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Abstract 

Being opposed to the Efficient Market Hypothesis (EMH) that indicates unpredictable market, 

due to the independency (uncorrelated) of its historical and future behaviours. The Fractal 

Market Hypothesis (FMH), by looking at the market from the prospective of fractal geometry, 

is to reveal the cyclic or periodic patterns of history, which seems especially significant when 

associated with the electricity market. In this paper, the fitness of traditional Geometric 

Brownian Motion (GBM) model will be discussed. After that a fractional diffusion model will 

be built in order to further detect the correlation. Despite taking the stationary assumption, 

non-stationary circumstances would also be compatible in this model. Finally, results and 

conclusion will be analysed, as well as the possible improvements. 

-------------------------------------------------------------------------------------------------------------------------- 
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Introduction 

The Persistent periodic behaviour of electricity market can be seen easily from daily spot 

price, which is essentially related to long term auto-correlations. In other words, it implies 

short term or long term memory, which is neither independent nor normal distributed. The 

fractional model is suited for detecting memory, which was first introduced from Fractal 

Geometry. A fractal shows self-affine patterns that are similar or the same to itself when being 

observed by different scales. Similarly, as if the electricity prices show similar persistent 

patterns daily, weekly or monthly, seasonally. There are numerous researches in fractional 

models for electricity spot prices that have been done for the last thirty years, and the 

fractional noise model was first introduced for electricity spot prices by JRM. Hosking [1]; 

While the most widely applied model is the Geometric Brownian Motion (GBM) Process, 

which has been maturely studied and practised from stock markets to derivative markets, 

commodity markets, etc. In this paper, we study the fractional dimension of the electricity 

spot prices to check whether it has memory or it follows GBM. 

 

1. Geometric Brownian Motion Analysis 

If a stochastic process flows Geometric Brownian Motion, then it can be formulized as 

𝑦(𝑡) = 𝑦(𝑡0)𝑒𝑚(𝑡−𝑡0)+𝜎𝑊𝑡 

Where (𝑡), 𝑦(𝑡0) can be denoted as spot prices at time 𝑡, 𝑡0 respectively. 𝑚 is the drift, 𝜎 is 

the square root of volatility. 𝑊𝑡 represents the Wiener Process which follows the standard 

normal distribution with the mean of zero and variance 𝑡 − 𝑡0(generally, 𝑡0 = 0) . 

Alternatively, we can write GBM in another form that  

 Y(t) 𝑙𝑛 {
𝑦(𝑡)

 𝑦(𝑡0)
} = 𝑚(𝑡 − 𝑡0) + 𝜎𝑊𝑡 

Y(t + 𝜏) − Y(t) = 𝜎𝑊𝜏 

Where Y(t) is the profile we just defined. Since if the differences of the profiles with the same 

time increments are tested not to follow a standard normal distribution, which is 𝜎𝑊𝜏, or 

more specifically, it fails to reject the null hypothesis in some significance value. Then we can 

conclude that it does not follow the classical Geometric Brownian Motion (Fractional 

Brownian Motion not included). 
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Figure (1): Red: Gaussian; Blue: Y(t + 𝜏) − Y(t) . 

The above graph shows the histogram of profile increments of daily spots. Which does not 

show any obvious sign of a Gaussian (the curve). Furthermore, In the study of Marathe[2], the 

normality and independency are being tested, of the  monthly U.S electric power 

consumption data from 1993 to 2002, which is considered relevant to the electricity market 

spots as the relationship of supply and demand. The result fails to reject the null hypothesis 

before de-seasonalization. Specifically in which, after computing the log-prices, the de-

seasonalization process is to subtract the periodic centre-moving-average data with its mean 

seasonal residuals. As a result, it rejects the null hypothesis of significant value. However, this 

is not appropriate for our circumstances as our goal is to study the seasonal effects or 

particularly the periodic, cyclical effect, in other words, to investigate whether the spots are 

long term correlated/anti-correlated; While the de-seasonalization process just filters out 

these features. 

 

2. Fractional Dimension Analysis 

2.1. Fractal 

Fractals catch the attentions of the public by the famous paradox of the length of the Great 

Britain’s coast line. Which states that when looking at the map, intuitively one the length of 

the Great Britain’s coast line is finite. However, assume that we can infinitely zoom in the map 

by arbitrary large scale microscope, for say, even to the level of molecules, the length of the 

“edge” can grows to infinity. Fractal exactly has this property, moreover, it has similar 

patterns no matter by what distance we look at it. 

 

2.2 Dimension 

The Wiener process in the last section follows a power law. Which for instance, imagine a 

two-dimensional square, if its sides halved, the area of the square would be one-fourth of its 
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original. In general, this relationship indicates its traditional dimension, To formalise the 

previous example of square. 

𝑙𝑑 = 𝑁 

Where 𝑙 represents the new length of the square after shrinking/amplifying while the original 

length is one, respectively, 𝑁 is the new area. While dimension 𝑑, does not change at all 

whatever the length would be, take the previous shrinking example 

(1/2)2 =
1

4
, (

1

3
)

2

=
1

9
… 

This relationship holds in one and three dimensions as well, for demonstrations 

 

Figure(2): Examples for traditional dimension and scaling. 

As an extension, the Hausdorff dimension or fractal dimension indicates this relationship for 

fractals, which for example, a 32-segment quadric fractal. 

 

Figure(3): 32-segment quadric fractal. 
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Which looks exactly the same by observing from different scales, it illustrates self-similarity. 

As the same procedure as the last case, we calculate the dimension of a fractal by 

measuring the exponent of its new size and area for a two traditional dimensional fractal on 

a plane. It can be done by several methods, for example, the box-counting method, in which 

generally approximates its area by putting same sizes of blocks to cover the edge of the 

fractal. For illustration, to measure the fractal dimension of the coast line of the Great 

Britain. 

 

Figure(4):Box-counting for coast line of the Great Britain. 

 

As the number of blocks increases to infinity, the box-counting dimension of the coast line 

can be represented as 

Dim𝑏𝑜𝑥(𝑆) = lim
𝜖→0

𝑙𝑛𝑁(𝜖)

𝑙𝑛(1/𝜖)
 

Where 𝑁(𝜖) is the number of boxes of length 𝜖. And this is just a rough illustration to give a 

general idea before moving further. 

 

2.3 Hurst Exponent 

In previous illustration we approximate the length of coast line with box-counting; to be 

extended, the trace of a stochastic random process also has a fractal dimension. Like a fractal 

in geometry, one may wonder what it implies if the electricity spot prices are self-similar. 

Imagine different investors in the market reacts to information with different time scales. For 

example, intraday traders react to high-frequency price spikes and financial events with a day; 

while long term investors only put few trades within a year by considering the prospects of 

markets in a long term, but do not participant short term fluctuations. Furthermore, company 
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investors trading electricity at particular hot/cold seasons/long periods of a year could be 

considered as long term investing behaviour, even though they might not hold the position 

for a relatively long time. Take another example, annually fireworks only take place at top half 

an hour but it is one-year periodic.  

