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Abstract

Synchronisation is this deep tendency towards order in the natural world around us and
is one of the most persistent drives in the cosmos. The study of synchronisation is an
extremely prominent one, its implications being studied in areas of biology. engineering
and physics. To model such synchrony, simple time-delayed coupled units are investi-
gated with a view towards synchronisation properties. The behaviour of such oscillators
are analysed and conditions upon its coupling are derived in order to bring the system to a
synchronised state. For that purpose, we consider two linear complex valued differential
equations coupled by a time delayed feedback force. The corresponding linear stability
analysis yields a quasipolynomial whose solutions are investigated using a perturbation
scheme. Conditions are thus found that enable the system to become stable and the im-

portance of the time delay is evident in bringing synchrony to the coupled units.
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Chapter 1

Introduction

1.1 Synchronisation: A study

Synchronisation is a phenomena that takes place around us every day with both animate
and surprisingly, inanimate objects. These objects exhibit beautiful patterns of synchrony;
in nature we see the spontaneous synchrony of flocks of birds and fish swimming in or-
ganised schools, the fluidity of such movements being truly mesmerising. Taking a trip to
South-east Asia, the synchronous behaviour of fireflies that fill the river banks at night can
be witnessed, all flashing in rhythm, as male fireflies flash to attract the female fireflies.
This precise performance has sparked much interest of biologists and more specifically
mathematicians who have studied their synchronisation properties and have thus drawn
revolutionary conclusions. These patterns are evident even in biology; the reason you are
able to read this thesis is due to the synchrony of thousands of pacemaker cells in your
heart that exhibit a rhythm, sending a signal to the heart for it to pump blood and oxygen
around the body. In all essence, the human body relies on synchrony to keep alive. (Stro-

gatz, 2003). But why has this sparked so much interest for mathematicians?

Pikovsky et al. (2003) describes synchronisation to be an "adjustment of rhythms of os-
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cillating objects due to their weak interaction.” These objects that interact can be seen as
individual oscillators, as they change with time and a group of these oscillators can be
investigated as coupled units as they exhibit some sort of interaction or communication
together, which will be described as its coupling. An example would be the groups of
fireflies that communicate with light, or two pendulums that hang from a common sup-
port, interacting through the vibrations of this common support. Furthermore, synchrony
of coupled units can practically depend on a specific time delay in the coupling. Such
behaviour is apparent in many physical systems around us, like the human body and the
time delay in neural communication or even delay in radio signal transmission (Klinshov
and Nekorkin, 2013). Do such a systems still synchronise even when there is a delay
present? Such matters are crucial to the study of synchrony. Non-linear dynamics helps to
model such behaviour of coupled oscillators and analyse how and which conditions allow

the system to become synchronous.

1.2 Objectives

This dissertation aims to study the behaviour of two self-sustained oscillators, that is sys-
tems capable of producing their own rhythm, that adjust their rhythms by the coupling.
This will be done by looking at the equations of motion that govern two coupled oscillators
and thus obtain conditions on the coupling coefficients that enable the system to become
stable. It is important to note that these oscillators are studied in the most mathematical
sense. That is, they are analysed independent of their nature, not considering any external
physical units, mechanics or electronics. They are given the name oscillators, as the dy-
namical properties of the units display oscillatory behaviour, relative to the frequency, as

will be shown in this thesis.

These systems are further analysed by adding a time delayed feedback force. This is to
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see how the system will react to time delay and what conditions the coupling will need to
have in order for the system to become stable. The systems are reduced to an eigenvalue
problem that helps us determine stability. By considering areas of linear algebra and
application of perturbation techniques, we delve into stability analysis that allows us to

understand the behaviour of a system under change.

1.3 Summary

The thesis is organised as follows:

Chapter 2: This chapter begins by a simple analysis of uncoupled oscillators, resulting
in two individual one dimensional systems, which are reduced to an eigenvalue problem.
These are then individually analysed by considering real and complex variables and the
implications it has. It is interesting to see the qualitative behaviour of an uncoupled sys-
tem and to then draw necessary comparisons for when synchrony does actually occur like
in a coupled case.

Chapter 3: In this chapter, the main focus will be on a coupled system but without time
delay. After obtaining an eigenvalue problem, analysis into considering real and complex
variables leads us to derive conditions for stability on the coupling. When dealing with
complex variables, a perturbation expansion is implored to obtain stability conditions for
the oscillators.

Chapter 4: The preceding chapters provide the floor for this chapter as we consider the
coupled system but now with a time delay added. A similar perturbation expansion is
used, that considers disturbances in the system to get stability conditions on the coupling.
Chapter 5: This chapter will conclude the dissertation whilst summarising its findings. It
will also talk about further research that can and possibly has been carried out in this field

to further the understanding of the synchronised behaviour in time delayed systems.




Chapter 2

Uncoupled Oscillators

The study begins by looking at a system of uncoupled oscillators and observing its be-

haviour. The two oscillators, x and y have been modelled as follows:

i o= ax(t)

¥y = by()

These two equations are uncoupled, meaning there is no x in the y- equation and vice
versa. Physically, this implies that there is no interaction between the two oscillators.
In this simple case, the equations may be solved individually. This system is written in

matrix form:

-
=

b ¥
The solution is:

_'l'[f} — 1'(]("”

y(t) = yoe”

Where xy and yg are the initial conditions for x and y respectively. The behaviour of this

system depends on the variables @ and b. Let’s consider the cases when a,b are real and
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when complex.

2.1 Real Variables

The first case considered is when a,b € R. To analyse these systems, consider a fluid that
is flowing along the real line of the x axis, whose velocity varies according to the function
given by f(x) = &. At the points where the velocity is 0, there is no flow. These points
are called fixed points, satisfying f(x*) = 0 (Strogatz, 2000a). Fixed points help obtain a

qualitative image of the system and thus infer the long term behaviour.

