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Abstract

In this paper we explore the dynamics of a nonlinear damped differential

equation, the Forced van der Pol Oscillator. We have done this by constructing

the systems bifurcation diagram as it offers a concise and qualitative way of

measuring the systems dependence on certain bifurcation parameters. We go

on to conclude that the system is invariant symmetric about our two subject

bifurcation parameters, as well as convergent to fixed point solutions along one

parameter axis and a stable limit cycle along the other parameter axis. The

system is found to undergo a Saddle-node bifurcation when an eigenvalue be-

comes zero, as well as a Supercritical Hopf bifurcation due to a pair of complex

conjugate eigenvalues. These both collectively split the bifurcation diagram

into different regions. We also show that one of the two calculated Saddle-

node branches is actually a global, Infinite-period bifurcation, which is due to

the oscillations period increasing to infinity, creating a saddle point.
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1 Introduction

Balthazar van der Pol was a pioneer in telecommunications and an electrical engineer

who when building electronic circuit models of the human heart, began to study the

triode oscillations he encountered in his work. To describe the periodic orbits he

found, Balthazar formulated his now famous equation, the Van der Pol oscillator.

The van der Pol equation is a classical example of a self oscillating system with

nonlinear damping. Energy is generated at low amplitudes and dissipated at high,

and typically gives birth to what’s known as a limit cycle. Researching the dynamical

properties these periodic solutions hold have become increasingly popular over recent

years, and due to the nature of the equation, it has become fundamental in describing

oscillating systems. To this date the van der Pol Oscillator has been used in several

applications in diverse fields such as biology, meteorology and sociology [1, 2].

Due to its vast applications and unique characteristics, better understanding the van

der Pol oscillator will shed light on the properties many of these oscillating systems

hold and also the potential for new applications. Therefore this paper sets out to

examine the dynamics of the system by constructing it’s Bifurcation diagram.

1.1 Method of analysis - Bifurcation diagram

Jules Henri Poincaré originally coined the term bifurcation when describing the sepa-

rating of equilibrium solutions in differential equations. His work showed that given

a system of differential equations that are dependent on a certain parameter, the

topological type of flow can alter as this parameter varies and several branches of

equilibria can come together to form a bifurcation point. Since then many classes
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of flows have been identified, and because of this bifurcation diagrams have become

useful tools in Mathematics for understanding how qualitative changes in flows can

arise due to varying parameters. Fixed points can be created or destroyed and their

stability can be altered, which can all be graphically represent on a single graph

[1, 3]. Hence by constructing this diagram for the van der Pol Oscillator, one can

gain a better understanding for the systems dependence on certain bifurcation pa-

rameters and represent the information in a concise, graphical manner. To do this,

this paper will be looking at the Saddle-node, Hopf and Infinite-point bifurcations,

as they sufficiently cover most of the systems dynamics. The mathematical program

Matlab will be used to numerically portray any plots, the bifurcation diagram and

it’s dynamics, and the built-in function ode45 will generate the phase space dia-

grams for the systems differential equations. But now we shall move onto the actual

formula.

2 The Forced van der Pol Oscillator

We shall be using the following form of the system taken from [1]

ẍ+ αφ(x)ẋ+ x = βp(t), (1)

where φ(x) is even and < 0 for |x| < 1, and φ(x) > 0 for |x| > 1. p(t) is peri-

odic for T and α, β are nonnegative parameters that are � 1. Now following [1]’s

work, rewriting the equation as an autonomous system and making a 2π
ω

periodic

transformation, the system can become
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u̇ = u− σv − u(v2 + u2) (2)

v̇ = σu+ v − v(v2 + u2)− γ. (3)

This shall be the Forced van der Pol variant that we use throughout the paper, where

the 2 bifurcation parameters we shall be studying in more detail are σ and γ.

3 Symmetry

We begin by exploring the symmetrical properties of the transformed Forced van der

pol Oscillator (2) and (3) in order to reduce any unnecessary computations. As γ

and σ are the bifurcation parameters to be examined, the symmetries for the system

shall be subject to them alone.