Thus if the spot prices seem to behave in some similar patterns no matter what time scale 

length is considered. Then this pattern must be somehow discovered. And the Hurst exponent 

is the first to detect long term memory/persistent correlation of signal, which is denoted as 

parameter H, which lies within the domain from zero to one. For an H > 0.5, the process is 

characterized by long memory or positively long-term correlated, that is, if something 

happened before, then in long term it is very likely to happen again; whereas H < 0.5 

represents short memory that the current state of the process is more likely to reversed, for 

example, the so-called mean-reverting phenomena in financial markets. As for H = 0.5, the 

next state of the process is independent to its previous counterpart, that is uncorrelated.  

Conventionally, the Hurst exponent can be calculated by Rescaled Range Analysis which is 

also known as R/s method, which is similar to the idea of box-counting being mentioned, and 

the steps to apply are following. 

First, take auto-correlated residuals of log prices’ profile previous mentioned. Then apply 

linear regression to fit a line, by which then compute the residuals. This procedure is so-called 

linear de-trended [3]. 

Second, divided the whole series into n sub-intervals of equal length, in which, calculate the 

mean. Note that n starts from one. 

Third, calculate cumulative deviates obtained by subtracting the mean in each sub-interval. 

Fourth, find the maximum distance in sub-intervals as the range, which is the deviate of the 

largest value and the smallest value in that sub-period. 

Fifth, for each interval, calculate the standard deviation. 

Sixth, for all sub-intervals, compute the mean of all values which, for individual period, is its 

range divided by its standard deviation. 

To be continued, as the length n increases, for each obtained the value in Sixth. Stops when 

n reaches the half length of the whole time series. Now apply logarithm to all outcomes 

respects to different n, and the logarithm of all length n.  

Finally, fit a straight line of this two vectors by linear regression, which maximizes the errors. 

The slope of the line obtained is an approximation of Hurst exponent. 

Taking the daily spots of every 0 a.m as input, we have 
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   Figure(5):R/s method for  (0 a.m) daily spot; H=0.5408 with 2947 data points. 

With certain numbers of data, it is failed to reject the null hypothesis within a significant level 

of 95 percent (see [4] as the size of lag data increases the upper and lower bounds are more 

narrow around 0.5) that the data is uncorrelated, which to be exact, it has a long memory. 

However, as we compute Hurst exponent for other daily data, it is significantly different. 

 

Figure(6) (left:7 a.m) H=0.4128 ; Figure(7) (right:18 p.m) H=0.4773 

These two datasets show short term correlations with the Hurst exponents smaller 0.5, while 

their counterpart (figure 5) has a long memory. Overall, the variation of different states of H 

is an indication to the potential non-stationarity of the spot prices. 

 

 

3. Stationarity Analysis 

In general, fractional models for the electricity spot prices are based on the assumption that 

the process is stationary or at least characterized by either long-memory or mean-reverting 

(short-memory/anti-persistent). While as what the previous computations imply, it could be 

both. This is also supported by the work of Nielson and Haldrup [5] [6]. Before modelling, in 
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order to verify the stationarity of the electricity market prices. Here we briefly introduce the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, which is regarded as a widely used tool in 

econometrics. 

The KPSS is not only to test the trend-stationarity of the process, that is, in other words, the 

de-trended data’s stationarity, but also to verify whether the process has alternative unit 

root. By which in our case, for 2947 daily spots (at 0 a.m), it results in being stationary with 

0.05 significance level (Matlab code is provided in Appendix, file name: KPSS.m). This result is 

contradicted to our previous intuition, which is also claimed by other researchers. Thus 

further investigations are required for the KPSS test. 

According to the study of Cappuccio and Nunzio [7], the KPSS test is fragile to reveal potential 

non-stationarity. Irrespectively of much detailing in the test, briefly say, this paper has 

addressed the problem that the validation of KPSS test result relies on a much greater size of 

data than normal economic data size could be. The size distortion would cause over-rejection 

to null hypothesis that the data is not trend-stationary. Other words, for common financial 

data that without an adequate amount, the KPSS would mostly result in trend-stationarity 

even it might actually not be. 

Hence, based on the uncertainty of stationarity, we need to primary assume that it has the 

potential to be non-stationary. Based on which, in next chapter, we first build a stationary 

model to compute the fractal dimension to further investigate this. Next, to cope with the 

non-stationarity, we will make a proposition to let the model compatible in such 

circumstance. 

 

 

 

4. Fractional Dimension 

 

4.1 Diffusion Modelling 

As Brownian Motion is widely used in financial modelling, which describes the movement of 

particles. Particle diffusion model can be well applied to our case as well. We presume the 

price moves like particles. From a prospective of which, we can start with modelling particle 

diffusion and its future behaviour, by deriving the diffusion equation.  

Let 𝑢(𝑥, 𝑡) be the density (number of particles in a unit length) of particles at location 𝑥 at 

time 𝑡. Let 𝜆 be the distance that the particles have moved in a small time interval t. And we 

assume 𝑢(𝑥, 𝑡) and 𝑢(𝑥, 𝑡 + 𝜏) are independent. Then we have 𝑢(𝑥, 𝑡 + 𝜏) as an equation as 

follow; and the coming derivations of diffusion equation are originally provided by Einstein 

[8]: 
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𝑢(𝑥, 𝑡 + 𝜏) = ∫ 𝑢(𝑥 + 𝜆, 𝑡)p(𝜆)𝑑𝜆

+

−

 

Where p(𝜆) is the PDF (probability density function) of 𝜆, we consider it a symmetric 

distribution. The equation above can be interpreted as that the density of particle at time 𝑡 +

𝜏 is the integral over all possible number of particles 𝜆 being put, and its probability is p(𝜆). 

With a small increment of time 𝜏, by applying Taylor expansion to the term of function 𝑢 we 

obtain: 

𝑢(𝑥, 𝑡 + 𝜏) = 𝑢(𝑥, 𝑡) + 𝜏
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+

𝜏2

2!

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
+ ⋯ 

𝑢(𝑥 + 𝜆, 𝑡) = 𝑢(𝑥, 𝑡) + 𝜆
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+

𝜆2

2!

𝜕2𝑢(𝑥, 𝑡)

𝜕𝜆2
+ 

… 

As 𝜏 is considered to be small, then 𝜆 is also treated as a small value. Thus we only keep the 

first three terms and omit the rest so an equation can be formed as: 

𝑢(𝑥, 𝑡) + 𝜏
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=  𝑢(𝑥, 𝑡) ∫ p(𝜆)𝑑𝜆

+

−

+
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
∫ 𝜆p(𝜆)𝑑𝜆 +

+

−

 

𝜕2𝑢(𝑥, 𝑡)

𝜕𝜆2
∫

𝜆2

2!
p(𝜆)𝑑𝜆

+

−

 

𝑢(𝑥, 𝑡) we consider it diffuses the same way in all directions, which means that p(𝜆) is a PDF 

as well as an even function, whereas 𝜆 is odd function itself (imagine −𝜆 𝑎𝑛𝑑 + 𝜆). We then 

obtain a partial differential equation (PDE) in a form that we will later be majorly focused on 

to give a solution: 

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
                                                 𝐸𝑞 1.1 

Where 𝐷 is the diffusion constant denoted in Einstein’s famous paper in 1905 [6]: 

