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Abstract

The prices of the spot markets have the potential to show interesting dynamical phenomena.
Within this project, time series data sets of the Nordic spot electricity market are analysed in
order to identify statistical qualities. Standard linear tools are employed to check whether hidden

long range correlations can be revealed when comparing the return of the price data.
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1 Introduction

1.1 Research background

As studies have shown, during the eighties, electricity was manufactured and transported by
national enterprises. Operating as a cartel, they frequently had the duty of supplying to
businesses and households. A socio-political reform in 1982 led the way for detached generation
and distribution companies as widespread privatisation began in 1986, which culminated with the
establishment of Nord Pool, the Nordic Market, in Norway in 1992. [1]

The Nordic Pool which is a leading market for trading such power resources is the largest of its
kind today, providing a platform for buying and selling power in the Nordic region (Denmark,
Finland, Norway and Sweden). In the context of competing electrical energy markets and
hotspots, all stakeholders involved, ranging from governments to buyers and sellers to the public,

need precise and truthful price projecting tools.

In the Pool, the enterprises that generate electricity place down the bids and matching prices and
consumer enterprises do the same with consumption bids. Using market-operators, auctions can
be done on an hourly basis to regulate the clearing price as well as the production and
consumption bids. Since market clearing prices are readily made-available public information,
aggregate supply and demand curves are updated on hourly, weekly and monthly time cycles.
Energy firms can then purchase energy from mutual contracts to trade it to their customers.
These companies require both short-term and long-term price forecasts to make the most of their
respective profits. Just for clarification, we focus on long-term decisions associated to the pool.
Therefore, despite using hourly cycles, we will sample weekly, monthly, quarterly and annually

computed cycles.



1.2 Structure of Thesis

We will look at evidence from a case study, and some of the features are compared and contrasted
in order to understand what they mean and what we can gather. Since electricity prices may
display sporadic arrangements on numerous time intervals, it is important to note the effect of
these hence we will introduce the maths behind this and the Fourier transform will be briefly
discussed. In the third chapter, the data set will be provided and discoursed where we test it

before the results are briefed and concluded in Chapter 4.

2 Theory

2.1 The Elspot case study

To comprehend undercurrents of the price fluctuations in electricity markets, it is noteworthy to
understand the price setting mechanisms of the electricity market before we discuss our data. As
part of an independent case study with hourly spot prices, we look at the Elspot which is the
Nord Pool Spots daily auction market (in our case the 2014 week commencing from 19th to 12th
July), where electrical power is bought and sold. The competitors who wish to trade energy on
the Elspot send their buying orders to the Nord Pool by 12pm a day prior to the power being sent

to the grid. And this is similar for conmpetitors who wish to sell power to Elspot.



Elspot price tables and graph

Sa 19-07 | F 18-07 | Th 17-07 | W 16-07 | Tu 15-07 | M 14-07 | Su 13-07 | Sa 12-07
SYS 27,66 28,94 29,30 29,30 28,88 27,44 24,84 26,79
NO1 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51
NO2 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51
NO3 28,87 30,96 31,12 31,09 30,97 28,78 25,51 29,02
NO4 28,87 30,96 30,23 29,49 29,43 27,73 25,30 27,89
NO5 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51

SE1 28,87 30,96 31,12 31,11 30,97 28,79 25,01 29,08
SE2 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08
SE3 28,87 30,96 31,12 31,11 30,97 28,79 25,01 29,08

SE4 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08
FI 34,85 40,61 39,68 38,21 38,41 36,74 29,08 33,46
DK1 28,87 35,70 36,27 35,59 32,78 28,79 25,62 29,84
DK2 28,90 35,70 36, 27 35,59 32,78 28,79 25,62 29,84
EE 47,63 52,56 52,43 38,21 38,41 37,15 31,59 37,22
LV 58,37 56,99 95,96 53,07 65,75 56,31 56,38 43,99
LT 08,37 56,99 55,96 53,07 65,75 56,31 96,38 43,99

The price setting at Elspot based on information from the European Energy Exchange [2] and the
Nordic Pool Spot [3] is a bilateral uniform auctioning price mechanism, where the systematic rate
is the crossing of the accumulated supply and demand curves, which we provide. At 12pm,
contestants place the bids then offer their bids on an hourly basis of the following day to the
administrators of the Market. We know there can be three types of bidding on Elspot. With
hourly bidding being the most constructive type where sets of price and volume for every hour are
submitted, we look at these the case studies. Nord Pool Spots computers in Norway start
computing the next-day prices and publish them. As well as this, the Nord Pool report to the
partakers how much electricity theyve purchased or traded for every hour of the next day. This
information on trading is then sent to the Transmission system operators in the Nord Pool. The
Transmissions system operators utilize this information and compute the balancing power for

each participant.



