since electricity markets are very volatile and

therefore it is difficult to observe very long laminar phases because frequently returns are

larger than 5%. For ε ∈ {0.1, 0.2}, the decays look similar, but when the threshold is 0.2 it

is clearly slower since it is more difficult for the returns to overcome the limit of 20%. This

results in the observation of longer off-states. Along with the decay of laminar phases for

ε = 0.2, also a power law of -3/2 can be observed to compare how the decay differs from the

desired result. Finally, with ε = 0.3, the slowest decay is observed. The next table shows the

coefficients α0 and α1, or equivalently the intercepts and the analytic rates of decay for every

ε.

ε 0.05 0.1 0.2 0.3

α0 0.789407 0.0176894 -0.2107925 -1.060555

α1 -1.993119 -1.6475308 -1.4279807 -1.213252

From these values, it may be possible to reach the following suppositions: For the threshold

0.05, there is a faster decay, and clearly far away from the desired -3/2 power law. This

may suggest that ε = 0.05 is not the most appropriate threshold to choose since too many

bursts over 5% occur in the logarithmic returns for the reasons explained above. This would

create too many laminar phases of length 1 and fewer laminar phases of larger length. For

ε = 0.3 instead, the decay is rather slow but also far from the desired result. Also, 30% is

not an appropriate choice. There are still several returns larger than 30%, but these do not

occur very often and cause the laminar phases to be too long. For thresholds larger than

0.3, it would not make sense to analyse “on-off intermittency”, since almost only off-states

would be present and clearly the probability density function decays slower. The thresholds
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Figure 5.2: The probability density function φ̃(τ) of laminar phases against the length

of the time interval τ for different values of the threshold ε indicated in the legend,

plotted in a double logarithmic scale.
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ε ∈ {0.1, 0.2} seem to be the most reasonable choice, since the power laws of approximately

-1.64 and -1.42 are very near to the desired result of -1.5. Since the desired power law lies

in between the two observed results, this suggests that the best choice of threshold would be

ε∗ ∈ (0.1, 0.2). For such a threshold, the theory from [6] would perfectly describe the case of

the logarithmic returns of electricity spot prices from Nord Pool.



Chapter 6

Conclusions

Some interesting aspects of the logarithmic returns of electricity spot prices quoted by Nord

Pool were analysed.

First of all, the test for the mean delivered the result that logarithmic returns have an overall

mean of zero for a considerable number of observations. Furthermore, it was also found that

for every year the mean is zero. This fact with the “differences sign test” applied to the daily

logarithmic returns of every year, confirmed that the time series under question is stationary.

The returns were found to be highly non-normally distributed. This is due to their high pos-

itive skewness and huge kurtosis. The positive skewness indicates that in electricity markets

returns tend to move upwards more than downwards. This property was also observed by the

calculation of the trend, which mainly increases over the time frame considered. The fat tails

indicate a significant presence of extreme price fluctuations in the electricity market. Such

movements are not that surprising in such a market since energy cannot be stored efficiently.

In addition, the dynamics of demand and supply are highly weather dependent. If an un-

expected weather phenomenon occurs, often it would be very difficult to produce as much

electricity as is needed. Therefore, dramatic jumps would happen, and it may also be that

after a few hours the prices return to their normal levels. Clearly, this would result in very

high consecutive returns for a few hours. Once the phenomenon is over, logarithmic returns

usually remain in a smaller range. This is another reason for the value of the kurtosis being so

large. Moreover, a seasonal peak in the winter was found for the case of Nord Pool, in contrast

to the Californian electricity market, where the highest consumption is in summer. Since in

the Nordic countries there is more need for heating in the winter season, the electricity prices

are higher according to this. Also, with the frequencies of the largest price fluctuations for

38
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every month, the peak in the winter was observable and confirmed, with a surprisingly high

frequency also presented in October. In summer, the use of air conditioning is not as great

as in California, which is why returns are less volatile in this period for the data considered.

A detailed analysis of the autocorrelation function of the logarithmic returns was conducted.

It was also found that there is not only a yearly rhythm but also a weekly as well as a daily

one. The correlations between returns with 24 (day) and 168 (week) lags of difference are

highly positively correlated. Furthermore, such a correlation lasts for almost all of the data

points considered. This means that for k = 24k̃, k̃ ∈ {1, 2, · · · , ñ} the correlation was almost

always positive and significant. The same consideration also holds for weekly correlation, in-

deed every 168 lags. In the autocorrelation within 24 lags, two relevant negative correlations

were found at lags 6 and 18 respectively. The reason was that in an electricity market, returns

are constantly switching from the transition to the stable phases and vice versa. It is highly

probable that after 6 and 18 hours returns will have changed phase. Since returns in those

phases have completely different behaviour, this explains the anti-correlation.

Another important feature of electricity and indeed the mean reversion was found thanks to

the autocorrelation function of the lagged differences between returns. This autocorrelation

decays very quickly and tends to zero, meaning that over the long-term the data considered

will tend to its mean which is zero.

The decay of the autocorrelation function was also analysed. An analytic rate of approxi-

mately -3/10 was found. This is a rather slow decay and confirms the fact that the daily and

weekly periodicities last over almost all the time considered. When only yearly autocorrela-

tion functions were considered, decays in the range from -3/5 to -2/5 were found, which were

indeed faster than the decay for the autocorrelation with n∗ lags. This is because in the year

only daily and weekly periodicities are accounted for. However, when considering correlations

over several years, also a yearly periodicity is present, making the decay slower.