Going back to the analysis of the system of the two oscillators, when solving for the
fixed points, it is clear to see that a fixed point can always be found at the origin, when
x* = 0. To classify this fixed point, the case when the coefficient a is positive or negative
is considered. Figure 2.1 shows the flow of the fluid, which is called the trajectory and
this is represented in a phase portrait, shown below. Matlab was used to illustrate this flow
and to plot a representation of the phase portrait, showing the different behaviour of the
fixed point. By plotting the linear equations in Matlab and then consequently finding fixed

points, the resulting qualitative behaviour can be witnessed.

Phaso Fortrait of whon a >0 Phase Partrait of when a <0
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Figure 2.1: Phase portraits of system: % = ax(t)
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The phase portraits above help observe the qualitative behaviour. When a = 0, then x is
monotonically increasing and the flow is towards the right. Here the fixed point at the
origin is unstable as the flow is moving away from this point, depicted by the open dot in
Figure 2. 1a. Furthermore, looking at Figure 2.1, when a < 0, then x is monotonically
decreasing. The fixed point at the origin here is stable, shown by the solid black dot and
here the flow moves towards the fixed point. (Strogatz, 2000a). The results from this
analysis can also be applied to the equation governing the second oscillator involving y,

since the equations are uncoupled and can be considered independently.

The systems discussed above represent one dimensional flow, where the trajectories ei-
ther approach a fixed point or diverge. The behaviour of the trajectories in systems of
this nature is only monotonic increase or decrease and there is never a periodic solution.
Therefore, when the variables a,b € R in this uncoupled system, there is never any oscil-

latory behaviour.

2.2 Complex Variables

Next, the case when both a, b are complex numbers is considered. Let a be a complex
number given bys:

a=ag + iay

where agp denotes the real part and a; denotes the imaginary part of the complex number.
Again, since the equations are uncoupled it is sufficient to consider the behaviour of the
x equation and the same behaviour will apply to the second oscillator given by the v

equation. When a is complex, the solution now is:

_r[f) — effﬂfeﬂ;!




Student ID: 130812805

Using Euler’s formula for complex numbers, this can we written as:

x(1) = €“® [cos(ayt) + isin(ayt)]

Since the solution now involves trigonometric functions, the system will oscillate with
frequency ay, otherwise it is exponentially increasing or decreasing depending on the sign
of the real part. First, we consider the case when ag < (0. Matlab was used to plot the real
and imaginary part of the function, using the commands real(x) and imag(x) and to plot
the spiral. Upon taking arbitrary values for ag, a;, the behaviour of such a system can be
seen in Figure 2.2, where a plot of the time series of the solution and the behaviour of fixed
point at the origin is shown. The time series in Figure 2.2a shows decaying oscillations
due to the negative real part and the origin is stable in Figure 2.2b, where the flow is

moving in towards the fixed point (Strogatz, 2000a).

Plot of Complex Function vs Time, Re{al<d Flot of Complox Function, Rea)<0
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T
—_—ran

a8} - = —imagirary| |
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~
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(a) Time Series {b) Stable Spiral
Figure 2.2: Behaviour of complex variables for ag = —0.2, ay = 1

Next, the behaviour of the system is observed when the real part is now positive. From
Figure 2.3a below, it is clear to see that the time series shows growing oscillations. Again
ay = | was chosen and with ag > 0, the fixed points will be an unstable spiral, shown in
Figure 2.3b, with the flow moving away from the origin. In general, if ap < 0, the oscilla-

tions will be damped while if ag > 0, the oscillations will be amplified.
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Figure 2.3: Behaviour of complex variables for ag = 0.2,a; = 1

A brief introduction on a system of two uncoupled oscillators was discussed in this chap-
ter, with a view towards looking at the stability and qualitative behaviour. It is interesting
to see how the behaviour of the system changes when the variables change from real to
complex. In one instance there is monotonic behaviour, whereas in the other, oscilla-
tory patterns can be observed. This will be something that will be perceived in the cases
discussed for coupled systems, where changing the variables from real to complex give
different conditions on synchronisation. This chapter provides a framework for the sub-
sequent chapters, in which similar equations will be utilised to model the oscillators and

synchronisation will be looked at.




Chapter 3

Coupled Oscillators

This chapter seeks to study the same system as in Chapter 2, but now when the two oscil-

lators are coupled by coupling coefficients K| and K. The following model is considered:

ax(t) — Ky(y(r) —x(1))

y = by(r) = Ka(x(r) = y(r))

P
Il

The aim here is to find conditions on the coupling coefficients that enable the system to
become stable. Practically, stability can be seen as some sort of stimuli, a small distur-
bance that shakes the system and so stability is the system coming back to its fixed state.
It is important to note that the system always begins as unstable, because if it began as
stable, the oscillators would already be in synchrony and thus there would be no need to

stabilise,

Therefore, the idea is to bring this system to stability by placing conditions on K| and K>.

The two-dimensional linear system above can be written in matrix form:

x a+ K, —K x

¥ —K, b+ K> ¥
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Stability of linear systems can be found by reducing the above system to an eigenvalue
problem. This is important because, analysis into the eigenvalues shows that the system

is stable if the real part of the eigenvalue is negative (Strogatz, 2000a).

As shown in Chapter 2, linear systems like this give exponential solutions, so for the above

system, general solutions of the form below are sought:

Substituting this into the two-dimensional system and cancelling out the non-zero scalar

factor e*' yields:

Ax = Ax
. i i ; .
Where the boldface x represents the matrix . which is an eigenvector of matrix A
Yo

with corresponding eigenvalue A and with

a+K;, —K

-K> b+ K>

also known as the Jacobian matrix (Strogatz, 2000a). From this, the eigenvalues can now

be deduced.

As seen in Chapter 2, when considering the variables a,b as real or as complex, there
was a significant difference in the solution and behaviour of the system. Hence, it can be
observed here too that changing these variables from real to complex will give different

conditions for stability on K} and K5. These two different cases will be considered next.