By substituting u → −u and v → −v into (2) and (3), the first symmetry for

the γ parameter can be explored, leading to

u̇ = −u+ σv + u(v2 + u2) (4)

v̇ = −σu− v + v(v2 + u2)− γ. (5)

Equation (4) now represents −u̇ while equation (5) represents −v̇ with a −γ. There-

fore it is evident that the dynamics of u̇ and v̇ are invariant under the substitution

γ → −γ. Hence, the oscillator will resemble a system that as a whole has begun to

rotate as γ passes through 0 into −γ, yet will retain the same fundamental charac-

teristics.
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Now again using a similar analyses for negative time t → −t and u → −u, the

symmetry for the σ parameter can be explored. (2) and (3) then become,

u̇ = −u− σv + u(v2 + u2) (6)

−v̇ = −σu+ v − v(v2 + u2)− γ. (7)

By now setting σ → −σ it is evident that (6) becomes −u̇ and (7) becomes v̇.

When γ = 0 the system will revert it’s rotation and oscillate in the other direction,

and as the systems flow is continuous, the same will occur for small ±γ. Therefore

(2) and (3) also share symmetries and retain their fundamental characteristics as

σ → −σ.

Consequently by combining both symmetries, the overall bifurcation diagram and

analysis can be condensed as each quadrant of the diagram repeats itself in a sym-

metrical manner. Hence only a single quadrant needs to be constructed to fully

understand the systems bifurcation diagram.

This conclusively means that only values of γ > 0 and σ > 0 will be considered

as it will significantly simplify the calculations. We therefore move onto the initial

bifurcation analysis for the system.

4 Special Cases

We begin by analytically solving the system for certain ’special’ parameter values as

this will form the basis for the global bifurcation diagram and analysis. The special

cases give birth to both fixed points as well as a stable limit cycle, and are found
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along the lines γ = 0 and σ = 0. However due to the systems spherically dynamics,

we first impose polar coordinates to further discretize the system.

This is begun by making the substitutions u = rcosθ and v = rsinθ, along with

using the identity

u2 + v2 = r2. (8)

Differentiating the above formula with respect to time yields

uu̇+ vv̇ = rṙ, (9)

where we then substitute in (2) and (3) to obtain

ṙ = r − r3 − γv

r
(10)

or

ṙ = r − r3 − γsinθ (11)

This is the first of two formulas and describes the radial velocity of the system, and

in order to calculate the rotational velocity θ̇, we make use of the second identity

(12) (taken from [3]),

uv̇ − vu̇. (12)

Substituting u = rcosθ and v = rsinθ into (12) returns
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r2θ̇, (13)

and we again use identity (12) but now with (2) and (3) to return

r2σ − uγ. (14)

Therefore by equating equations (13) and (14), as they are both derived from identity

(12), we can use them to formulate a function where θ̇ is the subject,

θ̇ = σ − γcos(θ)

r
. (15)

This is now the formula for the rational velocity of the system Forced van der pol

system, and with both polar coordinate equations, we can now explore the special

cases.

4.1 Along the line γ = 0

Before we begin this section, the reader must fully understand what is meant by a

fixed point and it’s stability, and therefore we shall summarise [3]’s example on fixed

points.

Given that a one-dimensional system’s flow is governed by ẋ = f(x), the system

will flow to the right when f(x) > 0 and to the left when f(x) < 0. At any point

at which the flow stops we encounter what is known as a fixed point, an equilibrium

solution defined by f(x∗) = 0, and the stability of this equilibrium point is defined

by the flow at sufficiently small distances. If a system converges back to a fixed
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point when studying the flow on either side of an equilibrium point, we say this is

a stable fixed point. Conversely, if the system diverges away, we say the fixed point

is unstable. The above summary of fixed points and their stability is portrayed in

Figure 1, where a black circle represents a stable and hollow represents an unstable

fixed point.

Figure 1: The vector field for the one-dimensional system, ẋ = f(x).