Finally, the laminar phases of the logarithmic returns and the corresponding probability den-

sity functions for the thresholds ε ∈ {0.05, 0.1, 0.2, 0.3} were computed. Such densities were

expected to decay as a -3/2 power law over the increased length of time intervals. For thresh-

olds 0.05 and 0.3, a too fast and too slow decay were found respectively. For a threshold

between 0.1 and 0.2, the desired power law applies and the logarithmic returns of the spot

prices from Nord Pool behave as the canonical theory of “on-off intermittency” states.



Appendix A

Programming Code in R

In this section, the programming code in R for figures, computations and tests is enlisted.

In LATEX, the package called “listings” enables R codes to be displayed in a fashionable

manner.1

First of all, the working directory has to be set in the right place and the package to transfer

the data from Excel to R has to be installed.

1 setwd("~/Dissertation Official")

2 require(XLConnect)

Logarithmic returns, spot prices and dates are extracted.

1 LogReturns.wb=loadWorkbook("Data.xlsx")

2 LogReturns.df=readWorksheet(LogReturns.wb,sheet="Data")

3 LogReturns=LogReturns.df$Lognormal.Returns

4 AbsLogReturns=abs(LogReturns)

5 n=length(LogReturns)

6 DatesLogReturns=LogReturns.df$Date

7 DatesSpotPrices=c(1999+1/(365.25*24), DatesLogReturns)

8 SpotPrices=rep (0 ,70752)

9 SpotPrices [1]=15.29

10 for(i in 2:70752)

11 SpotPrices[i]= SpotPrices[i-1]*exp(LogReturns[i-1])

12 rm(i)

Figure 2.1, which shows a time plot of the spot prices and logarithmic returns respectively, is

displayed.

1 plot(DatesSpotPrices ,SpotPrices ,type="l", xlab="Time", ylab="S(t)")

2 plot(DatesLogReturns ,LogReturns ,type="l", xlab="Time", ylab="r(t)")

Spot prices and logarithmic returns are converted to time series and Figure 2.2 is displayed.

1 SpotPrices.ts=ts(SpotPrices ,start =1999+1/(365.25*24), deltat =1/(365.25*24))

2 LogReturns.ts1=ts(LogReturns ,start =1999+2/(365.25*24), deltat =1/(365.25*24))

3 LogReturns.ts2=ts(LogReturns ,start=1,deltat =1)

4 plot(decompose(SpotPrices.ts))

1The settings for such a display are taken from the following Stack Overflow link.
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Figure C.1 which shows the yearly trend from the Appendix is displayed.

1 WeeklyTrend=filter(SpotPrices.ts ,filter=rep(1/168 ,168))

2 MonthlyTrend=filter(SpotPrices.ts,filter=rep(1/(168*4) ,168*4))

3 YearlyTrend=filter(SpotPrices.ts ,filter=rep(1/8766 ,8766))

4 plot(WeeklyTrend ,ylab="m(t)",col="red")

5 lines(MonthlyTrend ,col="green")

6 lines(YearlyTrend ,col="purple")

7 legend (1999.1 ,110 , legend=c("Daily trend","Weekly trend","Yearly trend"),col=c("red","green","purple"),lty=c(1,1,1),

bty="n")

Spot prices for one week are displayed in Figure 2.3.

1 OneWeek.ts=window(SpotPrices.ts ,2002.420 ,2002.439)

2 OneWeek=unclass(OneWeek.ts)

3 Pos1=( length(OneWeek)/7)*(1:7) -(length(OneWeek)/7)/2

4 plot(OneWeek ,type="l",xaxt="n",col="blue",xlab="Days",ylab="S(t)")

5 axis(1,Pos1 ,labels=c("Mon","Tue","Wed","Thu","Fri","Sat","Sun"))

Yearly logarithmic returns from original time series are extracted.

1 LogReturns1999=window(LogReturns.ts1 , start =1999.00023 , end =1999.99989)

2 LogReturns2000=window(LogReturns.ts1 , start =2000, end =2000.99989)

3 LogReturns2001=window(LogReturns.ts1 , start =2001, end =2001.99989)

4 LogReturns2002=window(LogReturns.ts1 , start =2002, end =2002.99989)

5 LogReturns2003=window(LogReturns.ts1 , start =2003, end =2003.99989)

6 LogReturns2004=window(LogReturns.ts1 , start =2004, end =2004.99989)

7 LogReturns2005=window(LogReturns.ts1 , start =2005, end =2005.99989)

8 LogReturns2006=window(LogReturns.ts1 , start =2006, end =2006.99989)

9 LogReturns2007=window(LogReturns.ts1 , start =2007, end =2007.07118)

The empirical descriptive statistics for the logarithmic returns are computed.

1 Mu=mean(LogReturns)

2 Variance=var(LogReturns)

3 StandardDeviation=sd(LogReturns)

4 require(moments)

5 Skewness=skewness(LogReturns)

6 Kurtosis=kurtosis(LogReturns)

From the above descriptive statistics, it is possible to calculate the test statistics for the mean,

skewness and kurtosis described and to apply the Jarque-Bera test.