10
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3.1 Real Variables

The aim now is to find the eigenvalues, when a,b € [ | since they determine stability,

which will thus give conditions on the coupling. Recalling the Jacobian matrix:

a+K;, —K
—-Ky b+K;

The eigenvalues of this matrix are given by the characteristic equation det (A — A[) = 0,
where / is the identity matrix. So the characteristic equation here becomes:

a+ K, —A —-K;
det =10

—-K; b+Ky—A
This yields a long equation with many unknowns making it difficult to compute the eigen-
values. However, the actual eigenvalue is not necessarily needed, as all that is required to
determine is the real part of the eigenvalue for stability. So how to resolve if all the eigen-
values have negative real part? This can be done by checking some conditions, known as

the Routh-Hurwitz criterion.

Routh-Hurwitz Criterion:

For a two-dimensional linear system, the equilibrium is stable (real parts of the eigenvalue

are negative) if:

Trace(A) < 0

Determinant(A) > 0

where A represents the Jacobian matrix. The trace and determinant of this matrix deter-

mine the eigenvalues and subject to the conditions above, they ascertain stability (Li and

11
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Wang, 1998). Furthermore, it is important to note that the sum of the eigenvalues equals
the trace of the matrix (also found by the sum of the entries on the main diagonal), and
the product of the eigenvalues equals the determinant (also found by using ad — be, where

a, b, c,d represent the entries in the matrix respectively).

To understand these conditions a bit better, we look at if, a.b € R, then the eigenvalues
will be real or complex conjugates. Also, if we assume that the system is stable, then
these eigenvalues will have negative real parts. Therefore, we can see how this satisfies
the criteria, for both real and complex conjugates eigenvalues. Suppose the eigenvalues

are A} = pand A> = g, where p,g < 0 and p,qg € R. Then:

® The trace would give: Trace = A) + A3 = p+g < 0. Since, the sum of two negative

real numbers is always negative, this verifies the Routh-Hurwitz criteria.

o The determinant would give: Determinant = AjA; = pg > 0. Since, the product of

two negative real numbers is positive, this verifies the criteria for real eigenvalues.

Suppose now that the eigenvalues are complex conjugates l,_;z = p=+iq, where p,g €R,

with negative real parts (since the system is stable). Then:

e The trace is: Trace = A +A2 = p+ig+ p—ig=2p < 0. Since two times a negative

real number will always be negative, hence verifying this condition.

e The determinant is: Determinant = A = (p+ig)(p —ig) = p* + ¢* > 0. Since
both values are squared, the determinant is always positive, thus verifying this con-

dition for eigenvalues that are complex conjugates.

The above looked at understanding the conditions of the Routh-Hurwitz criterion a bit bet-
ter for eigenvalues that are real or complex conjugates and how they are verified. Eigenval-
ues that are complex will be explored later in Chapter 3.2. Thus, using the Routh-Hurwitz
criterion, the conditions of stability on our system can be determined in terms of the cou-

pling as:

12
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e The Trace gives: A} + A2 = a+ K| + b+ K3 < 0. This gives the condition in terms

of the coupling:
K\ +Ky<-(a+Db)

e The determinant gives: A 4y = ab+ aKs + bK) > (. This gives the condition in

terms of the coupling:

aks + bKy < -ab

Constraints need to be placed upon the variables a. b where both a, b need to be positive in
order to satisfy the inequalities and both need to be non-zero in order for the results to be
valid. To understand these conditions on stability, Matlab was used to visualise them by

plotting linear inequalities and using the confour command to shade, as seen by Figure 3.1.

Piot of Conditions on Stability in ki k2 Plane - Plot of Conditions on Stability in k1,k2 Plane
10 e P
Both
160
140
120
x 10
=0
=
40
o0
20 40 B0 B I:; 120 140 180 L ] 0 40 L] B 100 120 140 1H8a 180 200
4
{a) Stability conditions for a, b small (b) Stability conditions for a, b large

Figure 3.1: Conditions on stability for when a, b are real

By taking small positive arbitrary values for a,b, the conditions are illustrated as linear
inequalities with negative gradients, satisfying the yellow region as shown in the graph.
There are two stability boundaries, one caused by the inequality for the trace and the other

caused by the determinant. Judging by the graph, stability doesn’t occur for negative K

13
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values, however by extension, stability seems to occur mostly for negative values for K.
As shown in the transition from Figure 3. 1a to 3. 1b, when the values for a. b are increased,
the gradients of the inequalities for the trace and determinant become more negative. This
in turn shifts the stability region more towards the negative K> values. So, with a change
in parameter values, the conditions exhibit the same type of structure qualitatively, but

with the quantitative values slightly changing.

Interpreting this all practically, it can be seen that when the variables a, b are real, stability
doesn’t occur for negative values of the coupling coefficient on the first oscillator, K. Not
only this, but the system is only stable when these variables a, b are positive. Thus, this
gives the general conditions on the coupling to ensure the system to come to a synchronous

state.

3.2 Complex Variables

Having explored the case when the variables a.b were real, it is important to see what
conditions on stability will be obtained when the variables are complex. However, for the

complex valued case the situation is a bit more involved. Recall the same system for the

oscillators:
X a+ K, —-K X
9 -K» b+EKy] \y
Since a,b € C, let:
a = dap-+ia;
b = br+ib;

Where ag, bg and ay, by denote the real parts and imaginary parts of a, b respectively.

Suppose now that the eigenvalues will be computed using the above complex values and

14
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using det(A — AI') = 0. The characteristic equation obtained will be more complicated.
It will give an inconvenient situation, as it will be thus fairly difficult to infer when the
real part of the eigenvalue is negative. However, as seen in the previous section, to de-
termine stability the exact eigenvalues are not necessarily required. All that is required is
to determine whether the real parts of the eigenvalues are negative, ensuring the system
is stable. Therefore, the aim now is to take a simpler approach and draw out the neces-
sary information required of the eigenvalues. This is done by resorting to a perturbation

expansion.