2.2 Time Series

The main goal of a time series analysis is to identify the nature of a variable using a sequence of
observations and forecasting future values for it. Regardless of the depth of our understanding
and the validity of our interpretation (theory) of this time variable, we can extrapolate the

identified pattern to predict future events.

In this section, we present the basics of a time series. We presume that prices are recorded at
specific time-intervals. We will attempt to make an analysis based on our data in the next
chapter. The models are chosen with an inspection of the key features of the time series. Lets

consider the following:

-seasonality;
-trend;

-correlation;
-stationarity

-white noise

Recalling my study of Time Series under Dr Coad [4], time series models with seasonality often

took the forms;

Additive
Xe=my+ s +Y;

t=0,1,....n
Multiplicative

Xt = mystYy

t=0,1,...,n
Mixed

Xt = mS¢ + Yt
t=0,1,....,n

Where m; is the trend component, s; is the seasonal effect and Y; is the random noise component.



Given any natural expected seasonality in our data, various ways have been devised to eliminate
it from the trend. One such method is the small trend method. If in the case we find a small
trend with a constant period, then given an additive seasonal model, where F(Y;) = 0 and s; is
such that

St = St—d
d is the length of the period

And
d

S s=0

k=1
When X denotes a time series in season k of year j for k =1,2,...d and j=1,2,...b
The the period average is an unbiased estimator of the trend and given by

1 d
mj =5 2—:1 Xjk
Where E(1;) = m;

The seasonal component estimator is therefore

Where E(S;) = Sp

Thus the residuals are

Yji = Xji —mj — 8;



Another well known method is the classical decomposition. It consists of five steps,
Step 1: Estimating the trend using a moving average filter of period length d;

) 1
my = E(Xt_q + Xt_q+1 + ...+ Xt+q)
where d=2¢+1and ¢g+1<t<n-—gq

And

11 1
— &(ixtiq —|— thqul + + X - t + q - 1 + §Xt+q)

my
where d=2qand ¢g+1<t<tn—gq

Step 2: Estimate seasonal effects Sy for k =1,2,...,d

Compute the averages of the detrended values (X; —my), ¢ <l=k+jd<n—qfor j=1,2,...,b

where k + jd is the number of seasons upto year j plus k seasons and b is the number of years
We adjust them so that the seasonal effects meet the model assumptions, that is, the estimate of

Sk is

d
. - 1 o
S = (X — 1)y, — < > (X - i),
=1

where k = 1,2, ...,d and (X; — my),, is the average of the detrended data for the k-th season
And Sgi1 = 51,842 = So, ...
Step 3: Removing the seasonality to obtain
Dy =X, — 5,

where t =1,2,...,n



Step 4 : Re-estimate the trend 7, from the deseasonalised variables (Dy)
Step 5 : Calculate the residuals

Yi= Xy —my — &

The last way we will demonstrate removing seasonality is the use of differencing.
By defining a lag d difference operator

VaXi =X — X;_q= (1 - BYHX,

We apply this to our additive time series to obtain

VX = (me+st+Y) = (my—qg+ Si—a+ Yi—a)

= th + VdSt + VdY;:

= Vam: + VaYs
since Vgsy = s¢ — s4_q =0

Seasonal effect has been removed.

Similarly, we perform differencing to remove trend in the absence of seasonality by using a special

kind of linear filter with weights [-1,1] (could be shown via convolution which we will discuss

shortly in a different light) and is repeated until a stationary series is obtained. We denote the

first differencing operator by A (which we just covered but had not hitherto defined)

VX, =X — Xy 1 =Xy — BX;

Where B denotes the backward shift operator. Hence

VX, =X, - BX, = (1- B)X,

And in general,

BIX, = Xije

where j > 0

10



Where is the trend m; is a polynomial of degree k, we have the formula

VX, = k!B, + V*Y;

This means that if the noise fluctuates about zero, then k-th differencing of the time series with a
polynomial of degree k should give a stable process with mean k!Bj. Next we discuss the
autocorrelation function, which is a very helpful tool in assessing the degree of dependence and in

recognising what kind of model the time series follows.