1 TStatMean =(sqrt(n)*Mu)/StandardDeviation

2 TStatSkewness=Skewness/(sqrt(6/n))

3 TStatKurtosis =(Kurtosis -3)/(sqrt (24/n))

4 jarque.test(LogReturns)

Figure 3.1, which shows the distribution of the logarithmic returns against a normal distribu-

tion, is displayed.

1 plot(density(LogReturns.ts1),lwd=2.5, xlab="Logarithmic Returns",main="",xlim=c( -0.2 ,0.2),col="blue4")

2 x=seq(-0.2,0.2, length =100)

3 y=dnorm(x,Mu ,StandardDeviation)

4 lines(x,y,lwd=2.5,col="darkgreen")

5 legend (-0.2,25, legend=c("Logarithmic returns","Normal distribution"),lty=c(1,1), lwd=c(2.5 ,2.5),col=c("blue4","

darkgreen"))

Daily logarithmic returns from original time series are extracted.
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1 DailyLogReturns1999=LogReturns1999 [6+24*(0:364)]

2 DailyLogReturns2000=LogReturns2000 [8+24*(0:364)]

3 DailyLogReturns2001=LogReturns2001 [8+24*(0:364)]

4 DailyLogReturns2002=LogReturns2002 [8+24*(0:364)]

5 DailyLogReturns2003=LogReturns2003 [8+24*(0:364)]

6 DailyLogReturns2004=LogReturns2004 [8+24*(0:364)]

7 DailyLogReturns2005=LogReturns2005 [8+24*(0:364)]

8 DailyLogReturns2006=LogReturns2006 [8+24*(0:364)]

Mean, standard deviation and test statistics for every year are computed.

1 MeanOfYears=c(mean(LogReturns1999),mean(LogReturns2000),mean(LogReturns2001),mean(LogReturns2002),mean(

LogReturns2003),mean(LogReturns2004),mean(LogReturns2005),mean(LogReturns2006),mean(LogReturns2007))

2 StandardDeviationOfYears=c(sd(LogReturns1999),sd(LogReturns2000),sd(LogReturns2001),sd(LogReturns2002),sd(

LogReturns2003),sd(LogReturns2004),sd(LogReturns2005),sd(LogReturns2006),sd(LogReturns2007))

3 TStatMeanOfYears=sqrt(n)*(MeanOfYears/StandardDeviationOfYears)

Expectation, variance, standard deviation, cardinality and test statistic for “differences sign

test” with n∗ observations are computed.

1 ExpectationOfCardinality =1/2*(n-1)

2 VarianceOfCardinality =1/12*(n+1)

3 StandardDeviationOfCardinality=sqrt(VarianceOfCardinality)

4 DifferencesOfLogReturns=LogReturns [2:70751] - LogReturns [1:70750]

5 #the elements of the set S are found

6 Cardinality=length(DifferencesOfLogReturns[DifferencesOfLogReturns >0])

7 StatCardinality=abs(Cardinality -ExpectationOfCardinality)/StandardDeviationOfCardinality

Expectation, variance and standard deviation for “differences sign test” with 365 observations

are computed.

1 Days =365

2 ExpectationOfCardinality365 =1/2*(Days -1)

3 VarianceOfCardinality365 =1/12*(Days +1)

4 StandardDeviationOfCardinality365=sqrt(VarianceOfCardinality365)

The differences of the daily logarithmic returns for every year are computed.

1 DifferencesOfLogReturns1999=DailyLogReturns1999 [2:365] - DailyLogReturns1999 [1:364]

2 DifferencesOfLogReturns2000=DailyLogReturns2000 [2:365] - DailyLogReturns2000 [1:364]

3 DifferencesOfLogReturns2001=DailyLogReturns2001 [2:365] - DailyLogReturns2001 [1:364]

4 DifferencesOfLogReturns2002=DailyLogReturns2002 [2:365] - DailyLogReturns2002 [1:364]

5 DifferencesOfLogReturns2003=DailyLogReturns2003 [2:365] - DailyLogReturns2003 [1:364]

6 DifferencesOfLogReturns2004=DailyLogReturns2004 [2:365] - DailyLogReturns2004 [1:364]

7 DifferencesOfLogReturns2005=DailyLogReturns2005 [2:365] - DailyLogReturns2005 [1:364]

8 DifferencesOfLogReturns2006=DailyLogReturns2006 [2:365] - DailyLogReturns2006 [1:364]

Cardinality and test statistics for every year are calculated.

1 Cardinality1999=length(DifferencesOfLogReturns1999[DifferencesOfLogReturns1999 >0])

2 Cardinality2000=length(DifferencesOfLogReturns2000[DifferencesOfLogReturns2000 >0])

3 Cardinality2001=length(DifferencesOfLogReturns2001[DifferencesOfLogReturns2001 >0])

4 Cardinality2002=length(DifferencesOfLogReturns2002[DifferencesOfLogReturns2002 >0])

5 Cardinality2003=length(DifferencesOfLogReturns2003[DifferencesOfLogReturns2003 >0])

6 Cardinality2004=length(DifferencesOfLogReturns2004[DifferencesOfLogReturns2004 >0])

7 Cardinality2005=length(DifferencesOfLogReturns2005[DifferencesOfLogReturns2005 >0])

8 Cardinality2006=length(DifferencesOfLogReturns2006[DifferencesOfLogReturns2006 >0])

9 CardinalityOfYears=c(Cardinality1999 , Cardinality2000 , Cardinality2001 , Cardinality2002 , Cardinality2003 ,

Cardinality2004 , Cardinality2005 , Cardinality2006)

10 StatCardinalityOfYears=abs(CardinalityOfYears -ExpectationOfCardinality365)/StandardDeviationOfCardinality365
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Autocorrelation function with n∗ lags and the corresponding absolute value is computed. In

the same moment, Figure 4.1 is displayed.