𝐷 = ∫
 𝜆2

2𝜏
p(𝜆)𝑑𝜆

+

−

 

Before we go further in particle diffusion, we need to come back to our price data and see 

how its statistics behaves as time goes by, and following is the second moments of the spot 

prices.  
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Figure (8): (daily 0 a.m) second moments 

As we can see that as time proceeds, the second moments, which are correlated to the 

volatility, diverge significantly in an upward trend. Also by considering the self-affine 

behaviour which the series has “memory”, we can propose a model in a Lévy process, which 

is originally inspired by J. Blackledge [9]. A Lévy distribution has an infinite second moment 

[10]. And it distributes in a similar way itself after many steps. Particularly it’s a self-affine 

process that meets the requirement of our model. The Gaussian distribution is similar to itself 

as well, it is considered a special case of Lévy distribution. A symmetric Lévy distribution, of 

which the characteristic function 𝑃(𝑘) is: 

𝑃(𝑘) = 𝑒−𝑎|𝑘|𝛾
, 𝛾(0,2) 

(Noting that when 𝛾 ≥ 2, 𝑃(𝑘) is Gaussian) 

Where 𝛾 is Lévy index and 𝑎 is a positive constant. Here we have a quick review of Fourier 

Transform for further derivations. For functions “𝑓” and "𝑔”, according to convolution 

theorem that : 

𝓕{(𝑓 𝑔)}= 𝓕{𝑓}𝓕{𝑔} 

Where “ ”denotes the convolution: 

(𝑓 𝑔)(𝑡): = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

+

−

 

And “𝓕” denotes Fourier Transform, which by definition is: 

𝓕{𝑓(𝜔)}: = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜔𝑑𝑥

+

−

 

And the inversed Fourier Transform is denoted by: 

𝑓(𝑥) = 𝓕−1{𝓕{𝑓(𝜔)}} =  ∫ 𝓕{𝑓(𝜔)}𝑒2𝜋𝑖𝑥𝜔𝑑𝜔

+

−

 

By applying Fourier Transform and the convolution theorem to the equation above, then in 

the Fourier space it becomes: 
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                                        𝑈(𝑘, 𝑡 + 𝜏) = 𝑈(𝑘, 𝑡)𝑃(𝑘)                                              𝐸𝑞(1.2) 

Where“𝑈” and “𝑃” are characteristics function obtained by the Fourier transform of 𝑢(𝑥, 𝑡) 

and the PDF 𝑝(𝑥). Based on the work of [11], we are about to see that the fractional 

derivatives with Lévy process are self-affine process, which we consider the diffusion process 

of 𝑢(𝑥, 𝑡) to be in terms of modelling. As we recall the characteristics function: 

𝑃(𝑘) = 𝑒−𝑎|𝑘|𝛾
= 1 − 𝑎|𝑘|𝛾 + ⋯, 𝛾(0,2] 

 In order to derive a generalized form of Eq. (1.1), similarly, we expand Eq. (1.2) in Taylor 

Series as 𝜏 is small. 

𝑈(𝑘, 𝑡 + 𝜏) 𝑈(𝑘, 𝑡) + 𝜏
𝜕𝑈(𝑥, 𝑡)

𝜕𝑡
 

𝑈(𝑘, 𝑡)𝑃(𝑘) 𝑈(𝑘, 𝑡) − 𝑎|𝑘|𝛾𝑈(𝑘, 𝑡) 

𝑈(𝑘, 𝑡 + 𝜏) − 𝑈(𝑘, 𝑡)

𝜏
 −

𝑎

𝜏
|𝑘|𝛾𝑈(𝑘, 𝑡) 

Noting the Riesz fractional derivative in “classical case” that [12] (this will be then covered): 

𝓕 {
𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
} (𝑥) =  −|𝑘|𝛾𝑈(𝑘, 𝑡)                                        𝐸𝑞 (1.3) 

(Note that 𝑘 can be interpreted in terms of angular frequency as: 𝑘 = 𝜔 ). 

                                                  
𝜕𝑈(𝑘, 𝑡)

𝜕𝑡
=  −

1

𝜏
|𝑘|𝛾𝑈(𝑘, 𝑡) 

Next, by performing the inverse Fourier Transform, we obtained a generalized form:                                        

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
 ,                     𝐷 =

𝑎

𝜏
                  𝐸𝑞 (1.4) 

Where 𝐷 is the generalized diffusion constant. Moreover, the left side of Eq. (1.3) can be 

derived into:  

 
𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
=  −

1

2𝜋
∫ |𝑘|𝛾𝑈(𝑘, 𝑡)𝑒𝑖𝑘𝑥𝑑𝑘

+

−

 

With a solution of the singular initial condition, as0, 𝑢(𝑥, 𝜏)𝑢(𝑥, 0) = 𝛿(𝑥), which is given 

by: 

𝑢(𝑥, 𝜏) = 𝓕−1{𝑈(𝑘, 𝑡 + 𝜏 − 𝑡)} = 𝛿(𝑥, 𝑡 − 𝑡) 𝓕−1{𝑃(𝑘, 𝑡 − 𝑡)} 

          =  
1

2𝜋
∫ 𝑒−𝑖𝑘𝑥 { ∫ 𝑒𝑖𝑘(𝑡−𝑡)𝑃(𝑘, 𝑡 − 𝑡)𝑑(𝑡 − 𝑡) 

+

−

}

+

−

𝑑𝑘  

             =
1

2𝜋
∫ 𝛿(𝑥)𝑃(𝑘, 𝑡 − 𝑡)

+

−

𝑑𝑘 =
1

2𝜋
∫ 𝑒−𝑖𝑘𝑥−𝐷|𝑘|𝛾𝑡𝑑𝑘

+

−
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Where 𝛿(𝑥 − 𝛼) is denoted as Dirac delta function which (would be explained later) has an 

expression: 

𝛿(𝑥 − 𝛼) =  
1

2𝜋
∫ 𝑒−𝑖𝑝(𝑥−𝛼)𝑑𝑝

+

−

 

 

Thus the solution can be re-written as: 

𝑢(𝑥, 𝑡) =
1

2𝜋
∫ 𝑒−𝑖𝑘𝑥−𝐷|𝑘|𝛾𝑡𝑑𝑘                                        𝐸𝑞 (1.5)

+

−

 

Which is itself Lévy distribution. Thus it is consistent with the fractional derivatives and we 

can carry on. 

For a brief, 𝛿(𝑥) is the Dirac delta function, introduced by physicist Paul Dirac, is interpreted 

as: 

𝛿(𝑥) = {
+,                 𝑥 = 1
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

It is not a function in traditional sense as no function defined on real numbers has these 

properties [13].  

 

4.2. Past Dependency Analysis based on Fractional Integral 

According to the model above, we have the Lévy index (0,2] . However, in order to have a 

better representation of the dimension of the power market price signal as time passes. We 

define 𝑞(0,1)  as the order of differentiation respect to time 𝑡, which is a part of a fractional 

differentiator. Before further derivation, the properties of fractional differentiation are 

required to be analysed. 