We must first define the autocovariance of time series as

6(Xt+-r,Xt) = COU(XH_T, Xt)
for all indices t and lags 7

Hence the auto-correlation function becomes

p(r) = 228 = corr(Xe+r, Xt)

for all t and 7
Note that since 0(0) = var(X;) then our autocorrelation function can be written as

cov(X,Y)
var(X)var(Y)

In the more specific case i.e. the sample autocorrelation function, we define our sample

autocovariance function as

n—|7|

6(7) = = Y (@ = @) (@i — )
t=1
—n<T7<n

= l n
where 7 = -3 1| x4

Hence the sample autocorrelation function is defined by

oo 0(t)
p(r) = 5(0)
—n<T7T<n



A time series X; is also stationary if the random vectors (X, ..., Xyn) is equal in distribution to
(Xt +7,..., Xen + 7)T. Part of its properties includes the random variables X; are identically
distributed for all t and pairs of random vectors (X, X; + 7)7 are identically distributed for all t

and 7

White noise, which represents those aspects of the time series of interest which could not have

been predicted in advance, has a mean zero and variance o2 written as
e WN(0,0?)

if and only if ¢; has zero mean and covariance function as

if h is 0 and

if h is not zero

12



2.3 Fourier Transform
2.3.1 Background

Our drive in this section is to have an understanding of the characteristics of the Fourier
transform from the point of data and graphs in time series. In order to devise good representation
techniques we cultivate different tools that allow us to find distinct features of a function -
functions such as Amplitude (i.e. loudness) and Phase (the exponent). The study of Fourier
transform, its strengths and flaws, is the vocal point towards other periodic functions. For
example this happens in our everyday lives and in technology: motions are analysed and
interpreted by our senses, a representation is grasped from this analysis and it is sent to the
brain. To make sense of the structures of the Fourier Transform we must analyse it having used
the works of Feldman [5] and J.A. Peacock [6].

Using a periodic function with period L > 0, that is, f(t 4+ L) = f(t). We denote by L2. the space

of periodic functions of period T which are square integrable. Giving us,

to+T
/ F(8)2dt < oo
t

0

By the Fourier serious the function f can be decomposed as

400 A
f(s) _ Z ajez27rsz

j=—o0

ajCR

We call this decomposition the Fourier series of f as the above equation is an orthogonal basis
representation of the function f. The Fourier series shows that any periodic function can be
broken down as a sum of sines and cosines. The Amplitude combines an amplitude of both sine
and cosine and the Phase is the relative proportions of sine and cosine. This decomposition allows

us to make an analysis of the frequencies present in a time series model.

To get an exact representation of the function, we compute the frequency amplitude a; using the

equation,
L
= [ e
0

Here we measure a function z(t) that is episodic of period 2L, while computing the coefficients
from the measurements. x(t) being the amplitude of a periodic indicator at time ¢. Since we cant

fix z(t) for some values of ¢, assume that z(¢) is measured for values of ¢ ranging from 0 <t < 2L.

13



Since we can’t compute the complex Fourier coeflicient exactly, we can get a Riemann approx by
dividing the Integral domain into N intervals with length %

For t in the interval n% <t<(n+ 1)% predict the Integrand x(t)e’* Tt by its value at t = nQNl

o 21 s kn
that is z(n2)e 1"~ = z(nZ)e ™~ hence estimate the integral over n2 <t < (n+1)2 by
21

the area of a rectangle with height x(nﬁ)e_%i%n and width % which gives us
N-1

1 2 kn 2 1
T ) D[ Vet =) P

- 1 —2mikn
z[k] = N Z x[nle TN
Which we call our Discrete Fourier Series that is used for discrete time periods and models.