1 ACFList=acf(LogReturns.ts1 ,lag =70751)

2 ACF=ACFList$acf

3 AbsACF=abs(ACF)

4 DailyAbsACF=AbsACF [1+24*(0:2947)]

Figure 4.2, which shows the autocorrelation of the logarithmic returns for different lags, is

displayed.

1 par(mfrow=c(2,2))

2 #one day

3 acf(LogReturns.ts2 ,24,main="(i)")

4 #one week

5 acf(LogReturns.ts2 ,168, main="(ii)")

6 #two weeks

7 acf(LogReturns.ts2 ,168*2,main="(iii)")

8 #one month

9 acf(LogReturns.ts2 ,168*4,main="(iv)")

10 par(mfrow=c(1,1))

Figure 4.3, which shows mean reversion, is displayed.

1 DailyLogReturns=LogReturns.ts2 [24*(0:2947)]

2 #the following command is used to find z(t)

3 DiffLogReturns=diff(DailyLogReturns ,lag =7)

4 DiffAcf.acf=acf(DiffLogReturns ,lag=100, plot=FALSE)

5 DiffAcf=DiffAcf.acf$acf

6 Pos2=7*(0:14)

7 plot(DiffAcf ,type="o",lty=1,xlab="Lag (days)",ylab="Lagged difference of ACF",xaxt="n")

8 axis (1,1+Pos2 ,labels=Pos2)

9 abline (0,0)

10 #95% confidence interval for the autocorrelation function

11 ConfInt =1.96/sqrt(length(DiffLogReturns))

12 abline(ConfInt ,0,lty=2,col="blue")

13 abline(-ConfInt ,0,lty=2,col="blue")

14 abline(v=1+Pos2 ,lty = 8, col = "grey")

15 abline(h=c(1 ,0.5,-0.5),lty=8,col="grey")

The autocorrelation function for every year is calculated.

1 ACF1999.acf=acf(LogReturns1999 ,lag=8763, plot=FALSE)

2 ACF1999=ACF1999.acf$acf

3 ACF2000.acf=acf(LogReturns2000 ,lag=8766, plot=FALSE)

4 ACF2000=ACF2000.acf$acf

5 ACF2001.acf=acf(LogReturns2001 ,lag=8766, plot=FALSE)

6 ACF2001=ACF2001.acf$acf

7 ACF2002.acf=acf(LogReturns2002 ,lag=8766, plot=FALSE)

8 ACF2002=ACF2002.acf$acf

9 ACF2003.acf=acf(LogReturns2003 ,lag=8766, plot=FALSE)

10 ACF2003=ACF2003.acf$acf

11 ACF2004.acf=acf(LogReturns2004 ,lag=8766, plot=FALSE)

12 ACF2004=ACF2004.acf$acf

13 ACF2005.acf=acf(LogReturns2005 ,lag=8766, plot=FALSE)

14 ACF2005=ACF2005.acf$acf

15 ACF2006.acf=acf(LogReturns2006 ,lag=8766, plot=FALSE)

16 ACF2006=ACF2006.acf$acf

Decays of several autocorrelation functions are displayed in the Appendix.
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1 AllACF=cbind(ACF1999 [1+24*(0:365)],ACF2000 [1+24*(0:365)],ACF2001 [1+24*(0:365)],ACF2002 [1+24*(0:365)],ACF2003 [1+24*

(0:365)],ACF2004 [1+24*(0:365)],ACF2005 [1+24*(0:365)],ACF2006 [1+24*(0:365) ])

2 x.name = c("ACF99","ACF00","ACF01","ACF02","ACF03","ACF04","ACF05","ACF06")

3 colnames(AllACF) = c(x.name [1:4] , x.name [5:8])

4 plot.ts(AllACF , main="")

5 plot.ts(AllACF , main="",log="xy")

The independent and dependent variables for linear regression are computed.

1 #for the autocorrelation with 2947 days (complete set), the cutoff is 1700 and this is why 1:1700 is considered

2 RegXComplete=log (1:1700)

3 RegX=log (1:200)

4 RegACF=log(DailyAbsACF [1:1700])

5 #cutoff for yearly autocorrelation is approximately 199

6 RegACF1999=log(ACF1999 [1+24*(0:199) ])

7 RegACF2000=log(ACF2000 [1+24*(0:199) ])

8 RegACF2001=log(ACF2001 [1+24*(0:199) ])

9 RegACF2002=log(ACF2002 [1+24*(0:199) ])

10 RegACF2003=log(ACF2003 [1+24*(0:199) ])

11 RegACF2004=log(ACF2004 [1+24*(0:199) ])

12 RegACF2005=log(ACF2005 [1+24*(0:199) ])

13 RegACF2006=log(ACF2006 [1+24*(0:199) ])

The linear regression for the decay of the autocorrelation functions is performed.