As a definition, a fractional differentiation respect to time is represented as: 

𝐷𝑞𝑓(𝑡): =
𝑑𝑘

𝑑𝑡𝑘
[𝐼𝑘−𝑞𝑓(𝑡)] ,       𝑘 > 𝑞 

Where D is a differential operator; 𝑘 in here is integer whereas 𝑞 is not an integer but 

“fractional number”, 𝐼 represents integration. According to Riemann-Liouville integral, 𝐼 

could be expressed as: 

    𝐼𝛼𝑓(𝑡) =  
1

Γ(𝛼)
∫

𝑓(𝜏)

(𝑡 − 𝜏)1−𝛼
𝑑𝜏,   𝛼 > 0                                 𝐸𝑞 (1.6)

𝑡

0

 

Where Γ(𝛼) is Gamma function for real number: Γ(𝛼)= (𝛼 − 1)! . As we can see that the 

integral at time t can be interpreted as integrating over all the past values of 𝑓(𝑡) in a form 
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of a convolution. Thus this process is consistent with the self-affine property that the price 

now is somehow correlated or anti-correlated with its historical values. 

Nevertheless, as an extension, we introduce Riesz-Caputo fractional derivative [14] (RC 

represents a Riesz-Caputo):  

𝐷𝑅𝐶
𝑞 𝑓(𝑡) =

1

2
{𝐷+

𝑞𝑓(𝑡) + (−1)𝑛𝐷−
𝑞𝑓(𝑡)} 

A left Riesz-Caputo fractional derivative: 

𝐷+
𝑞𝑓(𝑡) =  

1

Γ(𝑛 − 𝑞)
∫ {

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝜏)} (𝑡 − 𝜏)𝑛−𝑞−1𝑑𝜏

𝑡

𝑎

 

Where 

  𝑛 > 𝑞 > 𝑛 − 1 

And the right Riesz-Caputo fractional derivative: 

𝐷−
𝑞𝑓(𝑡) =  

1

Γ(𝑛 − 𝑞)
∫ {−

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝜏)} (𝑡 − 𝜏)𝑛−𝑞−1𝑑𝜏

𝑡

𝑎

 

Moreover, its Fourier Transform is [15]: 

𝓕{𝐷𝑥
𝑞𝑓(𝑥, 𝑡)}(𝑥) =  |𝜔|2𝑞𝐹(𝜔, 𝑡),                                   𝐸𝑞 (1.7) 

Base on the previous derivation, we see that Eq. (1.3) has self-affine property as well as the 

fractional derivative/integral has been mentioned, in which, the past time correlation 

suggests us to do some tiny modification so that the model obtains parts as derivative respect 

to time to be past time dependent, which is, in addition, also consistent with the self-affinity.  

Hence our goal is to find variable 𝑞 as a dimension indicator that is rather done by 

investigating its intrinsic property, instead of solving a fractional partial differential equation, 

which might end up with some complicated terms in time space; Even though, either ways 

seem inevitable to discuss the fractional PDE, for both real and complex space by Fourier 

Transform. In which, the integration needs to be discussed. 

Specifically, to the concern of our modelling, 𝑡, 𝜔 and 𝜏 are physical values. They are positive 

and 𝜏 is smaller or equal to 𝑡, which is a segment of current time 𝑡. Thus, in here Fourier 

Transform is not as it is generally defined as an integral over all real numbers but constrained 

to corresponding circumstances, for example, the Fourier Transform respect to 𝑥: 

𝑈(𝜔) =
1

2𝜋
∫ 𝑢(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥

+

0

, 0 <  𝑥 
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4.3 Modelling 

To propose an extended model based on earlier considerations, we introduce a fractional 

version of Fokker Planck Equation [16], in which, the PDF of the diffusion process is 

characterised by: (note that we use our pre-defined variable names for convenience) 

𝑃(𝑘, 𝑡) = 𝑒−𝑎|𝑘|𝛾𝑡𝑞
, (0 <  𝑞 ≤ 1;  0 <  𝛾 ≤ 2) 

While the equation with the PDF (𝑥, 𝑡) :  

𝜕𝑞𝑝(𝑥, 𝑡)

𝜕𝑡𝑞
=

𝜕𝛾{𝑝(𝑥, 𝑡)𝑠(𝑥, 𝑡)}

𝜕𝑥𝛾
                                       𝐸𝑞 (1.8) 

Where function 𝑠 is arbitrary. Since constant 𝑞 can take any values from zero to one, it is 

appropriate to define: 

𝑞 =
𝛾

2
,    (0 <  𝑞 ≤ 1;  0 <  𝛾 ≤ 2) 

By which we can preserve the homogeneity of this equation so that it is consistent with the 

hypothesis of self-affinity [17]. As an explanation, Assume that the distribution function of 

our function 𝑢(𝑥, 𝑡) is 𝑝(𝑡), it is homogeneous in a condition if: 

𝑝(𝑎𝑡) = 𝑎𝑞𝑝(𝑡) 

Which can be interpreted that the distribution 𝑝 at time 𝑎𝑡 is “similar” to the distribution 

itself at time 𝑡. The way how they are similar each other is ruled by the factor 𝑎𝑞. This 

relationship is just so-called self-affinity. 

To be continued, as the procedure before, by Taylor expansion to the left side of Eq. (1.2), a 

differentiated form with 𝑈(𝑘, 𝑡) can be derived as 𝜏 0: 

𝜕𝑈(𝑘, 𝑡)

𝜕𝑡
= −𝐷|𝑘|𝛾𝑈(𝑘, 𝑡), 𝐷 =  

 𝑡𝑞

𝜏
    

Which, in frequency space, indicates the asymptotic changes of the magnitude of impulse at 

frequency zero as the time interval increases its size with a nearly zero magnitude. Where the 

impulse is described by the function (𝑥 − 𝛼) , known as the Dirac delta function which has 

been mentioned before. Moreover, it can be interpreted in a way that, it is the change of the 

number of same price value of every 𝜏,  say, for example, every five minutes or three seconds, 

etc. And 𝜏 is so small that it is almost zero. As we imagine a tempered distribution, which 

means a test distribution approaches its distribution function as the number of trials 

increases; In particular, we assume there is only one trial being put, such that, the distribution 

of this single result has a very sharp peak and has the probability of one, which looks like an 

impulse described by delta function; In a general sense, as the number of trials increases, the 

peak of the impulse may become less sharp. Thus, how this distributions varies as time 

proceeds is exactly why we introduced delta function and the derivative of 𝑈(𝑘, 𝑡) respect to 

time we mentioned above. Furthermore, the impulse indicates how the tempered 

distribution varies as the number of trials gets greater; Therefore it is not hard to presume 
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that, the convolution of the initial condition of a distribution and the impulse (delta function), 

becomes the distribution itself. Denoting as: 

𝑝 = 𝑝 𝛿 

Where 𝑝 is the tempered distribution function and 𝑝 represents the distribution function 

itself. Then we replace 𝑠(𝑥, 𝑡) with 𝐷𝑞,  as function 𝑠 is arbitrary. Our model can be written 

as: 

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
= 𝐷𝑞 𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
,                 (𝐷 = 𝐷𝑞)      𝐸𝑞 (1.9) 

Then we immediately find an equivalent relationship linked up each derivative, such that: 