3.2.1 Perturbation Scheme

We now take a radical approximation and apply a small perturbation to the variables. As-
suming that the real parts ag, bg and the coupling coefficients Ky, K7 are small, formulated

with £ < 1, the variables become:

a = Eap-+ia;
b = ebp+ib;
K| = EK|

K, = EK;

Now, the aim is to find the eigenvalues using this perturbation scheme. Exploring the most
simplest case of £ = 0, this in turn eliminates the coupling terms, so there is an uncoupled
system like in Chapter 2. It also eliminates the real part of the variables a, b, leaving only
the imaginary parts. The matrix A will now be a diagonal matrix, with iay and ib; on the

main diagonal. In this case, the eigenvalues can be read directly from the matrix giving

15
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the two eigenvalues as:

.;L| = :'a;

3.2 = .ib;

So, one eigenvalue is the imaginary part of the first variable, a and the second eigenvalue
is the imaginary part of the second variable, b. Having purely imaginary eigenvalues, this

tells us nothing about stability and the system is neither stable nor unstable.

Since the leading orders of these eigenvalues give no information on stability, the system

is further perturbed by adding a small contribution to the eigenvalue:

M = iar+EA

A = fb;+8/1{"

Here the perturbation parameter is very small, € < 1 and €A{ and €A are the small
first order corrections to the leading part of the eigenvalue. Considering now when ¢ is
non-zero but very small, the aim is to find out what A{" and lf’ is, in terms of the other
perturbed variables. This is in order to determine the change and thus find the real part of
the eigenvalue corrections, which is the approximation to getting the real part of the actual
eigenvalues. This will then help find the conditions for stability. These conditions will be

given by Re(A¢) < 0 and Re(A}) < 0.

Moreover, so we have eigenvalues with a small correction and now we will substitute this
into the characteristic equation, in order to find ll". As aforementioned, the characteristic
equation is given by det(A — AI) = 0, or more simply put: (Strogatz, 2000a)

A2 = ATr(A) + Det(A) =0

16
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Recalling from Chapter 3.1, the trace and determinant of the given matrix, now in terms

of the perturbation scheme, will give:

Tr(A) = a+K +b+K;

= Egap+ia;+eK|+ebp+iby+ K>

Det(A) ab+aK>+ bK)

= elapbg+ €iagby + giarbg + ifaib; + €2 arks + gia;ks + €2bgK) + €ibiK)

This is all put into the characteristic equation, along with the first eigenvalue of 4; =
ia;+ €A{. The hope is that, since € is very small, all the important information is captured
only in the first two terms of the eigenvalue of order O(¢) and the higher order terms of £
only represent tiny corrections, thus can be ignored. Therefore, by substituting this all in,

ignoring higher order £ terms and simplifying, we obtain:

0+ E(fﬂ;ﬁ.]ﬁ — fb;ﬁ.{' — fagay — ia Ky + ibj K| +iaghy) + O(Ez} =10

Taking O(€) = 0 and factoring out (ay — by)
Afila;—by) = ilag — by)ag + i(a; — by)K
Dividing through by the imaginary unit and the factor (ay — by) gives
Al =ar+ K,

Recall that the condition on stability is found from the real part of the eigenvalue being
negative. The real part of the eignevalue correction is simply ag + K. Therefore, the fol-

lowing compact result is found for the condition on the coupling, from the first eigenvalue:

Ky < —ap

The next step would be to now obtain the second condition on stability using the second

17
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eigenvalue of Ay = ib; + s.l{’, Following the same steps as above, first derive the charac-
teristic equation, then substitute and simplify by ignoring higher order £ terms and then

finally collecting O(€) terms, we obtain:

A.lbf(b; —ap) = i(by —ap)bg +i(by —a;)K>

Which simplifies to:

llh =bp+ K>

Again, to obtain the condition on stability, the real part is negative:

K> << —bpg

Overall, we obtain our two conditions on stability for the coupled oscillators with complex

variables a, b as:

Ky < -—ap

Ky < —by

As before, we have two inequalities that place conditions on the coupling coefficients for
stability. Notably, it appears that after a detailed analysis, by using perturbative methods,
we derive stability conditions that appear remarkably simple; both of these linear condi-
tions depend only on the value of the real part of the variables a, b. It is also very important
to place the constraint of ag,br > 0, as that is the only way to ensure that the inequality
is satisfied. As well as this, it is important that ag, by are both non-zero and distinct and
also that ay, by the two imaginary parts or the two frequencies need to also be non-zero
and distinct, ay # b in order for all the calculation to make sense and for the result to be

valid,

18
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As done in Chapter 3.1, Matlab was used to understand these conditions better, by ploiting
linear inequalities and using the confour command to shade, as visualised in Figure 3.2

below. As illustrated in the graphs, an overall rectangular structure of the region satisfying

Plat of Conditions on Stability In k1 kZ Plang Plat of Conditions on Stability in k1,k2 Plane
Firsi Condition
Bt Corefitinn
« Bt
10 - [} 5 0
k1
(a) Stability conditions for ag, by small (b) Stability conditions for ag, by large

Figure 3.2: Conditions on stability for when a, b is complex

stability is obtained in the K| — K> plane. The blue region comes from satisfying the first
condition of K| < —ag, whereas the green region comes from satisfying the second of
K> < —bp and thus the yellow region comes from satisfying both inequalities and where
stability lies. Figure 3.2 displays two graphs, both showing the stability conditions for
when the variables are complex, but with an increase in ag and bg, as we move from
Figure 3.2a to 3.2b. This gives an impression of what happens when we change the pa-
rameters; qualitatively both regions look the same as both display a rectangular region for
stability, but quantitatively the region shifts. With an increase in both parameters, the re-
gion shifts more down towards the negative values for both K and K>. Since a constraint
placed on the conditions is ag, b have to both be positive in order to satisfy (Re{lf’f JI’) < (),
we can see that the conditions satisfy negative values for K, K>. Therefore, this system
will reach a synchronised state when the coupling for both oscillators is negative, when

a, b are complex.