1 #linear regression for autocorrelation

2 FitACF=lm(RegACF~RegXComplete)

3 FitACF1999=lm(RegACF1999~RegX)

4 FitACF2000=lm(RegACF2000~RegX)

5 FitACF2001=lm(RegACF2001~RegX)

6 FitACF2002=lm(RegACF2002~RegX)

7 FitACF2003=lm(RegACF2003~RegX)

8 FitACF2004=lm(RegACF2004~RegX)

9 FitACF2005=lm(RegACF2005~RegX)

10 FitACF2006=lm(RegACF2006~RegX)

11 #coefficients are stored in a vector , where intercept and regression are first and second elements respectively

12 CoeffACF=FitACF$coefficients

13 CoeffACF1999=FitACF1999$coefficients

14 CoeffACF2000=FitACF2000$coefficients

15 CoeffACF2001=FitACF2001$coefficients

16 CoeffACF2002=FitACF2002$coefficients

17 CoeffACF2003=FitACF2003$coefficients

18 CoeffACF2004=FitACF2004$coefficients

19 CoeffACF2005=FitACF2005$coefficients

20 CoeffACF2006=FitACF2006$coefficients

The decay for the autocorrelation function with n∗ lags and the corresponding power law is

displayed in Figure 4.4.

1 xComplete1 =1: length(DailyAbsACF)

2 yComplete1=exp(CoeffACF [1])*xComplete1 ^( CoeffACF [2])

3 plot(DailyAbsACF ,type="l",col="blue4",ylab="Absolute value of ACF",xlab="Days")

4 lines(yComplete1 ,col="violet")

5 legend (2000,1,c("ACF","Power law of -3/10"),lwd=2.5,col=c("blue4","violet"))

6 xComplete2 =1:1700

7 yComplete2=exp(CoeffACF [1])*xComplete2 ^( CoeffACF [2])

8 plot(DailyAbsACF [1:1700] , type="l",log="xy",ylim=c(0.06 ,1),col="blue4",ylab="Absolute value of ACF",xlab="Days")

9 lines(yComplete2 ,col="violet")

10 legend (150,1,c("ACF","Power law of -3/10"),lwd=2.5,col=c("blue4","violet"))
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The decay of the autocorrelation functions for every year is analysed and displayed in the

Appendix, with the corresponding power law.

1 #to plot the linear regression , intercept and slope are used and can be found in the tables

2 par(mfrow=c(1,2))

3 x=1:200

4 plot(ACF1999 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 1999",log="xy",ylim=c(0.1 ,1))

5 y=exp(CoeffACF1999 [1])*x^( CoeffACF1999 [2])

6 lines(y,col="red")

7 plot(ACF2000 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2000",log="xy",ylim=c(0.1 ,1.2))

8 y=exp(CoeffACF2000 [1])*x^( CoeffACF2000 [2])

9 lines(y,col="red")

10 plot(ACF2001 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2001",log="xy",ylim=c(0.05 ,1.2))

11 y=exp(CoeffACF2001 [1])*x^( CoeffACF2001 [2])

12 lines(y,col="red")

13 plot(ACF2002 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2002",log="xy",ylim=c(0.05 ,1.5))

14 y=exp(CoeffACF2002 [1])*x^( CoeffACF2002 [2])

15 lines(y,col="red")

16 plot(ACF2003 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2003",log="xy",ylim=c(0.05 ,2))

17 y=exp(CoeffACF2003 [1])*x^( CoeffACF2003 [2])

18 lines(y,col="red")

19 plot(ACF2004 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2004",log="xy",ylim=c(0.05 ,1))

20 y=exp(CoeffACF2004 [1])*x^( CoeffACF2004 [2])

21 lines(y,col="red")

22 plot(ACF2005 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2005",log="xy",ylim=c(0.05 ,1))

23 y=exp(CoeffACF2005 [1])*x^( CoeffACF2005 [2])

24 lines(y,col="red")

25 plot(ACF2006 [1+24*(0:199)],type="l",xlab="Lag (Days)", ylab="ACF 2006",log="xy",ylim=c(0.05 ,1))

26 y=exp(CoeffACF2006 [1])*x^( CoeffACF2006 [2])

27 lines(y,col="red")

28 par(mfrow=c(1,1))

To divide the year into the respective months, the following code is used.

1 split1999=split(LogReturns1999 ,ceiling(seq_along(LogReturns1999)/(length(LogReturns1999)/12)))

2 split2000=split(LogReturns2000 ,ceiling(seq_along(LogReturns2000)/(length(LogReturns2000)/12)))

3 split2001=split(LogReturns2001 ,ceiling(seq_along(LogReturns2001)/(length(LogReturns2001)/12)))

4 split2002=split(LogReturns2002 ,ceiling(seq_along(LogReturns2002)/(length(LogReturns2002)/12)))

5 split2003=split(LogReturns2003 ,ceiling(seq_along(LogReturns2003)/(length(LogReturns2003)/12)))

6 split2004=split(LogReturns2004 ,ceiling(seq_along(LogReturns2004)/(length(LogReturns2004)/12)))

7 split2005=split(LogReturns2005 ,ceiling(seq_along(LogReturns2005)/(length(LogReturns2005)/12)))

8 split2006=split(LogReturns2006 ,ceiling(seq_along(LogReturns2006)/(length(LogReturns2006)/12)))

Logarithmic returns are grouped for every month of the year.