Therefore with an understanding for the nature of fixed points we can move onto the

first case γ = 0, where we find that the system produces a stable limit cycle and can

verify this by setting γ = 0 in (11) and (15) to yield

h(r) = ṙ = r − r3 (16)

and

θ = σt+ constant. (17)

By graphically representing (16) we can show it to have a stable solution at r = 1,

or in other words, a stable fixed point.
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Figure 2: Plot of (16) where the red dot at r = 1 symbolises a stable fixed point.

This however means that as t → ∞, r(t) → 1, and concludes that there exists a

stable limit cycle.

This emphasises that for any parameter value σ, the system will always converge

into a stable, symmetrical limit cycle if γ = 0, as portrayed in Figure 3.
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Figure 3: The Forced van der Pol system converging to a stable, symmetrical limit

cycle of radius length 1, when γ = 0 and σ = 0.5

4.2 Along the line σ = 0

Now by evaluating both ṙ = 0 and θ̇ = 0, the fixed point solutions along the line

σ = 0 can be uncovered. Using these with (11) and (15) lead to

γsinθ = r − r3 (18)

and
γcos(θ)

r
= 0, (19)

where the solution to (19) for θ is found to be π
2
. Subbing θ = π

2
into equation (18)

yields
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γ = r − r3, (20)

where Figure 4 graphically represents the different type of fixed point solutions for

γ.

Figure 4: This figure is a graphical representation of (20) where the full horizontal

lines portray solutions with 1 or 3 fixed points, and the dotted line is the boundary

where the number of fixed point solutions change - there exists a saddle point on this

line. In this graph a red dot represents a stable point and a red circle is unstable.

10
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From the above figure it is clear that if 0 6 γ < 2
3
√
3
, there are 3 fixed points where 2

are stable and 1 is unstable, and if γ > 2
3
√
3
, there is 1 stable fixed point. Therefore,

the oscillating dynamics of the system are destroyed along σ = 0, and depending on

the second bifurcation parameter, will either converge to 1 or 2 stable points (Figure

5).

Figure 5: This graph portrays the boundary parameter conditions for the system.

Along the red line there exists a stable, symmetrical limit cycle, along the green we

have 3 fixed points and along the purple we have 1 fixed point.
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Now that the special cases have been considered, the more elusive Saddle-node, Hopf

and Global bifurcations can be explored.

5 Saddle-node Bifurcations

The Saddle-node bifurcation is a tool for analysing the creation or destruction of fixed

points in a system, the fixed points move closer as a parameter varies and eventually

collide to mutually annihilate each other. At this point the derivative of the Jacobian

is 0, which occurs due to a zero eigenvalue [1, 3]. To illustrate how this works we

shall be highlighting a section from [3]’s work on the first order system

ẋ = r + x2.

[3] demonstrates that for varying r, the system undergoes a Saddle-node bifurcation

where the system goes from having 2 fixed points, x∗, to a saddle point and then to

none (Figure 6).

Figure 6: On the left we have r < 0, in the middle r = 0 and the right r > 0.

Therefore as r → 0− the parabola pushes up, forcing the 2 fixed points to converge

until they form a saddle point, a half stable point at r = 0 (x∗ = 0). As r > 0,

12



140281167

this point vanishes and any fixed points the system had are now destroyed. Hence

we recognise that the system has successful undergone a Saddle-node bifurcation

at r = 0. For the Forced van der pol oscillator we find that system undergoes a

Saddle-node bifurcation along a given trajectory for σ and γ. Therefore we begin

by noting that we require the solutions to the system where the fixed points are

mutually annihilated, u∗ and v∗, and where the system has a 0 eigenvalue leading to

a determinant = 0.