So in a brief summary, given a sequence of N samples, a Discrete Fourier Transform is defined as
X(K) where

1 N-1 N
X (k) =+ D an]e N
n=0

and the Inverse Discrete Fourier Transform (which had hitherto not been discussed) can be used
to determine x(k) where the IDFT is

1 N—-1 Y
x(k) = N Z z[n]et? N

n=0

For simplicity purposes, when considering the Fast Fourier Transform, we ignore the scaling
factors and simply define the FFT and IFFT as

N-1
FFTy(k,x) = Z x[n]edﬂ%ﬂ = VNX(k)
n=0
and
N-1 .
IFFTN(n,X) = Z z[n]et?™ N =V Nz(n)
n=0

14



Due to its relevancy to understanding linearity of time series models, we will derive some of the
properties, namely the conjugation and Parseval relation.
Conjugation

Given z[n] is a discrete-time indication for the period N, y[n] = z[n]. The k" Fourier coefficient

of y[n] is

| Nl - | N - | Nl - i )
@%%ﬂNg%MMe%W‘ﬁN;%ﬂﬂe%W‘—Ng%ﬂﬂf%’N = [k

We can infer the k' Fourier coefficient of the episodic discrete-time indicator z[n] is #[—k]. z[n]

is a real value on the condition that x[n],for all n, which is correct given that the Fourier

coefficients of x[n] and y[n] = z[n] are equivalent i.e.

z[n] is real for all n «+— Z[—k] = 2[k] for all k

Parseval’s relation
For our Fourier time series we prove via the Fourier Transform;
N-1 N-—

2RI =D w[kl(k]
k=0 k=

—_

[e=]



3 Data

3.1 Brief example of Logarithmic return graph

changeint

NOK/MWh

1 1
1993 1995 1997 1999
t [years]

changeint

EUR/MWh

1
1999 2001 2003 2005 2007

t [years]

Top : Hourly logarithmic return for the spot prices in the Nordic electricity market (Nord Pool)
from May 1992 until December 1998. Bottom: Hourly logarithmic return for the spot prices from
January 1999 until January 2007. This piece of data was used in a similar project supervised by

Dr Just and counts as an example of the type of data produced.

16



3.2 Data Analysis

Having been provided by Dr Just with a data set on an Excel spreadsheet reaching up to 70122
entries of electricity spot market prices ranging from the year 1999 to 2007, i have taken an
average of every month of the years 2007 and 1999 in order to simplify the measure of
quantitative’s and make a comparison. It is worthy to note that throughout all respective data
analysis i have used NUMXL features to make derivations as NUMXL is one of the main

Microsoft Excel add-ons used to process time series analysis of econometric data.

3.2.1 Averages of the price data of 1999 and 2007

ear [1999) Frice
1 -0.00985877 2,
2 -0.0557 3035
3 -0.0M147 4383
4 -0.003400207)
5 0.0027 2109
E 0.0067 70507
7 0,007 342673
g 0.004 705857
] 059623403
] 05717416
il 0.0024T1567)
12 0.004500165

17



Year [2007)

Price

n

11l

12

-0.01534557

0.030707228

0.0106587663)

0.0032133M

0.031625367)

0.013545855

-0.007435776

0.0454738287

0.033432021

-0.013810023

0.031444308)

-0.044E11141

Based purely on this, there is nothing thus far to suggest a trend setting. The highest electricity

price in 1999 was 0.0159 approx. in September and the highest in 2007 was 0.0455 approx. in

August.

3.2.2 Discrete Fourier Transform of the data averages for both years

Fast Fourier Transform (1999)

step magnitutde

Phase

0.019430663
0.029289435
0.04526847
0.056743453
0.06014366
0.05742257
0.050652063

18
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2.6965E+308
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Fast Fourier Transform (2007)

step magnitutde

Phase

0 0.118227125 0
17 0.133572694 2.6965E+308
2" 0.102865467 2.6965E+308
3" 0.092177798 2.6965E+308
4 0.088959487 2.6965E+308
5 0.05733352 2.6965E+308
6 0.038487665 2.6965E+308

The FTT is the algorithm that computes the discrete Fourier transform (DFT). Here we have
generated a table for 6 frequency components of the average data prices (the phase and amplitude
are always have the number of cells in data sample which was 12) with amplitude and phase,
however as a limitation of our data set, with such smaller decimals the amplitude remains a very
small zero decimal as the measure of change is not large enough. But our amplitude values for

2007 are comparatively greater than our 1999 values in 5 steps out of 7.
Both FFT give zero phase for zero frequency components however.