1 January=c(split1999$‘1‘,split2000$‘1‘,split2001$‘1‘,split2002$‘1‘,split2003$‘1‘,split2004$‘1‘,split2005$‘1‘,

split2006$ ‘1‘)

2 February=c(split1999$‘2‘,split2000$‘2‘,split2001$‘2‘,split2002$‘2‘,split2003$‘2‘,split2004$‘2‘,split2005$‘2‘,

split2006$ ‘2‘)

3 March=c(split1999$ ‘3‘,split2000$ ‘3‘,split2001$ ‘3‘,split2002$ ‘3‘,split2003$ ‘3‘,split2004$ ‘3‘,split2005$ ‘3‘,split2006

$ ‘3‘)

4 April=c(split1999$ ‘4‘,split2000$ ‘4‘,split2001$ ‘4‘,split2002$ ‘4‘,split2003$ ‘4‘,split2004$ ‘4‘,split2005$ ‘4‘,split2006

$ ‘4‘)

5 May=c(split1999$‘5‘,split2000$‘5‘,split2001$‘5‘,split2002$‘5‘,split2003$‘5‘,split2004$‘5‘,split2005$‘5‘,split2006$

‘5‘)

6 June=c(split1999$‘6‘,split2000$‘6‘,split2001$‘6‘,split2002$‘6‘,split2003$‘6‘,split2004$‘6‘,split2005$ ‘6‘,split2006$

‘6‘)

7 July=c(split1999$‘7‘,split2000$‘7‘,split2001$‘7‘,split2002$‘7‘,split2003$‘7‘,split2004$‘7‘,split2005$ ‘7‘,split2006$

‘7‘)

8 August=c(split1999$‘8‘,split2000$‘8‘,split2001$‘8‘,split2002$‘8‘,split2003$‘8‘,split2004$‘8‘,split2005$‘8‘,

split2006$ ‘8‘)

9 September=c(split1999$‘9‘,split2000$‘9‘,split2001$‘9‘,split2002$‘9‘,split2003$‘9‘,split2004$‘9‘,split2005$‘9‘,

split2006$ ‘9‘)
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1 October=c(split1999$ ‘10‘,split2000$ ‘10‘,split2001$ ‘10‘,split2002$ ‘10‘,split2003$ ‘10‘,split2004$ ‘10‘,split2005$ ‘10‘,

split2006$ ‘10‘)

2 November=c(split1999$ ‘11‘,split2000$ ‘11‘,split2001$ ‘11‘,split2002$ ‘11‘,split2003$ ‘11‘,split2004$ ‘11‘,split2005$

‘11‘,split2006$ ‘11‘)

3 December=c(split1999$ ‘12‘,split2000$ ‘12‘,split2001$ ‘12‘,split2002$ ‘12‘,split2003$ ‘12‘,split2004$ ‘12‘,split2005$

‘12‘,split2006$ ‘12‘)

Absolute values are computed.

1 AbsJanuary=abs(January)

2 AbsFebruary=abs(February)

3 AbsMarch=abs(March)

4 AbsApril=abs(April)

5 AbsMay=abs(May)

6 AbsJune=abs(June)

7 AbsJuly=abs(July)

8 AbsAugust=abs(August)

9 AbsSeptember=abs(September)

10 AbsOctober=abs(October)

11 AbsNovember=abs(November)

12 AbsDecember=abs(December)

The 100 biggest price fluctuations are calculated.

1 SortAbsLogRet=sort(AbsLogReturns ,decreasing=TRUE)

2 BiggestAbsReturns=SortAbsLogRet [1:100]

3 MinOfBiggestAbsReturns=BiggestAbsReturns [100]

To check how many large returns are in each month, the following code is used.

1 AbsLargestJanuary=AbsJanuary[AbsJanuary >MinOfBiggestAbsReturns]

2 AbsLargestFebruary=AbsFebruary[AbsFebruary >MinOfBiggestAbsReturns]

3 AbsLargestMarch=AbsMarch[AbsMarch >MinOfBiggestAbsReturns]

4 AbsLargestApril=AbsApril[AbsApril >MinOfBiggestAbsReturns]

5 AbsLargestMay=AbsMay[AbsMay >MinOfBiggestAbsReturns]

6 AbsLargestJune=AbsJune[AbsJune >MinOfBiggestAbsReturns]

7 AbsLargestJuly=AbsJuly[AbsJuly >MinOfBiggestAbsReturns]

8 AbsLargestAugust=AbsAugust[AbsAugust >MinOfBiggestAbsReturns]

9 AbsLargestSeptember=AbsSeptember[AbsSeptember >MinOfBiggestAbsReturns]

10 AbsLargestOctober=AbsOctober[AbsOctober >MinOfBiggestAbsReturns]

11 AbsLargestNovember=AbsNovember[AbsNovember >MinOfBiggestAbsReturns]

12 AbsLargestDecember=AbsDecember[AbsDecember >MinOfBiggestAbsReturns]

The number of extreme observations per month are computed.