5.1 Formulating u∗ and v∗

Hence, by equating (2) and (3) to 0, they can be rearranged to yield

0 = u∗ − σv∗ − u∗r2∗ (21)

γ = σu∗ + v∗ − v∗r2∗, (22)

where the fixed points version of (8), u2∗ + v2∗ = r2∗ have been used. Now, rewriting

(21) and (22) in matrix form, they can be solved for u∗ and v∗ to yield the fixed

points solutions.

u∗ =
γσ

(1− r2∗)2 + σ2
(23)

v∗ =
γ(1− r2∗)

(1− r2∗)2 + σ2
. (24)

Please see Appendix 10.1 for calculations.
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Equations (23) and (24) now describe the systems Saddle-node points, but can be

analytically used to formulate separate trajectory formulas for both σ and γ, both

in terms of just r2∗.

5.2 Formulating σ and γ

Again using relation (8) but now with the newly constructed (23) and (24), we find

that,

r2∗ =
γ2

σ2 + (1− r2∗)2
(25)

or

γ2 = r2∗(σ
2 + (1− r2∗)2). (26)

Now utilizing the zero eigenvalue condition allows us to set the determinant of the

Jacobian equal to 0, which we must do in order to construct an equation in terms of

σ. Thus

det

1− v2∗ − 3u2∗ −σ − 2u∗v∗

σ − 2u∗ 1− u2∗ − 3v2∗

 =
[
0
]
, (27)

which can be re-arranged for σ2 to produce

σ2 = 4r2∗ − 3r4∗ − 1, (28)
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Please see Appendix 10.2 for calculations.

with the positive root

σ =
√
4r2∗ − 3r4∗ − 1. (29)

Therefore the above formula is the Saddle-node bifurcation trajectory for our first

parameter σ, and is only in terms of r2∗, as earlier stated. Now subbing (28) into (26)

yields the formula for the second parameter, γ2, again only in terms of r2∗,

γ2 = 2r4∗(1− r2∗), (30)

with positive root

γ =
√

2r4∗(1− r2∗). (31)

As (29) is strictly > 0 when 1√
3
< r∗ < 1, we only consider these values of r∗ for σ,

and as (31) is strictly > 0 for 0 < r∗ < 1, we again only consider these values of r∗

for γ (we have neglected negative r∗ values as r∗ is by definition positive). Therefore

plotting (29) against (31) both from 0 < r∗ < 1, while neglecting the imaginary

values for (29), results in Figure 7.
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Figure 7: The Forced van der pol Saddle-node bifurcation plot. The trajectories

mark the boundaries where the systems oscillating dynamics fundamentally change.

Figure 7 demonstrates the destructive nature of the bifurcation parameters and splits

the quadrant into different sections where fixed points are either known to exist or

not. Unlike with the special cases, Figure 7 is the first real analysis of the rela-

tionship between both parameters when they are both non-zero, and their affect on

the systems fixed points. However Figure 8 expresses how damaging the creation of

fixed points can be to a limit cycle’s flow, and how this can be achieved with minor

parameters changes.
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Figure 8: Here we have the Forced van der pol system when γ = 0.2, as well as

σ = 0.15 and σ = 0.25 from left to right respectively. In the chapter on Global

bifurcations we see that the Saddle-node branch examined in this plot is actually an

Infinite-period bifurcation, which occurs along a saddle-node trajectory.

We now move onto the next section that explores the creation of limit cycles from

stable fixed points, or vice versa, and what is known as a Hopf bifurcation.

6 Hopf Bifurcation

The Hopf bifurcation is another useful tool for understanding the dynamics of dif-

ferential equations, and is able to quantify the conditions needed for a stable fixed
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point loose stability. Given a two-dimensional system where both eigenvalues have

Re λ < 0, the system will converge to a stable fixed point. However if a parameter

varies and forces at least one of the eigenvalues to obtain a Re λ > 0 or both to be-

come complex conjugates (+iw,−iw), the fixed point will lost stability and undergo

a Hopf bifurcation.

Obtaining complex conjugate eigenvalues will force the system into a limit cycle;

although the reverse is also possible, a limit cycle can be reverted back into a stable

fixed point by obtaining two eigenvalues with Re λ < 0 [1, 3].