19
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Generally, when comparing the conditions on stability for the real and complex case, we
can see both give linear, continuous regions. In the complex case, the conditions imply
that both K and K> take only negative values, even on increasing the parameters, whereas
in the real case, when a, b is small, K| can only take positive values and K> takes a small
range of positive values but on increasing the parameters, K> takes only negative values.
On increasing the parameters in the conditions, both regions for both cases shifts lower
and become more negative, which has an impact on the coupling. In the case of the model
considered in this chapter, for both real and complex variables, the system comes to a
synchronous state for a significantly many coupling values. The regions are continuous,
so the stability domain is fairly large. This, however is not always the case, as will be

shown in the next chapter.

3.3 Contribution of back-coupling

The study of synchrony began with the model explored in Chapter 2, which involved no
coupling; that is, no coupling coefficients were involved in either equation. In a practical
sense, there was nothing connecting the two oscillators. This system was unstable and
did not synchronise. This was accounted for as we moved to Chapter 3.1 and 3.2 where
a coupling scheme was added in the form of the back-coupling terms given in the first
oscillator by K (v — x) and in the second by K> (x — v). From here, we saw that the system
became stable with different conditions on the coupling at different cases for the variables

da, b,

But how important is this back-coupling for stability? In other words, how important is

the contribution of the x term in the first equation and the y term in the second? The matter
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is explored by considering the following system, with no back coupling:

X = ax—Kyy

y = by—Kpx

This system is a simpler model than previously seen and is still a coupled system, as both
oscillators are connected by the coupling coefficients K and K>. The coupling is not done
by the difference, like in the previous case, but by just one variable. But is this kind of

coupling sufficient for synchrony? To explore, as done before, this is written in matrix

x a —Kj X

y -K; b y
By imploring the same reasoning as done earlier in this chapter, stability of this system is
analysed by considering the real part of the eigenvalues. Taking a similar stance to that in
Chapter 3.1, using the Routh-Hurwitz criterion, we can determine when the eigenvalues
have negative real part and thus becomes stable. In this case, the Jacobian matrix is given

by

Recall, by the Routh-Hurwitz criterion, the system is stable when Trace(A) < 0 and

Det(A) > 0. For this system, we get:

Trace(A)=A + A =a+b

As aforementioned, the trace is given by the sum of the eigenvalues. In this case, the sum
of the eigenvalues is just the sum of the two coefficients @ and b. However, it is important
to note that both individual systems always starts off as unstable, because if they began as

stable, there would be no need to stabilise and bring it to a synchronous state! Therefore,
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for the real case, a + b > 0, so the sum of the two eigenvalues is always positive, as the
system is unstable. In this case, either both eigenvalues has to be positive or at least one of
them needs to positive. Because of this, the system can never be stable as stability requires

the eigenvalues to have negative real part.

Analysis of the trace is sufficient to prove that the Routh-Hurwitz criteria is not fulfilled
here. Therefore, such a system is never stable. It is also interesting to note that the
coupling has no effect on the eigenvalue, meaning whatever happens with the coupling
coefficients Ky, K> this system will always remain unstable. It is due to this that the con-
tribution of the back-coupling is vital. But how does a system described in this section
become stable? The situation can be rectified by adding a time delay, which will be the

main focus of the next chapter.
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Chapter 4

Time Delay

As seen in the previous Chapter 3.3, a system with no back-coupling remains unstable,
implying that such a system can never be stable. However, this is not always the case as it

can still provide stability when a time delay is added. We study the model equations:

2 = ax(t)—Ki(() — ¥t - 7))

¥ o= by(t) - Ka(x(r) - x(r — 1))

These model equations look like something explored in previous chapters, but now with
an added time delay in the coupling. The physical implications this has can be visually

interpreted as shown in Figure 4.1 below:

T4
1 &7 2-1;,!
Oscillator Oscillator
T

Figure 4.1: Physical Representation of time-delay

The time delay exhibited from the first oscillator to the second is given by 7; and the
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time delay exhibited from the second oscillator to the first is given by 72. These model
equations look similar to what was considered in Chapter 3.3. However, in that case that
system was unlikely to stabilise. This chapter aims to investigate whether such a system
can stabilise despite not being able to in the previous section, but now with an added time

delay.

To investigate this system, as done before, we reduce it to an eigenvalue problem. We

seek solutions of the form:

After substituting this into the time-delayed system, we obtain:
iehx{] _ axne"“' =K [_‘r‘ne':“ _Jl_ﬂeﬂ.xe—lfz)

AeMyp = by.e — Ka(xpe™ — xpetle

—A T )

By cancelling out the time dependant exponential terms, we obtain a system where the

time delay contribution stays, written in as a two-dimensional matrix form:

X0 a Ky (1 -e_}"ﬁ) X0

Yo —Kx(1 —e=2™) b Yo

Now, it is important to analyse the eigenvalues of this system, by finding the characteristic
equation, from the Jacobian matrix A, which is given by A2 — ATr(A) + Det(A) = 0.

Therefore, in this case, we have the following characteristic equation:
A —A(a+b)+ab—K Ka(l —e *2)(1 —e ?7) =0

This characteristic equation is not the standard quadratic equation form that we expect and
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know how to solve. This yields a transcendental equation, which is a more difficult case.
Therefore, imploring a similar approach to that of Chapter 3.2, a perturbation expansion
will be used as a radical approximation to finding the eigenvalues, in order to then find

conditions on the coupling to determine stability.

It is important to note that in previous chapters, the case of when a,b were real and com-
plex were considered and its implications on stability analysed. It can be seen that when
a,b €R, then the Routh-Hurwitz criterion can be applied as done before. However, in this
case the trace of the matrix is Tr(A) = a + b which is the situation that was discussed in
Chapter 3.3, where there was no back-coupling and this led to an unstable system. There-
fore in this case, we will only deal with complex variables for a,b otherwise stability
cannot be obtained. This will be considered when applying the perturbation expansion to

the system.