 (𝑖𝜔)−𝑞𝓕 {
𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
} (𝜔) = −|𝑘|−𝛾𝓕 {

1

 𝐷

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
} (𝜔) 

𝐸𝑞 (1.91) 

Which is based on the classical Riesz derivative Eq. (1.3) that: 

𝓕 {
𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
} (𝑥) =  −|𝑘|𝛾𝑈(𝑘, 𝑡)   

Then we get: 

𝓕 {
𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
} (𝜔) = 𝓕 {

𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
} (𝑘) 

                                                             
(𝑖𝜔)𝑞

 𝐷𝑞 = −|𝑘|𝛾 

Review that homogeneity holds if 𝛾 = 2𝑞, by which, self-affinity also holds. Therefore we 

have:  

𝑘𝑞 = 
𝑖(𝑖𝜔)𝑞/2

 𝐷𝑞/2
 

However, there is a problem that this equation holds for homogeneity, but at the same time, 

it loses its meaning for fractional derivative. In other words, this relationship makes the 

equation no longer fractional but turns into the classical heat equation, according to the study 

of [18]. Applying this relationship is inappropriate to model a fractional self-affine distributed 

signal. The derivation is wrong based on considering the Levy index is twice as the dimension 

indicator 𝑞. In which it would end up with coefficients being cancelled out. Moreover, the 

“fractional” version of Fokker-Planck Equation is not really “fractional” regarding the previous 

assumptions. Therefore we have to be careful to re-think of the relationship of 𝑞, 𝛾 in Eq. (1.9) 

so that it is both fractional and homogeneous. But it seems un-fixable, as we now 

demonstrate the example in [17]. If we start from the original equation Eq. (1.1) but with 

diffusion coefficient 𝐷  as below: 
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𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
, 𝐷 =  

 𝑡2

𝜏
 

We change the derivative order respect to time to 𝑞, and get: 

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
= 𝐷

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
 

Then the only way to keep it homogeneous to time is to substitute the order of diffusion 

coefficient 𝐷, such that: 

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
= 𝐷′𝑞

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
,          𝐷′𝑞 = 𝐷 =

 𝑡2

𝜏
 

However, respect to 𝑥, homogeneity does not hold. Thus we have to replace the counterpart 

regarding 𝑥 with 2𝑞. Then we get: 

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
= 𝐷𝑞 𝜕𝛾𝑢(𝑥, 𝑡)

𝜕𝑥𝛾
, 𝛾 = 2𝑞 

Which unfortunately leads us back to the “non-fractional” result that we started with. 

However, based on the study of [17], we find out a condition, in which the homogeneity and 

fraction would be both preserved such that: 

𝛾

2
= 1 − 𝑞,        (0 <  𝑞 < 1;  0 <  𝛾 < 2) 

Thus, to be continued with what we previous derived, we get: 

(𝑖𝜔)𝑞

 𝐷𝑞 = −|𝑘|2−2𝑞 

 

4.4 Solutions 

4.4.1 General Method 

Conventionally, a partial differential equation in the form of our model can be solved by 

Green’s function. Generally speaking, we need to the find a Green’s function 𝑔(𝑥, 𝑡) such that: 

{
𝜕𝑞

𝜕𝑡𝑞
− 𝐷𝑞 𝜕𝛾

𝜕𝑥𝛾
} 𝑔(𝑥, 𝑡) = 𝛿(𝑥 − 𝑡) 

And the solution can be expressed in terms of the form below: 

𝑢(𝑥, 𝑡) = ∫ 𝑔(𝑥, 𝑡)𝑓(𝑥)𝑑𝑘

+

−

 

Nevertheless, we need to consider the homogeneity of our model, which consists two 

aspects. First, the initial boundary condition is homogeneous; Second, the function itself is 

homogeneous. Here we consider the second for our case because the homogeneity is 

consistent with the property of self-affinity.  
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So again, it features the property of self-affinity. Overall, as the initial boundary condition of 

𝑢(𝑥, 𝑡) is unknown, we consider it inhomogeneous. Thus our goal is to find a Green’s 

function’s solution to a homogeneous function with inhomogeneous boundary conditions, 

under which the equation satisfies 

𝑢(𝑥, 𝑡|𝑥0) = 𝑓(𝑥, 𝑡),            lim
|𝑥|→∞

 𝑢(𝑥, 𝑡) = 0 ∀ 𝑡 

There are many researches being done for the model in our form. Here we have a look at a 

very rigorous one, M.M Meerschaert and H.-P. Scheffler.[19], in which, a general solution is 

provided for a fractional equation in a form that 

𝜕𝑞𝑝(𝑥, 𝑡)

𝜕𝑡𝑞
− 𝐷𝑞 𝜕𝛾𝑝(𝑥, 𝑡)

𝜕𝑥𝛾
= 0 

Where 𝑝(𝑥, 𝑡) can be considered the PDF of 𝑢(𝑥, 𝑡) in our case. And the solution is 

𝑝(𝑥, 𝑡) =
𝑡

𝑞
∫ 𝑔(𝑥, 𝜉)𝑓𝑞 (𝑡𝜉

−
1
𝑞) 𝜉

−
1
𝑞

−1
𝑑𝜉

+

0

 

Where 𝑔(𝑥, 𝜉) is the Green’s function solution; 𝜉 denotes frequency in Hertz, where 2𝜋𝜉 =

𝜔; And 𝑓𝑞is the PDF of a stable distribution with the Laplace Transform of 𝑒−𝑠𝑞𝑡, which in this 

case is specified with the operator   such that 

{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑞𝑡𝑑𝑡

+

0

 

 And a distribution is stable when the sum of independent random variables of this 

distribution has the same distribution as itself. (Note that the above interpretation are 

simplified translation from the original, which is too restrictive for demonstration.) In simple 

words, this solution is the convolution of the Green’s function and a PDF but has additional 

fractional terms comparing to the general form we introduced earlier, which makes it hard to 

compute 𝑞, even 𝑓𝑞 and 𝑔(𝑥, 𝜉) are both known.  

More importantly, we can see that if Fourier Transform would be applied, fractional terms 

must be dealt with, for which, we will then review. 

 

4.4.2 Fourier Space Solution 

To recall the extension of fractional differentiation, according to Eq. (1.6) we have the left 

Riesz-Caputo derivative that: 

𝐷+
𝑞𝑓(𝑡) =  

1

Γ(𝑛 − 𝑞)
∫ {

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡)} (𝑡 − 𝜏)𝑛−𝑞−1𝑑𝜏

𝑡

𝑎

 

Where 
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  𝑛 > 𝑞 > 𝑛 − 1 

Which contains a derivative term 
𝑑𝑛

𝑑𝑡𝑛 𝑓(𝜏) inside the integration. This makes it difficult to be 

managed. But thanks to [17], actually we can simplify this term such that: 

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝜏) =

𝑑

𝑑𝑡
𝑓(𝜏) = 𝑓′(𝜏) 

The reason why is introduced by the notation of “Nondimensionalization”. Which, in general, 

indicates that if a system has intrinsic resonance frequency, length, or time constant, then 

these values can be recovered by nondimensionlization. To recall our model, which illustrates 

self-affine motions, it can be seen that by different scales it is similar to itself and so does a 

resonance frequency. Thus it implies that in Fourier space, scaling terms might be cancelled 

out and end up with a simple form. 