There are 2 possible types of Hopf bifurcations, a Supercritical or Subcritical. If

a decay parameter moves past a critical threshold to become a growth, the equilib-

rium state will loose stability and the system will undergone a Supercritical Hopf

bifurcation (Figure 9).

Figure 9: An illustration of the amplitude over time of a system that has undergone

a Supercritical Hopf bifurcation. The full line is the parameter value that falls below

the threshold, decay, and the dotted line falls above the bifurcation threshold, growth.
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If the trajectory jumps to an attractor in the form of a fixed point, limit cycle or

infinity after the system bifurcates, the system has undergone a Subcritical Hopf

bifurcation [3].

Nevertheless we can analytically compute the conditions for the Hopf bifurcation for

the van der Pol system by recalling that it’s eigenvalues must be complex conjugate.

This of course yields a Determinant(Jacobian) > 0 and a Trace(Jacobian) = 0.

Therefore by using these conditions, an equation describing the trajectory for the

Hopf bifurcation can be formulated in terms of σ2 and γ2, similarly to Saddle-node

section.

6.1 Radial length

We begin by calculating the Hopf bifurcation point using the fixed point solutions for

(2) and (3), again like the saddle-node section. However we then utilise the Trace

condition to conclude that

r2∗ =
1

2
(32)

is the radial length the Hopf bifurcation occurs at. We will use this solution in the

next subsection to solve our formulas for σ2 and γ2.

6.2 Formulating σ and γ

By now evaluating theDeterminant(Jacobian) > 0 condition yields the relation
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σ2 > 4r2∗ − 3r4∗ − 1, (33)

Please see Appendix 10.2 for calculations of a similar type.

which is a re-written version of (28). Furthermore by taking (32) and subbing it

into (26), we produce the following hyperbola

γ2 =
1

2
σ2 +

1

8
, (34)

which is portrayed in Figure 10.

Figure 10: This graph is for the entire hyperbola, equation (34), stretching over the

4 bifurcation quadrants.
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The above plot, Figure 10, portrays the entire hyperbola plane, however we only

require the North-Eastern quadrant due to the earlier mentioned symmetries.

Finally we use relation (32) with (33) and substitute this value into (34) to return

the bifurcation conditions for the hyperbola. These are,

σ >
1

2
(35)

and

γ >
1

2
(36)

Utilising all of the given information we can conclude that the Hopf bifurcation be-

gins at (σ, γ) = (1
2
, 1
2
) and continues onwards for growing σ and γ. This is represented

in Figure 10 as the blue curve in the north-eastern quadrant.

By graphically representing both the Saddle-node and Hopf bifurcation together

we obtain Figure 11 and 12.
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Figure 11: This graph represents both the Saddle-node and Hopf bifurcation. A red

line portrays the Saddle-node trajectory while the blue line is the Hopf trajectory

Figure 12: Zoomed portrait of Figure 11, showing how the Hopf bifurcation begins

at (σ, γ) = (1
2
, 1
2
) and crosses through the Saddle-node trajectory.

With the newly found information we can numerically plot the systems behaviour

and actually see the Hopf bifurcation take place. Additionally as [3] suggests, we can

also distinguish what type of Hopf bifurcation occurs.

By studying Figure 13 it is clear that the system has undergone a Supercritical

Hopf bifurcation. This is because the systems amplitude quickly grows into a stable

oscillation as σ passes beyond the Hopf bifurcation threshold, and does not jump to

any distance attractors.
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Figure 13: These 3 plots portray how the Forced van der Pol systems behaves as

we cross the Hopf bifurcation line with γ = 0.6 and an alternating σ. On the left

σ = 0.65, in the middle σ = 0.68 and on the right σ = 0.69. Nevertheless despite

somewhat resembling a ’perfect’ ’circle, in reality the system converges to a deformed

circle.