4.1 Perturbation Scheme

Perturbation techniques are now utilised in order to find accurate approximations to the
solutions of the transcendental characteristic equation, as direct solutions will prove tricky.
Also, since we only require conditions on stability, it is sufficient to analyse the approxi-
mate solutions in order to understand when the system will be stable. The approach taken
in Chapter 3.2 will provide the floor for the analysis here and a similar position will be

taken. Considering complex variables, let a and b be given by:

a = ag+ia;

b = br+ib;

Now, taking approximations on the real parts ag, bg of the variables, we assume them to

be very small, introducing the perturbation parameter £, where € < 1. So the variables
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now become:

a = Eag-+iaj

b = ebr+iby

Since there is a product of the coupling involved in the characteristic equation, we take a
sensible scaling of assuming the coupling K. K> to be very small, but not as small as in

the previous case. So the perturbation expansion is set up in the following way:

This is to ensure that we obtain € of order 1 in the perturbation expansion. If it was con-
sidered the same to that in the previous perturbation expansion, we would get € of order

2, which would eliminate that term since it would be even smaller,

Moving on, this perturbation scheme is put into our system of equations and then consid-

ering when £ = 0 gives the following system of equations:

Xp iay 0 Xp

A =

Yo 0 il yo

Here, the coupling vanishes, as does the real part of the variables a, b and we get a diagonal
matrix (the entries on the outside of the main diagonal are 0). In this case, the eigenvalues
can be read from the matrix off the main diagonal as A; = ig; and A; = ib;. This will
now be further perturbed and a small eigenvalue correction term will be added, again with

the perturbation parameter being very small, € < 1. This gives the following perturbed
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eigenvalues:

AL = dar+eAf

Ay = f.-‘);-}-&liﬁ

As done previously, the conditions on stability will now be found from the correction
terms A{' and A? using the perturbation expansion at €. The perturbed variables a, b, K and
K> are all substituted into the characteristic equation along with the first eigenvalue and
its correction term, Ay = iay + €A{'. After cancelling terms out accordingly and collecting

terms of order &, it is found:
0+E{fffjlf:—fb;li:—!‘ﬂjﬂje‘Fa;lif}e-’J_J'— K, KE( | _e—l'fzwe—stzli'}“ - e—l'i'uue—eﬂl[') ‘f’O(EE} —0

The terms of order €2 are quadratically small terms in € and so are negligible. Not only

this, but since € < 1, we can also neglect % terms too. This gives:
iaiAf — ibjA — iajag + iagbr — K\ K2 (1 — e 129 ) (1 — ¢~ M191) = 0

The eigenvalue correction is what we are looking for, as the real part of that will determine

stability, so on re-writing we get:
Afi(ay — by) = iajag — iagby + K\ Ko (1 — e~ R29)(1 — g=i01e1)

The system is only stable when the real part of the eigenvalue is negative. However, going
by the above equation, it is difficult to infer clearly where the real or the imaginary part is.

Therefore, we can simplify this. Let:

-2l

e 7]

(1 _e—i"r:a,r:] = e_ff.‘._:_’j_[g,-_".‘._;ii o
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ol

it
5 the above becomes:

Using the complex identity of sin 8 =

5 . Tyl Tl
(1— %) = 2ie™"F" sin(2)

It’s now more clear to see where the real and imaginary part lie. This is done for the

second term similar to this, to get:
T T (Toil T
Ali(ar — by) = iajag — iagby + K1 Kz (42 sin(ng} :sin(le)e_“f‘e_"LH)

Dividing through by the factor i(a; — by) gives:

4K Ky (sin( B8 ) sin( B )e~1 5" =7 )
i(ar—by)

Al =ag —

From here we have a real part and then a complex contribution. It is important to determine

the real and imaginary part of this complex term, as we can take out factors:

R e_%‘iie_ﬂ_':'rl —fe_f{ll_:ﬂ"j’iﬂ)
e | — =
ilar—by) (ar—by)

Using Euler’s formula for complex numbers ¢/® = cos  + isin® and using the fact that
sin(@) = —sin(0) and cos(—8 ) = cos(0), the above is now considered in terms of trigono-
metric functions:

_ie=(Z+) — _icos (%+ %) +i%sin (%Jr %)

This gives the overall real part of this complex contribution as:

= e He W\  —sin (5 4 1)
ila;—by) (a; —by)

This is then put with the real part of A{, to give the real part of the eigenvalue correction
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das
4K\ K (sin( &%) sin( B4 ) sin (T + 551)
(ar—by)

Re(Af) =ap+

As per the condition on stability, this real part needs to be negative, giving the following

condition, from the first eigenvalue correction on the coupling:

—-:.'R(ar; — b;)

K\K> <
1K 4(sin( &) sin( T4 ) sin (B 4 )

Analysis into this condition will be further explored in the following section. However,
this is not until the second condition for stability is obtained using the second eigenvalue
of Ay = iby + Elf’. Applying the exact same approach as the first eigenvalue, where this
eigenvalue along with the other perturbed variables are substituting into the characteristic
equation and first order & terms are collected . The second condition on stability can be

derived as:
—br(bi—ai)
4[sin[532£’1)sin{ﬂg"—’l)sin (5-‘,_# + ﬂﬂ)

K1K> <

]
These conditions are now further looked at and the different variations of these conditions

that can inhibit or enhance stability.

4.2 Analysis into Stability Conditions

Analysis into the two conditions that need to be satisfied in order to gain stability, will now
be carried out. These conditions involve a product of the coupling indicating boundaries
which will be hyperbolic, which is a general feature of such a coupling scheme. This
contrasts greatly to the conditions found in the previous chapter for a coupled system
without time delay, which were linear. The region of stability here will depend solely on
quite a few parameters that are involved in the conditions, that is the real and imaginary
parts of the variables a,b and the time delays. Notably, there is a trigonometric sine

function included in the conditions as a product. The sine function is a vital and influential
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part of these conditions. An interesting property of this function is that it is periodic with
period 27, and so when considering time delay values of 7 and 7+ 2, the same behaviour
can be observed . As well as this, the sine function is an odd function. These attributes will
prove significant in the subsequent analysis. The aim now is to observe which combination
of parameters enable stability. It is fair to say that, since the conditions depend on so many
parameters, there are many different combinations of these parameters that will make the

system stable. A few of these cases are now studied.