Recall that a distribution itself is formed up by the convolution product of its tempered 

distribution and delta function. Now we can re-interpret Eq. (1.2) as the concern to tempered 

distribution in Fourier space. 

𝑈(𝑘, 𝑡 + 𝜏) =  𝑈(𝑘, 𝑡)𝑃(𝑘, 𝑡) 

It illustrates that the function after some time can be expressed by the product of its original 

and the characteristics function of itself, thus we can re-write it into: 

𝑈(𝑘, 𝑡0 + 𝑡) =  𝑈(𝑘, 𝑡0)𝑃(𝑘, 𝑡) 

(Note that in general we can let 𝑡0 = 0) hence it is easy to see that if the characteristic 

function of its distribution is known, 𝑞 is also acquirable. In this case, as mentioned the PDF 

𝑝(𝑥, 𝑡) we considered, which we now recall that: 

𝜕𝑞𝑝(𝑥, 𝑡)

𝜕𝑡𝑞
=

𝜕𝛾{𝑝(𝑥, 𝑡)𝑠(𝑥)}

𝜕𝑥𝛾
   

Where 𝑠(𝑥) can be arbitrary and its characteristic function is given by: 

𝑃(𝑘, 𝑡) = 𝑒−𝑎|𝑘|𝛾𝑡𝑞
, 0 <  𝑞 ≤ 1 

In order to let the equation be consistent with our self-affine assumption, which is to be 

homogenous. According to some property, we previously found out about 𝑘, 𝛾, 𝑞,𝜔, Eq. (1.2) 

can be turned into a form with the initial condition that:  

𝑈(𝑘, 𝑡) =  𝑈(𝑘, 𝑡|𝑡0) exp{−𝑎|𝑘|𝛾𝑡𝑞} 

      𝑈(𝜔, 𝑡) =  𝑈(𝜔, 𝑡|𝑡0) exp {𝑎
(𝑖𝜔)𝑞

 𝐷𝑞 𝑡𝑞} 

𝑈(𝜔, 𝑡) =
𝑈(𝜔, 𝑡|𝑡0)

exp{−(𝑖𝜔)𝑞}
                                           𝐸𝑞 (1.92) 

Note that in here 𝐷 −
 𝑡𝑞

𝜏
, as 𝜏 is not considered to be very close to zero. Instead, as 𝜏 gets 

greater, 𝐷 turns out to be: 
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𝑈(𝑘, 𝑡 + 𝜏) − 𝑈(𝑘, 𝑡)

𝜏
 −

𝑎

𝜏
|𝑘|𝛾𝑡𝑞𝑈(𝑘, 𝑡) =  𝐷|𝑘|𝛾𝑈(𝑘, 𝑡) 

𝐷 = 𝐷𝑞 = −
 𝑎𝑡𝑞

𝜏
 

As a result, the homogeneity of 𝑝(𝑥, 𝑡) has also been recovered in Eq. (1.6), when we let 

𝑠(𝑥) = 𝐷 be a function of 𝑡. Furthermore, the PDF 𝑝(𝑥, 𝑡) of the financial signal in our model 

is Lévy distributed, and its tempered distribution is similar to its counterpart at some other 

time. When 𝛾 >= 2  it is Gaussian, which has been mentioned before. In the simplification of 

Eq. (1.92), the fractional order terms are cancelled out which again reals the significance of 

homogeneity or what we previous mentioned, nondimensionalization, but moreover, the 

self-affinity. In other words, the signal has the same structure when being observed by 

different time scales, and the structure as a property itself that would not be affected by 

scaling, for example, say, the density of a cube is not affected by its size or shape. 

However, in terms of giving an analytical expression of the signal, due to the unknown initial 

solution, we cannot make further hypothesis but to compute the index 𝑞 by the real time data 

to see how it behaves. So in next section, we propose a numerical method to compute the 

asymptotic value of 𝛾 when 𝑢(𝑘, 𝑡), 𝑡 are given. 

 

5. Numerical Approach for Non-Stationarity 

5.1 Asymptotic Approach 

Based on the analysis of Hurst exponent and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. 

The stationarity of the price movements cannot be guaranteed, therefore the potential non-

stationarity could lead to the variations of the fractal dimension exponent 𝑞, which makes it 

more difficult to scale comparing to a stationary model. Conventionally, non-stationary fractal 

time series are analysed by De-trended Fluctuation Analysis (DFA), which is first introduced 

by Peng et al [20], and then improved by [21]. Roughly speaking, it is a “signal stationalizing” 

process by signal de-trending linearly or non-linearly until it appears to be stationary. As it is 

previously mentioned, many researches in de-trending methods and obtaining multiple 

orders of data residuals are quite successful for acquiring stationary and independent data 

for some specific financial instruments, especially for S&P 500, to which, in recent years, by J 

Gatheral 2014 [22] linear stationarity of volatility are found which is similar to solution of Lévy 

flight in harmonics potential [23]. Generally, its key idea to deal with potentially non-

stationary time series is to suppose a relatively small time segment in which the signal stays 

stationary, provided with mathematical proof in corresponding circumstances [22]. Also in 

[9], the significance of this idea contributes decent work when dealing with non-stationarity. 

It is quite advantageous not to over-cut-off the auto-correlations of the signal as we consider 

it somehow shows long term or short term memory, which is consistent with the fractal time 

series hypothesis.  
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Overall, irrespectively to a complex de-trending model, we rather asymptotically compute 𝑞 

by regression for a small segment of time as yet it is relatively stationary within. According to 

J. Blackledge, 2010 [2], in a mathematical sense: 

|
𝜕𝑞

𝜕𝜏
| |

 𝜕𝑢

𝜕𝑡
| 

It is considered as that 𝑞 in a time window 𝜏 changes in a slower rate than the market price 

𝑢, of which the Fourier Transform respect to time is Eq. (1.92): 

𝑈(𝜔, 𝑡) =
𝑈(𝜔, 𝑡|𝑡0)

exp{−(𝑖𝜔)𝑞}
    

As there are complex terms of 𝑖 and potential negative values which are not friendly to 

logarithm we will then apply, we could take the absolute value for both sides. Because 𝑞 

indicates the relationship between time scaling and price magnitude, this relationship is of 

course not affected by signs. In addition, the complex number 𝑖 is considered “positive” while 

interpreted in complex space, and −𝑖  vice versa, which means a logarithm operation is also 

appropriate to be applied. And 𝑞 can be represented as below: 

exp{−(𝑖𝜔)𝑞} =  |
𝑈(𝜔, 𝑡|𝑡0)

𝑈(𝜔, 𝑡)
| 

2𝑞𝑙𝑛 (𝜔) = 𝑙𝑛 {𝑙𝑛2 {|
𝑈(𝜔, 𝑡|𝑡0)

𝑈(𝜔, 𝑡)
|}} 

𝑞 = −

𝑙𝑛 {𝑙𝑛2 {|
𝑈(𝜔, 𝑡|𝑡0)

𝑈(𝜔, 𝑡)
|}}

2𝑙𝑛 (𝜔)
 

Alternatively, to avoid the complex term, based on another form of Reisz fractional derivative 

in Eq. (1.6), we see that its “clean” of complex term with 𝑖. 

