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Abstract

The prices of the spot markets have the potential to show interesting dynamical phenomena.

Within this project, time series data sets of the Nordic spot electricity market are analysed in

order to identify statistical qualities. Standard linear tools are employed to check whether hidden

long range correlations can be revealed when comparing the return of the price data.
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1 Introduction

1.1 Research background

As studies have shown, during the eighties, electricity was manufactured and transported by

national enterprises. Operating as a cartel, they frequently had the duty of supplying to

businesses and households. A socio-political reform in 1982 led the way for detached generation

and distribution companies as widespread privatisation began in 1986, which culminated with the

establishment of Nord Pool, the Nordic Market, in Norway in 1992. [1]

The Nordic Pool which is a leading market for trading such power resources is the largest of its

kind today, providing a platform for buying and selling power in the Nordic region (Denmark,

Finland, Norway and Sweden). In the context of competing electrical energy markets and

hotspots, all stakeholders involved, ranging from governments to buyers and sellers to the public,

need precise and truthful price projecting tools.

In the Pool, the enterprises that generate electricity place down the bids and matching prices and

consumer enterprises do the same with consumption bids. Using market-operators, auctions can

be done on an hourly basis to regulate the clearing price as well as the production and

consumption bids. Since market clearing prices are readily made-available public information,

aggregate supply and demand curves are updated on hourly, weekly and monthly time cycles.

Energy firms can then purchase energy from mutual contracts to trade it to their customers.

These companies require both short-term and long-term price forecasts to make the most of their

respective profits. Just for clarification, we focus on long-term decisions associated to the pool.

Therefore, despite using hourly cycles, we will sample weekly, monthly, quarterly and annually

computed cycles.
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1.2 Structure of Thesis

We will look at evidence from a case study, and some of the features are compared and contrasted

in order to understand what they mean and what we can gather. Since electricity prices may

display sporadic arrangements on numerous time intervals, it is important to note the effect of

these hence we will introduce the maths behind this and the Fourier transform will be briefly

discussed. In the third chapter, the data set will be provided and discoursed where we test it

before the results are briefed and concluded in Chapter 4.

2 Theory

2.1 The Elspot case study

To comprehend undercurrents of the price fluctuations in electricity markets, it is noteworthy to

understand the price setting mechanisms of the electricity market before we discuss our data. As

part of an independent case study with hourly spot prices, we look at the Elspot which is the

Nord Pool Spots daily auction market (in our case the 2014 week commencing from 19th to 12th

July), where electrical power is bought and sold. The competitors who wish to trade energy on

the Elspot send their buying orders to the Nord Pool by 12pm a day prior to the power being sent

to the grid. And this is similar for conmpetitors who wish to sell power to Elspot.
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Elspot price tables and graph

Sa 19-07 F 18-07 Th 17-07 W 16-07 Tu 15-07 M 14-07 Su 13-07 Sa 12-07

SYS 27,66 28,94 29,30 29,30 28,88 27,44 24,84 26,79

NO1 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51

NO2 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51

NO3 28,87 30,96 31,12 31,09 30,97 28,78 25,51 29,02

NO4 28,87 30,96 30,23 29,49 29,43 27,73 25,30 27,89

NO5 27,00 26,68 26,78 26,78 26,39 25,24 24,46 25,51

SE1 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08

SE2 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08

SE3 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08

SE4 28,87 30,96 31,12 31,11 30,97 28,79 25,51 29,08

FI 34,85 40,61 39,68 38,21 38,41 36,74 29,08 33,46

DK1 28,87 35,70 36,27 35,59 32,78 28,79 25,62 29,84

DK2 28,90 35,70 36, 27 35,59 32,78 28,79 25,62 29,84

EE 47,63 52,56 52,43 38,21 38,41 37,15 31,59 37,22

LV 58,37 56,99 55,96 53,07 65,75 56,31 56,38 43,99

LT 58,37 56,99 55,96 53,07 65,75 56,31 56,38 43,99

The price setting at Elspot based on information from the European Energy Exchange [2] and the

Nordic Pool Spot [3] is a bilateral uniform auctioning price mechanism, where the systematic rate

is the crossing of the accumulated supply and demand curves, which we provide. At 12pm,

contestants place the bids then offer their bids on an hourly basis of the following day to the

administrators of the Market. We know there can be three types of bidding on Elspot. With

hourly bidding being the most constructive type where sets of price and volume for every hour are

submitted, we look at these the case studies. Nord Pool Spots computers in Norway start

computing the next-day prices and publish them. As well as this, the Nord Pool report to the

partakers how much electricity theyve purchased or traded for every hour of the next day. This

information on trading is then sent to the Transmission system operators in the Nord Pool. The

Transmissions system operators utilize this information and compute the balancing power for

each participant.
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2.2 Time Series

The main goal of a time series analysis is to identify the nature of a variable using a sequence of

observations and forecasting future values for it. Regardless of the depth of our understanding

and the validity of our interpretation (theory) of this time variable, we can extrapolate the

identified pattern to predict future events.