4.2.1 When the conditions diverge

The conditions on stability involve the trigonometric sine function as a product in the
denominator, which enables us to understand more clearly where these conditions diverge
and thus no stability occurs. It is clear that sin(x) = 0, {x = mk,keZ} . Therefore, there
will be no stability when tyay = 21k ;may = 2k and Tyay + Ta; = 2wk where k € Z. This
also applies to the second condition involving by, whereby replacing a; with by will give
those constraints on stability. As well as this, itis important to place the constraint of both
imaginary parts being distinct, a; # by. It is notable that not only is the time delay crucial
in determining stability, but so are the frequencies ay, by. This is a key result that is evident

even upon considering other cases.

4.2.2 Effect of small time delay

The case of when the time delay is small and its implications on the stability region will
now be analysed. This will be done by taking different parameter values and to ensure
objective observations are made, the parameters for ag, bg will remain constant. Small
time delay will be looked at, with varying frequencies a; b;. This is because the frequency
acts on the time delay and depending on the sign of a;, by, the inequality for the conditions
change. So it will be interesting to consider what happens to the stability region when

changing the frequencies, for small time delay.
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Let’s consider taking the following arbitrary values for the parameters, when the frequen-
cies have the same sign, namely a;, by > 0of ag =1, bg = 1, a; = 1, by = 2 and taking
arbitrary small time delay of 1) = % and T = %. These are values randomly selected,
satisfying the criteria we have set out for in this analysis. Using Matlab, a function file

was created to obtain the numerical conditions upon Kjand K» to give the following:

KKy =« ——

KiKy < ———

These stability conditions were plotted in Matlab to give:

Conditions for Stabllity with Time-Delay

— ]
l o ol
1000 |

500 |
¥ o = —1. o ——— Stability region
500 |

<1000 |

1500
-1 a8 06 04 D2 o 0z 04 08 08 1

Figure 4.2: Stability Conditions for small time delay with aj = 1,b; =2

The two conditions can be visualised in Figure 4.2. The blue hyperbola represents the
first condition involving a; which gives positive hyperbolic boundaries and the red hyper-
bola represents the other condition involving &y, given by negative hyperbolic boundaries.
Since the time delay is small and the frequencies are both positive, the sine function in
the denominator gives positive values. Both conditions are simultaneously satisfied in the
white region below the blue and red hyperbola, indicating the stability region as shown

above. This gives a fairly large, continuous domain for stability.
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Let’s now consider the case when the frequencies are of opposite signs, which leads to the
conditions having opposite inequality signs. Keeping all other parameter values the same,

the frequencies are altered, taking «; = land &y = -2, the conditions now become:

-3
KK _
%2 < 5076
Kiky > —55m

These conditions can be visualised as below:

Conditiens for Stability with Time -Delay
o . - o - -~ o - . .
[ ennston

s
2000 -

1000 -

/ Stability region
£ A ‘-7_—_'_7_——*‘—'__—

LK

000

.8 04 0.3 02 01 o a1 b2 03 Ll
Kt

Figure 4.3: Stability Conditions for small time delay with a; = 1,by = =2

From Figure 4.3, we observe a similar graph to Figure 4.2, but now the two inequalities
will satisfy the region between the two hyperbolas in the second quadrant. Let us first
explore what is happening with the conditions numerically when there is this change in
frequencies. When by = —2 < 0, the second condition will now give a negative denom-
inator due to the nature of the odd sine function. This in turn, results in the sign of the
inequality changing, graphically giving the stability region to be now between the two
hyperbolas. Not only this, but there is a significant change in the condition boundaries;
both conditions display negative hyperbolic boundaries. Predicatably, the behaviour of
the other cases for the frequencies can be inferred. If we consider when both frequencies

are negative, ay < 0, by < 0, the stability region will be similar to that found in Figure 4.2,
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except that it will now be reflected to become the region above the two hyperbolas. This
reflective property will be evident also when we consider the other case of varying fre-
quencies for ay < 0 and by > 0. As opposed to what was shown in Figure 4.3, the stability
region will now be given as between the two hyperbolas but now reflected and given in

the fourth quadrant, instead of the second.

These results show that with this change in frequencies, there is now suddenly a drastic
change in the size of the stability region for small time delay. For frequencies that were of
opposite signs, a smaller and more bounded stability domain was found, which is in huge
contrast to what was found when the frequencies were of the same sign and positive. This

indicates just how important the frequency acting on the time delay is for stability.

4.2.3 Effect of large time delay

The effect of small time delay with varying frequencies showed a significant difference.
But will this same effect be visible for larger time delay values? As aforementioned, the
sine function is periodic with period 2. Therefore, it’s important to note that a time de-
lay T considered, will be the same as considering 7+ 2x. Looking at small time delay,
values for T were taken to be close to 0. In this case, larger values for the time delay will
be chosen mod 2. Again, in order to make objective comparisons, the values of ag, bg
will remain constant and the frequencies will take the same values too. Let’s consider the
following arbitrary values for the parameters in our stability conditions: ag = 1, bp = 1,
ay = 1, by = 2 and taking random larger time delay values close to 27 that satisfy the
constraints, we consider, 1) = ]:.,—“ and 7 = ”T” Studying this first case of both frequen-
cies being positive and carrying out a similar analysis to that of the previous section, the

stability condition can be visualised in Figure 4.4.

The results in Figure 4.4 are interesting and display very similar results to that of smaller
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Conditians for Stability with Time-Dalay
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Figure 4.4: Stability Conditions for large time delay with a; = 1,by =2

time delay with positive frequencies. However, in this case, the hyperbolic boundaries
have been reflected, as has the stability region. Qualitatively, similar behaviour is ob-

served but quantitatively stability occurs for different coupling values.

Let’s now observe the stability conditions for when the frequencies are of different signs,
as before with a; = 1,b; = —2. Taking a similar stance to that in the previous section,
analysis of the conditions leads to the following stability region, shown in Figure 4.5.