1 LAbsJanuary=length(AbsLargestJanuary)

2 LAbsFebruary=length(AbsLargestFebruary)

3 LAbsMarch=length(AbsLargestMarch)

4 LAbsApril=length(AbsLargestApril)

5 LAbsMay=length(AbsLargestMay)

6 LAbsJune=length(AbsLargestJune)

7 LAbsJuly=length(AbsLargestJuly)

8 LAbsAugust=length(AbsLargestAugust)

9 LAbsSeptember=length(AbsLargestSeptember)

10 LAbsOctober=length(AbsLargestOctober)

11 LAbsNovember=length(AbsLargestNovember)

12 LAbsDecember=length(AbsLargestDecember)

13 LAbsMonths=c(LAbsJanuary ,LAbsFebruary ,LAbsMarch ,LAbsApril ,LAbsMay ,LAbsJune ,LAbsJuly ,LAbsAugust ,LAbsSeptember ,

LAbsOctober ,LAbsNovember ,LAbsDecember)
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Finally, the frequencies of the largest 100 observations are displayed with respect to the

months. This corresponds to Figure 5.1.

1 LabMonths=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec")

2 library(lattice)

3 dotplot(LAbsMonths~factor(LabMonths ,levels = LabMonths),axes=FALSE ,xlab="Months",ylab="Frequency")

The laminar phases for ε ∈ {0.05, 0.1, 0.2, 0.3} are calculated.

1 AbsLogReturnsThreshold0 .05= AbsLogReturns

2 AbsLogReturnsThreshold0 .05[ AbsLogReturnsThreshold0 .05 <0.05]=0

3 AbsLogReturnsThreshold0 .1= AbsLogReturns

4 AbsLogReturnsThreshold0 .1[ AbsLogReturnsThreshold0 .1 <0.1]=0

5 AbsLogReturnsThreshold0 .2= AbsLogReturns

6 AbsLogReturnsThreshold0 .2[ AbsLogReturnsThreshold0 .2 <0.2]=0

7 AbsLogReturnsThreshold0 .3= AbsLogReturns

8 AbsLogReturnsThreshold0 .3[ AbsLogReturnsThreshold0 .3 <0.3]=0

9 #ROEV stands for "runs of equal values"

10 ROEV0 .05= rle(AbsLogReturnsThreshold0 .05)

11 LaminarPhases0 .05= ROEV0 .05$lengths[ROEV0 .05$values ==0]

12 ROEV0 .1=rle(AbsLogReturnsThreshold0 .1)

13 LaminarPhases0 .1= ROEV0.1$lengths[ROEV0 .1$values ==0]

14 ROEV0 .2=rle(AbsLogReturnsThreshold0 .2)

15 LaminarPhases0 .2= ROEV0.2$lengths[ROEV0 .2$values ==0]

16 ROEV0 .3=rle(AbsLogReturnsThreshold0 .3)

17 LaminarPhases0 .3= ROEV0.3$lengths[ROEV0 .3$values ==0]

The plots of the intermittency behaviour for several ε in the Appendix are displayed.

1 plot(DatesLogReturns ,AbsLogReturnsThreshold0 .05,type="l",xlab="Time",ylab="r*(t)")

2 abline (0.05,0,col="orangered",lty=2,lwd=1)

3 plot(DatesLogReturns ,AbsLogReturnsThreshold0 .1,type="l",xlab="Time",ylab="r*(t)")

4 abline (0.1,0,col="orangered",lty=2,lwd =1)

5 plot(DatesLogReturns ,AbsLogReturnsThreshold0 .2,type="l",xlab="Time",ylab="r*(t)")

6 abline (0.2,0,col="orangered",lty=2,lwd =1)

7 plot(DatesLogReturns ,AbsLogReturnsThreshold0 .3,type="l",xlab="Time",ylab="r*(t)")

8 abline (0.3,0,col="orangered",lty=2,lwd =1)

The Kernel densities are calculated.

1 dens0 .05= density(LaminarPhases0 .05)

2 xdens0 .05= dens0 .05$x[6:512]

3 ydens0 .05= dens0 .05$y[6:512]

4 dens0 .1= density(LaminarPhases0 .1)

5 xdens0 .1= dens0 .1$x[4:512]

6 ydens0 .1= dens0 .1$y[4:512]

7 dens0 .2= density(LaminarPhases0 .2)

8 xdens0 .2= dens0 .2$x[10:512]

9 ydens0 .2= dens0 .2$y[10:512]

10 dens0 .3= density(LaminarPhases0 .3)

11 xdens0 .3= dens0 .3$x[14:512]

12 ydens0 .3= dens0 .3$y[14:512]

The probability density functions of the laminar phases for different thresholds are coerced

to data frames and adjusted from the previously computed Kernel densities.

1 densities0 .05= data.frame(x=xdens0 .05,y=ydens0 .05)

2 densities0 .1= data.frame(x=xdens0.1,y=ydens0 .1)

3 densities0 .2= data.frame(x=xdens0.2,y=ydens0 .2)

4 densities0 .3= data.frame(x=xdens0.3,y=ydens0 .3)

5 NonZeros0 .05= apply(densities0 .05, 1, function(row) all(row !=0 ))

6 NonZeros0 .1= apply(densities0 .1, 1, function(row) all(row !=0 ))
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1 NonZeros0 .2= apply(densities0 .2, 1, function(row) all(row !=0 ))

2 NonZeros0 .3= apply(densities0 .3, 1, function(row) all(row !=0 ))

3 #adjusted densities are without zeros.