𝓕{𝐷𝑥
𝑞𝑓(𝑥, 𝑡)}(𝑥) =  |𝜔|2𝑞𝐹(𝜔, 𝑡) 

By which we re-organize Eq. (1.91) and get 

(𝜔)−2𝑞𝓕 {
𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
} (𝜔) = −|𝑘|−𝛾𝓕 {

1

 𝐷

𝜕𝑞𝑢(𝑥, 𝑡)

𝜕𝑡𝑞
} (𝜔) 

                                                                
(𝜔)2𝑞

 𝐷𝑞 = −|𝑘|𝛾 

Thus Eq. (1.92) becomes 

𝑈(𝜔, 𝑡) = 𝑈(𝜔, 𝑡|𝑡0) exp{(𝜔)2𝑞} 

We can see that it is not easy to be approximated with this representation, as the unknown 

initial condition function cannot be separated out. And even if the initial condition can be 

approached to some extent, still, the error could be gradually dominant due to the large 

amounts of operations with logarithm and square. It is an approximation due to the unknown 
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somehow. And it is more preferable if the approximation is applied elsewhere so that we can 

obtain a simple form. Thus we expand the exponential term and apply similar procedures as 

before. 

exp{(𝜔)2𝑞} = 1 + (𝜔)2𝑞 +
(𝜔)4𝑞

2!
…1 + (𝜔)2𝑞 

And the equation can be written as: 

𝑈(𝜔, 𝑡) =
𝑈(𝜔, 𝑡|𝑡0)

   {1 + (𝜔)2𝑞}−1
 

𝑙 𝑛{1 + (𝜔)2𝑞} = 𝑙 𝑛{|𝑈(𝜔, 𝑡)|} − 𝑙 𝑛{|𝑈(𝜔, 𝑡|𝑡0)|} 

Still, it is not convenient to cancel the complex number neither the exponential. And we 

propose 

𝑙 𝑛{(𝜔)2𝑞} = 𝑙 𝑛{|𝑈(𝜔, 𝑡)|} − 𝑙 𝑛{|𝑈(𝜔, 𝑡|𝑡0)|} 

By considering the convergence of their difference 

lim
|𝜔|→∞

 𝑙 𝑛{1 + (𝜔)2𝑞} − 𝑙 𝑛{(𝜔)2𝑞} = 0  ∀ 𝑞 > 0   

Which we compute the error for further illustration. 

  

Figure (9-10): it shows that as angular frequency gets larger the error reduces (left: q=1.5; right: q=0.5) 

Irrespectively to the value of 𝑞, the graph indicates that relatively large angular frequency in 

the Fourier domain is more preferable to make a well-perform approximation of the equation 

above. In other words, in the Fourier space we rather take, say, some larger output values or 

use some method to smoothly deal with, which in here, we consider the Fast Fourier 

Transform Algorithm. 

Therefore, to be continued with our derivation, we can arrive at a simple equation. 

𝑙 𝑛{|𝑈(𝜔, 𝑡)|} − 𝑙 𝑛{|𝑈(𝜔, 𝑡|𝑡0)|} = 2𝑞𝑙 𝑛(𝜔)  

Thus, as the values of 𝜔, 𝑈(𝜔, 𝑡) can be obtained by Discrete Fourier Transform with 

computer for a period of time of data, we can compute 𝑞 with linear regression methods to 

fit a line that best optimizes the values.  
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5.2 Implementation and Results 

As we can see that except the initial condition is still left unknown, the whole equation can 

be treated in a simple linear form such as 

𝑦 = 𝑏 + 𝑎𝑥 

Where we can consider the constant 𝑏 corresponding to the initial condition and 𝑎 to the Levy 

index 𝛾 that we are going to compute; 𝑦, 𝑥 is logarithm of |𝑈(𝜔, 𝑡)|2, 𝜔, respectively. The goal 

of linear regression is to fit a line that minimizing the orthogonal distance apart from each 

individual data point in the two dimensional plane of market price and local time. As a result 

the tangent rate of the line is the approximation of 𝛾 and 𝑏 the value respect to local initial 

condition. 

To the beginning of the algorithm, we set a length of moving time interval noted as 𝜏, within 

which, the distribution of price is assumed to be stationary. For the total data with a length 𝑡, 

we have 𝑡 − 𝜏 + 1 moving intervals, for each we compute a corresponding 𝛾 by linear 

regression. The value of 𝜏 should be chosen appropriately, relatively small but adequate for 

regression.  

Next, we Fourier transform the chosen data in the vector of length 𝜏, where the subscript of 

the scalars in the output vector corresponds to each angular frequency respectively in that 

time range, so we need another vector to contain those. Be careful that the angular 

frequencies in frequency space are just scales in the frequency axis, like real numbers in x-

axis, thus there is no need for a transformation of time values respected with 𝜋 as that: 

𝜔 =
2𝜋

𝜏
= 2𝜋𝑓, 0 < 𝜏 ≪ 𝑡 

Where 𝑓 denotes the general frequency in Hertz. Thus scaling can be ignored, and the angular 

frequencies are just the elements in subscript vector, which is consistent with the sequence 

order of inputs that are just integers from one to 𝜏. As previously discussed, values should be 

taken carefully, as only some of them reals significance and worth to used. The Discrete 

Fourier Algorithm is considered one of the best numerical methods so far. Before starting the 

linear regression, the absolute values should be taken, and then comes to logarithm. 
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Figure (11): values of q with moving window length 128 

 

Figure (12): Histogram of q to fit a Gaussian 
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Figure (13-14): left: moving first moment of q; right: moving second moment of q. 

As we can see that the q values cannot be concluded to distribute in Gaussian with much 

sharper peak. In general, it fluctuates between zero and one, while sometimes it gets greater 

than one. As we know that the Lévy index 𝛾 = 2 − 2𝑞, where 𝛾 ≥ 2 can attribute to Gaussian, 

if 𝑞 ≤ 0, which is also possible for real data, because the slope of the regressive fit line could, 

of course, be negative, in addition the equation does not lose its meaning in that kind of 

circumstance. A 𝑞 goes out of the range of 0 < 𝑞 ≤ 1 could only indicate the non-fitness of 

this model, which in our case, is rare and it only happens once that can be seen clearly from 

Figure (12) at the x-axis is around 900.  

Overall, it can be concluded as that the raw price (not after cutting residuals or de-

seasonalization, etc.) of the electricity market is neither Gaussian as far as we can see; nor is 

stationary as its dimension indicator 𝑞 is neither constantly stable nor showing any sign of 

convergence.  

 

6. Conclusion 

From our study we conclude that the spot price of the electricity market is not Gaussian 

distributed but has memory, in terms of which a fractal model describes it better. Also 

empirically, the persistent seasonal or cyclic behaviour of the prices can be taken as support. 