Our phase spectrum measures the relative frequency of signals of each component against the
Amplitude as an angle within the range of and and from the results suggests that within the
Fourier transform the phase angle reaches the border of on two occasions. But since it is not
based on the middle values, there is no equivalent distance to the middle so therefore none of the
entries are complex conjugates of each other and therefore they all remain the same - i.e hence
have 2.6965E+3-8

Here is a visual description comparing both amplitudes -the 2007 amplitude decreases over time

whereas the 1999 amplitude increases over time though they both show normality.

19



FFT Amplitude (1999)

0.08

0.06

0.04
K
1 P 3 4 5 6 7

FFT Amplitude (2007)

]

o

0.15

0.1
: I I I I
1 2 3 4 5 6 7

For our Inverse Fourier transform which reconstrusts the Time series we use the subset of the

(8]

o

frequency spectrum to give us
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IDFT [1333)

-0.005

-0.007

-0.006

0m

0m

0m

0.003

IDFT [2007)

0.0

0.0

0.0

0.0

0.0

0.0

-0.02

It is clear from our values that if we plot these numbers against our original time series for both

years we would match something remotely similar.
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3.2.3 Descriptive Statistics

fAzan

Standard Error

tedian

Aode

Standard Deviation

Sample Yariance

Furtosis

Skewness

Rarnge

fAinirnum

Faxirum

Sum

Count

Largest[1)

Srmallest1)

Confidence Lewel[95.0%2]

0001613222

0002531723

0.0036706239

HA

0.010155738

000010314

-0.653130888

-0.313338625

0031347428

-0.015973035

0.015968403

0013430663

12

0.015968403

-0.015973035

0.00645268
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SEHET

hean -0.015447657
Starndard Errar 0.006365442
Pediat -0.017577799
Mode HMA

Standard Deviation 0.024142857)
Sarnple Variance 0.000582878
Kurtasis -0.238560378
Skewness 0.6653165435)
Range 0.077104248
Pelirni rrLarn -0.045475281
Maxirnurn 0.031625367)
Sum -0.18537189
Covmt 12
Largest(1) 0.031625967
Srnallest(1] -0.045475281
Confidence Level[35.022) 0.015339639

For quality and assurance purposes, we have covered a table of statistical values to further
understand the data set. To begin with, for 1999 we have our mean of 0.001619222 which is higher
than our 2007 mean of -0.015447657 though we would not consider it a crucial measurement of
the data central propensities since our set of values isn’t a set of intervals but rather continuous
time data points. Our 1999 of 0.001931723 which is less than the 2007 standard error of
0.006969442 though both are relatively small which suggests that the sample mean is a close
representative of the true mean of our greater data set. Since Excel automatically measures uses a
margin of error at 95 percent confidence, the standard error + or 2 standard errors from the true
mean. We arrived at our median of as the middle value of the sample data. Our Standard
deviation, which is an index of variability for both years is below 0.02 which is a calculation of
how deviated the data is from the mean which is unsurprisingly small again. One advantage is
that the SD maintains the same unit as our sample data but may be victim to the outliers.
Similarly, with our negative skewed value of -0.3199 in 2009, the majority of our distribution (in

theory) would be focused on the right of the graph which is reflected in the FTT amplitude graph

23



whilst the skewness value of 0.6688 for 2007 is reflective of the 2007 FTT amplitude graph, which
shows our data is asymmetric though skewness for discrete distributions. As an application
quota,a goodness-of-fit test such as Dagostinos K-squared test would be recommended to better
establish if our data sample comes from a more normally distributed pool. The Range,
Minimum/Maximum and the Sum/Count is self-intuitive and remains supplementary to our data

analysis.

3.3 Time series analysis

Below is a computation of the FFT in a time series of the data values of 1999 and 2007

Electricity prices in 1999

0.02
0.015
0.01

0.005

Price

14
-0.005

-0.01

-0.015

-0.02
Month

Electricity prices in 2007

0.06
0.04

0.02

Price
o

14
0.02

-0.04

-0.06

Month

It is clear from these graphs that we have significant variations about the trend. We can decipher
a long term trend as the similar cyclical movements of both graphs and seasonal pattern over a
period of 8 years suggests (though we have not discussed white noise fluctuations which we will

cover shortly).
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3.3.1 Stationarity tests

Stationary Test [1999)