Conditions for Stability with Time-Delay

EaRan
conaond |
1500
1000 -

o KO | --'-\
B : | m— Stability region

<1000 +

1500 +
48 H4 03 L2 D4 Q o1 02 43 o4
ki

Figure 4.5: Stability Conditions for large time delay withay = 1,by = =2

Again, the behaviour observed is similar to that of small time delay with frequencies
ay = 1,b;y = —2 in the sense that the stability region is found to be between the two hyper-

bolas, however here it is reflected to be in the third quadrant. As well as this, the difference
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in condition boundaries can be seen, where there is now only positive hyperbolic bound-
aries. As shown previously, the other cases of the frequencies will behave the same here,
giving reflective regions of stability. It is also important to note that the stability domain
will never be at the origin, although it may asymptotically reach close to the origin, it will

never be included.

Overall, looking at the conditions for stability of coupled systems with time delay, in-
teresting properties are displayed, unlike what was seen in earlier chapters. In this case,
hyperbolic boundaries for the conditions are observed and what made these conditions
more intriguing was that a trigonometric function was present. The periodicity and oscil-
latory behaviour of the sine function was apparent in the change in behaviour of stability
when the parameters associated with this function were changed, namely the frequencies.
Furthermore, since the sine graph exhibits reflective behaviour, this gave similar reflective

behaviour for change in frequencies and the stability domain.

A key finding of this chapter was that time delay is in fact crucial to make this type of
coupling work and enable stability. There were some time delays that led to the condi-
tions diverging and synchronisation did not take place in those instances. Further analysis
led to concluding that, how long the time delay was didn’t in fact make much difference
as to whether synchronisation occurred, just the presence of the time delay was impor-
tant. Long and short time delays overall gave similar stability regions, but for different
coupling values, showing that delay length isn’t significant for synchronisation. What is,
however, is the frequency acting upon the time delay. This shows just how important the
imaginary part of the complex variables a, b was and just how crucial it was to consider
complex variables overall. The optimal situation in this case would be either short or long
time delays but with only positive or only negative frequencies, as these gave the largest

domains for stability and thus are optimal for synchronisation of these coupled units.
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Chapter 5

Conclusion

In conclusion, this thesis aimed to study the synchronisation properties and to understand
the conditions that enable two oscillators come to a synchronous state. It was found that,
upon considering different models of oscillators, from uncoupled, to coupled, to then a
time delay coupling model, different conditions for a stable, synchronous system was ob-
tained. The study of synchrony began with first studying the equations of motion that have
been the basis of modelling the two oscillators throughout the research. The research first
looked at studying these equations of motion in an uncoupled case, where both oscillators
were not connected and thus analysed independently. With no coupling between the two
systems, the behaviour was investigated when the variables changed from real to complex,
where interesting patterns could be seen in this transition of variables. The dynamical be-
haviour went from simple monotonic behaviour with both stable and unstable equilibria
when the variables were real, to producing oscillatory behaviour when complex variables
were considered. This pattern in the change of behaviour was evident throughout the

study.

The study then moved on to look at a model of two equations that were now coupled

and conditions on the coupling were sought for which the system would become stable.
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Practically, this could be seen as a common support on which both oscillators lie and in-
teract though and so the aim was to find conditions for this interaction, or coupling. When
analysing a system of coupled equations and looking at real and complex variables in the
equations of motion, we derived different conditions on the coupling for stability. The
regions of stability depended greatly on the input variables @, which were set into the
equations of motion. The coupling has a direct impact on synchronisation, even a weak
interaction can synchronize two clocks or oscillators (Pikovsky et al. 2003). This influ-
ence of the type of coupling was evident to some extent in this study but depended heavily
on the model being considered. Such was the case when another coupled system was
analysed, however due to the type of coupling, synchronisation didn’t occur. Therefore,

it’s fair to say that the type of coupling in a model has a direct impact on synchronisation.

Furthermore, this understanding was further enhanced when a time delay was included
in a model that was coupled but did not synchronise. It was shown that the time delay
was in fact crucial in bringing stability to the system and without it, the system would fail
to synchronise. Investigations into studying how the time delay affected stability showed
that there were certain values of time-delay that diverged the system and did not work.
However, altering the time delay had significant effects on the stability regions. Longer
time delays compared to shorter time delays did not give any noteworthy results, although
the change in frequencies having an influence on this time delay, did. It was interesting
to see how the stability region changed with the change in frequency, giving a significant

result.

A consistent result found in this research was that the synchronisation of self-sustained
oscillators depend on the model being considered of its oscillators. In this study, two
very simple equations of motion were initially considered which then logically progressed

throughout the study to analysing a system with time delay. According to our model, time
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delay was found to be crucial. However, this result is not necessarily consistent with other
researchers in this field who have studied synchronisation in different ways. In some
cases its argued that the delay in coupling interferes with the appearance of synchronisa-
tion, branded as “death by delay’, whereas in others adding a delay into the interaction

leads to the occurrence of synchronisation (Klinshov, Nekorkin, 2013).

Analysis into different models, gave different results. In their study of synchronisation,
Klinshov and Nekorkin (2013) analysed many different models, mostly based on the well
known Kuramoto model. Briefly, this model focuses on the frequency of N-coupled oscil-
lators and is based on how oscillators with a common frequency will synchronise (Stro-
gatz, 2000b). After looking at different models and the influence of time delay, Klinshov
and Nekorkin (2013) found that the answer to whether time delay promotes or obstructs
the occurrence of synchronisation is an ambiguous one and depends on the coupling and
on the variables in the system. This is a fairly synonymous judgment to what was found
in this study; synchronisation depends on the model by which the oscillators are governed

by, where in this case time delay actually led to synchronisation.

This thesis simply scratched the surface of what is a largely expanding area of research
into synchronisation. It is interesting to see how synchronisation changes with different
models, such as the Kuramoto model and could be something for one to consider further
looking at. This thesis only focuses on a particular model and then analysed its stability
by reducing it to an eigenvalue problem and using perturbation techniques. It would be
interesting to take different approaches to find stability, such as the study of Lyapunov
exponents or even the Master Stability function and thus analyse its implications on syn-

chronisation.
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