In the model we build, keeping the homogeneity preserves its fractional behaviour, so that 

we can approximate its dimension indicator 𝑞 that shows the non-stationarity of the prices, 

which contradicts the KPSS test; and with a very essential relationship to Lévy index that 𝛾 =

2 − 2𝑞, which means if 𝑞 is found to be negative in real data, which reveals a Gaussian by 𝛾 ≥

2, and this does not happen in our case, so again the process is not Gaussian.  

In fractional modelling, homogeneity is an essential part to hold. Otherwise, the process loses 

its “memory” to become uncorrelated. Which does not suit our case. However, irrespective 

to the periodic high spikes of the spots, the small fluctuations could be independent, it is 

better if our model is not fully fractional so that it can capture the independent occasions, 

which requires further study. And the accuracy of approximation of 𝑞 depends on whether 

the initial condition is known, where further explorations can be done for extension. 
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Appendix 

Matlab codes and data are in file named codes. Where the daily data at 0 a.m is used in this 

paper, the corresponding hourly data is in the file named BEUR.txt. 

 

References 

 

Papers references 

[1] Hosking, Jonathan RM. "Fractional differencing." Biometrika 68.1 (1981): 165-176. 

[2] Marathe, Rahul R., and Sarah M. Ryan. "On the validity of the geometric Brownian motion 

assumption." The Engineering Economist 50.2 (2005): 159-192. 

[3] Kantelhardt, Jan W. "Fractal and multifractal time series." Encyclopedia of Complexity and 

Systems Science. Springer New York, 2009. 3754-3779. 

[4] Turvey, Calum G., and Gabriel Power. "The confidence limits of a geometric brownian 

motion." Selected Paper prepared for presentation at the American Agricultural Economics 

Association Annual Meeting, Long Beach, California. Vol. 16. 2006. 

[5] Haldrup, N and Nielsen, _. M. (2006), Directional congestion and regime switching in a 

long memory model for electricity prices, Studies in Nonlinear Dynamics & Econometrics, 
10(3), September, 1-24. 

 

[6] Haldrup, N. and Nielsen, _. M. (2006), A regime switching long memory model for electricity 

prices, Journal of Econometrics, 135(1-2), 349-376. 

 

[7] Cappuccio, Nunzio, and Diego Lubian. "The fragility of the KPSS stationarity 

test." Statistical Methods & Applications 19.2 (2010): 237-253. 

[8]A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905). English translation; Investigations on the 

Theory of Brownian Movement (Dover, New York, 1956). 

[9]Jonathan Blackledge, 2010, The fractal market hypothesis: applications to financial 

forecasting, (2010). 

[10] Cartea, Álvaro, and Diego del-Castillo-Negrete. "Fluid limit of the continuous-time random 

walk with general Lévy jump distribution functions." Physical Review E 76.4 (2007): 041105. 

 

[11] Abea, S. and Thurnerb, S., Anomalous Diffusion in View of Einstein’s 1905 Theory of 

Brownian Motion, Physica, A(356), Elsevier, 403-407, 2005. 

https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=S1o9V5YAAAAJ&citation_for_view=S1o9V5YAAAAJ:Se3iqnhoufwC
https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=S1o9V5YAAAAJ&citation_for_view=S1o9V5YAAAAJ:Se3iqnhoufwC


27 
Zhirui Huang ID: 160794281  Sep/2017 

[12] Samko S. G., Kilbas A. A. and Marichev O. I., Fractional Integrals and Derivatives—Theory 

and Applications (Gordon and Breach, New York) 1993.  

[13] Dirac, Paul (1958), The Principles of Quantum Mechanics (4th ed.), Oxford at the 
Clarendon Press, ISBN 978-0-19-852011-5. 

 

[14] Agrawal, O. P., “Fractional variational calculus in terms of Riesz fractional derivatives,” 

J. Phys. A: Math. Theory. 40. 

[15] Kilbas, A. A., Srivastava, H. S., and Trujillo, J. J., Theory and Applications of Fractional 

Differential Equations_Elsevier, Amsterdam, 2006_. 

 

[16] Jespersen, S., Metzler R. and Fogedby, H. C., Lévy Flights in External Force Fields: 

Langevin and Fractional Fokker-Planck Equations and Their Solutions,Phys. Rev. E, Vol. 59, 
No. 3, 2736- 2745, 1995. 

 

[17] Inizan, P., “Homogeneous fractional embedding,” J. Math. Phys. 49, 082901 _2008_. 

 

[18] G.M. Zaslavsky. Hamiltonian Chaos & Fractional Dynamics. Oxford University Press, 

Oxford, 2005. 

 

[19] M.M. Meerschaert and H.-P. Scheffler. Limit theorems for continuous-time random walks 

with infinite mean waiting times. J. Appl. Prob., 41:623-638, 2004. 

 

[20] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L.Goldberger, Mosaic 

organization of DNA nucleotides, Phys. Rev. E 49, 1685 (1994). 

 

[21] A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J.-H. Peter, K. Voigt, Correlated and 

uncorrelated regions in heart-rate fluctuations during sleep, Phys. Rev. Lett. 85, 3736 (2000). 

[22] J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough. Available at SSRN 2509457, 
2014. 

 

[23] Camargo, R. Figueiredo, R. Charnet, and E. Capelas de Oliveira. "On some fractional 

Green’s functions." Journal of Mathematical Physics 50.4 (2009): 043514. 

 

 

https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/The_Principles_of_Quantum_Mechanics
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-19-852011-5


28 
Zhirui Huang ID: 160794281  Sep/2017 

Figures and Plots 

Figure(1). Histogram of 0 a.m daily spot, Matlab codes available in Appendix. File 

name:GBM.m 

Figure(2). Brendan Ryan. Available at:  

https://en.wikipedia.org/wiki/Fractal_dimension#/media/File:Fractaldimensionexample.PN

G 

Figure (3). Akarpe. 32-segment quadric fractal. Available at: 

https://en.wikipedia.org/wiki/Fractal_dimension#/media/File:32_segment_fractal.jpg 

Figure (4). Prokofiev.Box-counting for coast line of the Great Britain. Available at: 

https://en.wikipedia.org/wiki/Minkowski%E2%80%93Bouligand_dimension#/media/File:Gr

eat_Britain_Box.svg 

Figure (5-7). R/s method  computations for Hurst exponents. Matlab codes available at: file 

name: Hurst_Exponents.m 

Figure (8). (daily 0 a.m) second moments. Matlab codes available at: 

moving_second_moment.m 

Figure (9-10). Error (left: q=1.5; right: q=0.5). Matlab codes available at: log_error.m 

Figure (11). values of q with moving widow length 128: Matlab codes available at: 

compute_q.m 

Figure (12). Histogram of q to fit a Gaussian. Matlab codes available at: GBM.m 

Figure (13-14). First and second moment of q. Matlab codes available at: q_statistics.m 

 

 

https://en.wikipedia.org/wiki/Fractal_dimension#/media/File:32_segment_fractal.jpg
https://en.wikipedia.org/wiki/Minkowski%E2%80%93Bouligand_dimension#/media/File:Great_Britain_Box.svg
https://en.wikipedia.org/wiki/Minkowski%E2%80%93Bouligand_dimension#/media/File:Great_Britain_Box.svg