N N ~
Test Stat P-Yalue CV. Stationary? 5.0
ADF
Ade Cersé -13 2125 -2.2 FALSE
[ -14 B2 6% -4.0 FALSE
Livast ¢ Tnynd -23 0.232 -18 TRUE
Livaste Travnde Trand & =208 0.0% -16 TRUE
Stationary Test [2007)
N N N
Test Stat P-¥alue C.¥. Stationary? 5022
ADF
Adr Sivrst -3.4 0.6 -2.2 TRUE
Livanf-Lis -48 243 -4.0 TRUE
Livaaf « Trand -5 0.0 -1E TRUE
Diaste Tnzvacts Trand' 5 5.3 0.0 -16 TRUE
Using NUMXL to automate a Stationarity test of our data values which encompasses with and
without trend, the P value for 1999 without accommodating for trend being high (above 20
percent) indicates there is not enough evidence to reject stationarity hence a FALSE statement,
with trend we have our P values below 5 percent which has enough evidence to reject stationarity
hence TRUE. For 2007 our P value without trend being less than 1 percent also indicates strong
evidence against stationarity hence TRUE. With trend however, another low P value again
suggests no stationarity. This suggests that - with exception to our data in 1999 not
accommodating for trend - suggests a lack of stationarity because the series displays trends and
also seasonality (or changes in variance) though the data can be manipulated using differencing to
produce stationarity.
3.3.2 White noise test
White-noise Test (1939)
Al N ~
Lag Score C.V. P-Value Pass? 5034
1 873 384 0.3 FALSE
2 10.74 5.93 0.5% FALSE
3 o9 7.8 127 FALSE
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White-noize Test [2007)

A A A A N
Lag Score CV. P-Value Pass? 5.0
1 197 3.84 6.1 TRUE
2 2m 5.99 36.6% TRUE
3 286 7. 4143 TRUE

It is clear from the small P values of 1999 that there is white noise evident in the data and agrees
with stationarity without trend in the year 1999. In 2007 however, the higher P values show that
a lack of white noise must be down to the trend showing a stronger correlation of trend and

seasonality.

3.3.3 Correlation functions

For the Year 1999 we can see our ACF and PACF values displayed below

Correlogram Analysis [1999)

Lag ACF uL LL PACF uL Lt
1 8163 53102 591022 76505 53102 591022
2 52,005 61987 61987 -38.27% 61987 61987
3 42582 956624 -35.66%% 43833 65.33% -65.33%%
4 62505 106,955 -106.95%% 2807 63,3054 -69.30%%
5 54137 477 -MA77 474824 74082 -74.08%%
6 -3.05% 123982 -123.98% 000 a0.02% -80.02%%
7 -74.33% 136422 1364222 2415933 87.65%% -87.65%%
8 75293 156513 186,513 -37.87% 98005 -38.00%
9 74 134072 S134.175 -226.86% M3.6% -M3.96%
4 4 4
10 HRA HRA HRA 1667725 1385932 138592
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ACF

400%
200% mm ACF
0% —uL
-200% LL
-400%
400%
200% mm PACF
0% —uL
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For the Year 2007 we can see our ACF and PACF values displayed below
Correlogram Analusis [2007)
Lag ACF uL LL PACF uL LL
1 -A0.50% 53,107 -53.0%2 -B2.30% 59107 -58.107
2 6.82% B198% 61985 -24.34% 61982 619822
3 35.03% 73277 -7327% BEIX B5.33% -B5.33%
4 5912 TreTN R TES -129.25% B9.300% -B9.30%%
5 -B.0B% 8E.13% -BE.19% -186.67 TA.087% -F4.087%
6 45375 100323 -100.32% 298.21% 80.02% -80.02%
7 -56.56 109945 -109.94% 88025 87.65% -87.65%
] -42.20% 126.16% -125.16% -368.78% 98.000% -98.00%%
9 B0.242% 48627 -l4BE2% 122677 36 -M3.96%
r r
10 HNA HhEA A 313 138.593% -138.69%
ACF
200% -
m— ACF
% T — - [ _| - e —u
2 == 6 — 8| 9 10 —
-200%
PACF
400% -
200% J o PACE
0% JE— 4=‘ — . - N . —uL
] — e ——
200% 4 2 3 o 3 7 i 10 .
-400% -

Having computed and plotted the correlation functions for 10 lags along with the upper and lower

bound values of the significance interval, we can note that for the Year 1999, at lag order 1, both

the ACF and PACF are significant ( 100 percent) suggesting we have unit roots hence

non-stationarity (our data for most of the lags show there is significant autocorrelation).
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For 2007, the ACF and PACF fluctaute which does not make it likely to have unit roots which
shows there is more stationarity in 2007 (which conflicts with our stationarity and white noise
tests) which suggests the correlogram analysis is not a reliable tool to understand the
interdependency of our data values. However we can also use this to suggest that - without
differencing the data - price data correlations can change considerably over the years for external
reasons (looking back at the history of electricity prices, World politics can affect the availability

and demand for electricity and hence the prices will be affected).