4 AdjDens0 .05= densities0 .05[ NonZeros0 .05,]

5 AdjDens0 .1= densities0 .1[ NonZeros0 .1,]

6 AdjDens0 .2= densities0 .2[ NonZeros0 .2,]

7 AdjDens0 .3= densities0 .3[ NonZeros0 .3,]

A linear regression of the logarithm of probability density against the logarithm of lengths of

laminar phases is performed.

1 xpdf0 .05= log(AdjDens0 .05$x[1:81])

2 ypdf0 .05= log(AdjDens0 .05$y[1:81])

3 xpdf0 .1=log(AdjDens0 .1$x[1:88])

4 ypdf0 .1=log(AdjDens0 .1$y[1:88])

5 xpdf0 .2=log(AdjDens0 .2$x[1:137])

6 ypdf0 .2=log(AdjDens0 .2$y[1:137])

7 xpdf0 .3=log(AdjDens0 .3$x[1:137])

8 ypdf0 .3=log(AdjDens0 .3$y[1:137])

9 fit0 .05=lm(ypdf0 .05~xpdf0 .05)

10 fit0 .1=lm(ypdf0.1~xpdf0 .1)

11 fit0 .2=lm(ypdf0.2~xpdf0 .2)

12 fit0 .3=lm(ypdf0.3~xpdf0 .3)

13 Coeff0 .05= fit0 .05$coefficients

14 Coeff0 .1= fit0.1$coefficients

15 Coeff0 .2= fit0.2$coefficients

16 Coeff0 .3= fit0.3$coefficients

Figure 5.2 which shows the decays for the laminar phases of different thresholds is plotted on

a double logarithmic scale.

1 #the final element of the plot (e.g. 88) is chosen in a way that it is easier to observe the several decays for

different values of thresholds

2 plot(AdjDens0 .1$x[1:88] , AdjDens0 .1$y[1:88] , log="xy",col="green",type="o",xlim=c(AdjDens0 .3$x[1] ,1300),xlab="Length

of laminar phases (hours)",ylab="Probability density")

3 lines(AdjDens0 .05$x[1:81] , AdjDens0 .1$y[1:81] , col="blue",type="o")

4 lines(AdjDens0 .2$x[1:137] , AdjDens0 .2$y[1:137] , col="red",type="o")

5 y=exp(Coeff0 .2[1])*(AdjDens0 .2$x[1:137]) ^( -1.5)

6 lines(AdjDens0 .2$x[1:137] ,y,col="red")

7 lines(AdjDens0 .3$x[1:137] , AdjDens0 .3$y[1:137] , col="purple",type="o")

8 legend (300 ,0.05 , legend=c(expression(paste(epsilon , " = ", 0.05)),expression(paste(epsilon , " = ", 0.1)),expression(

paste(epsilon ," = ", 0.2)),expression(paste(epsilon ," = ", 0.3))),lty=c(1,1,1,1),col=c("blue","green","red","

purple"),bty="n",pch=c(1,1,1,1))

9 #this way , all decays can be displayed in one figure , otherwise , there would be too many fluctuations after these

values and it would be very difficult to observe a linear plot on a double logarithmic scale
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Additional Tables

Years Mean Standard deviation Test statistic

1999 -6.274677e-06 0.04410185 -0.03784433

2000 1.861529e-05 0.08013722 0.06178768

2001 5.008862e-05 0.08593348 0.15503970

2002 1.304966e-04 0.04670245 0.74323442

2003 -1.208470e-04 0.04693618 -0.68484830

2004 -2.290084e-05 0.04718298 -0.12910179

2005 4.758475e-05 0.05374739 0.23549226

2006 -2.727668e-05 0.05067206 -0.14318229

2007 -1.300494e-04 0.07196283 -0.48069158

Table B.1: Mean, standard deviation and test statistic for every year of the period

considered.
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Years Cardinality Test statistic

1999 182 0

2000 183 0.1810715

2001 193 1.9917864

2002 178 0.7242860

2003 183 0.1810715

2004 183 0.1810715

2005 182 0

2006 174 1.4485719

Table B.2: Results of the “differences sign test” for every year.

Years α0 α1

1999 -0.08039349 -0.39247405

2000 0.1404176 -0.3852416

2001 0.1042413 -0.5034610

2002 0.4541387 -0.4879907

2003 0.5960216 -0.5884822

2004 -0.4761558 -0.4340570

2005 -0.2163494 -0.4558454

2006 -0.2335309 -0.4187047

Table B.3: Intercepts and analytic rates of the decay for the autocorrelation function

of every year, found by a linear regression.



Appendix C

Additional Explanatory Figures

C.1 Daily, weekly and yearly trend

Figure C.1: Daily, weekly and yearly trends of spot prices computed by a moving

average.
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C.2 Decays of autocorrelation functions

Figure C.2: Daily autocorrelation function for every year in both normal (top) and

double logarithmic (bottom) plots. Such a display can be found also in [10] page 408.
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Figure C.3: Decay for the autocorrelation for every year from 1999 to 2006 with re-

spective power laws.
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C.3 On-off intermittency for different thresholds

Figure C.4: Intermittent behaviour of logarithmic returns with n∗ observation with

ε = 0.05.

Figure C.5: Intermittent behaviour of logarithmic returns with n∗ observation with

ε = 0.1.
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Figure C.6: Intermittent behaviour of logarithmic returns with n∗ observation with

ε = 0.2.

Figure C.7: Intermittent behaviour of logarithmic returns with n∗ observation with

ε = 0.3.
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