Furthermore as the right hand set of plots in Figure 13 highlights, the system has

successfully formed a limit cycle. From our Special cases analysis we deduced that a

limit cycle must also exist on the σ boundary axis, therefore no further bifurcations

can occur in-between. This means that the only qualitative change we exhibit is
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between a single fixed point and a single limit cycle as the system crosses the Hopf

boundary line right down to the axis boundary, respectively. This once again confirms

a Supercritical Hopf bifurcation.

We now explore the final type of bifurcation, a global bifurcation that can create or

destroy limit cycles throughout large regions of the phase space as opposed to a fixed

point segment.

7 Global Bifurcations

7.1 Infinite-period Bifurcation

The Infinite-period bifurcation is a method that quantifies the conditions needed to

destroy or create a limit cycles with the use of fixed points in a system. They can arise

when the speed of an oscillating system slows down as a parameter reaches a critical

threshold. The oscillation period lengthens and diverges to infinity as the parameter

reaches the critical value; a fixed point appears in result and we say that the system

has undergone an Infinite-period bifurcation. Beyond the critical parameter value, 2

fixed points appear and the system becomes phase locked [3]. This can be a global

phenomenon and is why it’s important to consider, hence we use [3]’s example as an

illustration.

Given the system

ṙ = r(1− r2)

θ̇ = µ− sinθ

24



140281167

where µ > 0, it’s concluded that the system approaches the unit circle while rotating

counterclockwise if µ > 1. However as µ decreases through 1 the oscillations period

increases, eventually becoming infinite as µ = 1. Thus a single fixed point is created,

the limit cycle is destroyed, and the system has undergone a Infinite-period bifurca-

tion. If µ < 1 the single fixed point will split into 2 fixed points, and an example of

the starting and ending states are illustrated in Figure 14.

Figure 14: On the left we have a stable limit cycle with an unstable fixed point,

µ > 1, and on the right we have a phase locked limit cycle with 3 fixed points, µ < 1.

Hence we now use the van der Pol system in polar coordinate form and more im-

portantly, equation (15), as this equation describes the orbital velocity of the sys-

tem.

When examining (15) we find that the system rotates counterclockwise globally when

θ̇ > 0 or σ > γ
r
for all r ∈ (0,∞). As σ decreases through σ = γcosθ

r
, the rotation

changes direction and 2 fixed points are born, an unstable point and a stable point.

Therefore a bottle neck is created around the saddle point θ = 0, where the oscil-

lations period increases severely as σ → γ
r
+ (Figure 15). This Saddle point is also

where the Infinite-period bifurcation takes place, and the 3 possible solution states

for (15) are all portrayed in Figure 16.
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Figure 15: This represents the diverging length of oscillations for the van der Pol

system as σ crosses the critical value, σ = γ
r
. In the final plot we can see that the

oscillations period has diverged to infinity.

Figure 16: These 3 plots represent the different solutions for (15). From left to right

we have no fixed point solutions, σ > γ
r
, then a Saddle-point when σ = γ

r
, marked

by a red star, and finally 2 fixed points when σ < γ
r
, the red dot corresponds to a

stable point while a circle corresponds to an unstable point.

From this we can conclude that the Infinite-point bifurcation occurs along one of the

two Saddle-node lines calculated in section 5, which was previously mentioned and

represented in section 5.2 Figure 8.

Now with all of the previously calculated bifurcations, a concluding topological ar-

gument can be deduced to examine how the system behaves in the different regions

of the bifurcation diagram.
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8 Topological Analysis

In the section on Special cases we established that there exists a stable limit cycle

along the axis line γ = 0 for σ → ∞, as well as that the Hopf bifurcation line

above γ = 0 (please see Figure 11) represents the destruction or creation of a limit

cycle. Therefore we conclude that a limit cycle must exist in-between both boundaries

(Region B Figure 17) as the system cannot exhibit discontinuous jumps when moving

off the γ = 0 boundary into Region B Figure 17. Because of this we additionally

find that parameter space above the Hopf bifurcation line and upper Saddle-node

branch, represent a region of stable fixed points where the system has ceased to

oscillate (Region A Figure 17). As an additional piece of confirmation, we find that

Figure 13 agrees with the above analysis.