3.3.4 Multiple Regression Trend and Seasonality

SUMMARY OUTPUT
Statistics
Multiple R 0.243677398
R Square 0.059378674
Adusted R Square 0.079972633
Standard Emmor 0.040034222
Obserabons 2
ANOVA
dof SS M5 F Significance F

Regression 4 0002731758 0 00DGB2939 0426107764 0. 788426789
Resadual 27 0.04327395 0.001602739
Total 31 0.046005708

Coefficients = Siandard Frror t Stat Pvalue Lower ¥5% Upper 95%  Lower 95.0% Upper 95.0%
Intercept 0.029061396 0.019837582 1.464966607 0.154478449 -0.011641959 0.069764751 -0.011641959 0.069764751
X Variable 1 0000318069 0000772177 0411911607 0683656147 -0.001266307 0001902445 -0.001266307 0001902445
X Vaniable 2 0.022953122 0.02150708 1.139072712 0.264678462 -0.018392716 0.0642989% -0.018392716 0.0642989%
X Variable 3 0.002806244 0.020076597 0139776892 0889873749 -0.03838753 0044000019 -0 03838753 0044000019
X Variable 4 0.012621706  0.020031999 0.630077208 0533940635 -0.028480561 0.053723973 -0.028480561 0.053723973

Our intention here was to use the data to develop a multiple regression model to predict prices
(both trend and seasonal components) using dummy variables to incorporate the seasonal factor.
Instead of comparing the year 1999 and 2007, we predict prices as a whole and evaluate its
accuracy. To create the model we made a column of the years and previous quarters (due to a
lack of quarters in our original data we just randomly sampled them as four variables). We also
create a column called Time which is just a running count of the variables. We then placed a
column for all 32 prices of each respective year/quarter. Having run the regression on the analysis
add-in on Excel, we see that our value for the Adjusted R squared is -0.079972633 is low, possibly
suggesting our model isn’t the best model nor a good predictor of prices. Our R square value of
roughly 6 percent means our variables explain only 6 percent of the variation in our data, though
this is only relevant in a single regression. Our Multiple regression value of roughly 0.24 is a

correlation rate of the prices, which is clearly low.
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4 Conclusion

So far we have observed the history and structure of the Nordic pool system pricing and introduce
some important terminology of production methods relating to what economic and technical
factors determine prices in the market. For our mathematical notation we explained the gist of a
time series with use of distributed lag models. A further introduction of the Fourier transform
listed the essential properties and axioms of periodicity in our data before we finally head to our
data analysis where we compared price findings of two different years for various time series
measures; suggesting that sample correlations are within the lines though following a random
pattern, yet just because we might have white noise more evident in one year to show stationarity,
the multiple regression model which we used to predict the prices over all eight years shows it
does not fit the data perfectly. We can see that in our results and discussion, the huge uncertainty
and the inability to define possible long term forecasts was because a more advanced analysis
involving trade volume data would be required, with my suggestion being, using models involving
wavelet transforms and Hurst components to utilize the independent behaviour of time series
observations since other academic research besides my own have shown this to be fitting to many

research complexities in social sciences.
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Excel Formulae

NUMXL automates the formulas which were used in this dissertation including

FAST FOURIER TRANSFORM

=DFT(B3:$B$13,1,31$5,1)

INVERSE FAST FOURIER TRANSFORM

=IDFT($J$20:5)526,5K$20:5K$26,12)

STATIONARITY

=ADFTest(Sheet115B$2:5B$13,1,3,1,1,2)

WHITE NOISE

=WNTest(Sheet1!SB$2:5B513,1,5A83,2) AUTO CORRELATION FUNCTION
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=ACF(Sheet1!SES$2:5E513,1,5A55)

PARTTIAL AUTO CORRELATION FUNCTION

=PACF(Sheet1ISES$2:5E$13,1,5A55)
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