Furthermore, in the section on Global bifurcations it was established that an Infinite-

period bifurcation occurs on a stable limit cycle at a Saddle-node point. Therefore

this bifurcation must emerge from the bottom of the two Saddle-node branches, as

we know that a limit cycle exists below this line (Black branch Figure 17). Therefore

as the system transitions from Region B up past the lower Saddle-node branch, an

Infinite-period bifurcation takes place and the system becomes phase locked. Now

consider the green axial line in Figure 17 that has 3 fixed points, and the Infinite-

period bifurcation branch. The area in between (Region C Figure 17) must contain

3 fixed points, 2 of which are created from the Infinite-period bifurcation and 1 from

a negative radial length. For an illustration of where a negative radial length can

arise from, please look at the green solution line in Figure 4.
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Figure 17: This is the final bifurcation diagram for the Forced van der Pol oscillator.

The different colours represent the different solutions that the system can hold and

that this paper has covered. While regions A, B and C represent areas of fixed points

and limit cycles respectively.

9 Conclusion

We conclude that the Forced van der Pol system is invariant under the transforma-

tions imposed by negative σ and γ values, which lead to simplifying symmetries for

the bifurcation diagram. The Special Cases analysis in section 4 established that

for γ = 0, there exists a stable limit cycle for all σ > 0, and that when σ = 0, the

system either has 3 fixed points (γ < 2
3
√
3
, green axis line Figure 17) or 1 fixed point

(γ > 2
3
√
3
, purple axis line Figure 17). The Saddle-node bifurcation followed and

dissected the graph into 2 regions, expressing branches where fixed points emerge on

limit cycles to phase lock them. Next came the Hopf bifurcation, which begun at

(σ, γ) = (1
2
, 1
2
) and increased along the cut-off trajectory of a hyperbola to distinguish
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regions where limit cycles loose stability and turn into fixed points, or vice versa.

Finally came the Infinite-period global bifurcation that was found to occur along the

lower of the two Saddle-node branches, a point where the oscillations period diverges

to infinity to create a saddle point. From this it was established that stable limit

cycles exist underneath the Infinite-period and Hopf bifurcation trajectories, and 3

fixed points reside inside the Infinite-period and Saddle-node cusp. Lastly, above

the Saddle-node and Hopf branch the system ceases to oscillate and converges to a

stable fixed point.
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10 Appendix

10.1 Appendix A

We firstly begin with

0
γ

 =

u∗ − u∗r2∗ − σv∗
v∗ − v∗r2∗ + σu∗


which can be rewritten as,

0
γ

 =

1− r2∗ −σ

σ 1− r2∗

u∗
v∗


This can now be inverted to produce,

u∗
v∗

 =

 1−r2∗
(1−r2∗)2+σ2

σ
(1−r2∗)2+σ2

−σ
(1−r2∗)2+σ2

1−r2∗
(1−r2∗)2+σ2

0
γ


and thus,

u∗ =
γσ

(1− r2∗)2 + σ2

v∗ =
γ(1− r2∗)

(1− r2∗)2 + σ2
.
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10.2 Appendix B

Beginning with (27)

det

1− v2∗ − 3u2∗ −σ − 2u∗v∗

σ − 2u∗ 1− u2∗ − 3v2∗

 =
[
0
]
,

we evaluate the first step of the determinate to yield

(1− v2∗ − 3u2∗)(1− u2∗ − 3v2∗) + (σ + 2u∗v∗)(σ − 2u∗v∗) = 0,

and then simplify it to

1− 4(u2∗ + v2∗) + 3(u4∗ + v4∗) + 6u2∗v
2
∗ + σ2 = 0.

Now by making use of the quadratic relation

(u2∗ + v2∗)
2 = v4∗ + u4∗ + 2u2∗v

2
∗,

we can re-write the above equation as

1− 4r2∗ + 3r4∗ + σ2 = 0,

and then

σ2 = 4r2∗ − 3r4∗ − 1.
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