In this section, we present the basics of a time series. We presume that prices are recorded at

specific time-intervals. We will attempt to make an analysis based on our data in the next

chapter. The models are chosen with an inspection of the key features of the time series. Lets

consider the following:

-seasonality;

-trend;

-correlation;

-stationarity

-white noise

Recalling my study of Time Series under Dr Coad [4], time series models with seasonality often

took the forms;

Additive

Xt = mt + st + Yt

t = 0, 1, ..., n

Multiplicative

Xt = mtstYt

t = 0, 1, ..., n

Mixed

Xt = mtst + Yt

t = 0, 1, ..., n

Where mt is the trend component, st is the seasonal effect and Yt is the random noise component.
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Given any natural expected seasonality in our data, various ways have been devised to eliminate

it from the trend. One such method is the small trend method. If in the case we find a small

trend with a constant period, then given an additive seasonal model, where E(Yt) = 0 and st is

such that

st = st−d

d is the length of the period

And

d∑
k=1

sk = 0

When Xjk denotes a time series in season k of year j for k =1,2,...d and j=1,2,...b

The the period average is an unbiased estimator of the trend and given by

m̂j =
1

d

d∑
k=1

Xjk

Where E(m̂j) = mj

The seasonal component estimator is therefore

ŝk =
1

b

b∑
j=1

(Xjk − m̂j)

Where E(Ŝk) = Sk

Thus the residuals are

Ŷjk = Xjk − m̂j − ŝj
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Another well known method is the classical decomposition. It consists of five steps,

Step 1: Estimating the trend using a moving average filter of period length d;

m̂t =
1

d
(Xt−q +Xt−q+1 + ...+Xt+q)

where d = 2q + 1 and q + 1 ≤ t ≤ n− q

And

m̂t =
1

d
(
1

2
Xt−q +Xt−q+1 + ...+X − t+ q − 1 +

1

2
Xt+q)

where d = 2q and q + 1 ≤ t ≤ tn− q

Step 2: Estimate seasonal effects Sk for k = 1, 2, ..., d

Compute the averages of the detrended values (Xl − m̂l), q < l = k + jd ≤ n− q for j = 1, 2, ..., b

where k + jd is the number of seasons upto year j plus k seasons and b is the number of years

We adjust them so that the seasonal effects meet the model assumptions, that is, the estimate of

Sk is

Ŝk = ¯(Xl − m̂l)k −
1

d

d∑
i=1

¯(Xl − m̂l)i

where k = 1, 2, ..., d and ¯(Xl − m̂l)k is the average of the detrended data for the k-th season

And Ŝd+1 = Ŝ1, Ŝd+2 = Ŝ2, ...

Step 3: Removing the seasonality to obtain

Dt = Xt − Ŝt

where t = 1, 2, ..., n
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Step 4 : Re-estimate the trend m̂t from the deseasonalised variables (Dt)

Step 5 : Calculate the residuals

Ŷt = Xt − m̂t − ŝt

The last way we will demonstrate removing seasonality is the use of differencing.

By defining a lag d difference operator

∇dXt = Xt −Xt−d = (1−Bd)Xt

We apply this to our additive time series to obtain

∇Xt = (mt + st+ Yt)− (mt−d + St−d + Yt−d)

= ∇mt +∇dst +∇dYt

= ∇dmt +∇dYt

since ∇dst = st − st−d = 0

Seasonal effect has been removed.

Similarly, we perform differencing to remove trend in the absence of seasonality by using a special

kind of linear filter with weights [-1,1] (could be shown via convolution which we will discuss

shortly in a different light) and is repeated until a stationary series is obtained. We denote the

first differencing operator by ∆ (which we just covered but had not hitherto defined)

∇Xt = Xt −Xt−1 = Xt −BXt

Where B denotes the backward shift operator. Hence

∇Xt = Xt −BXt = (1−B)Xt

And in general,

BjXt = Xt−jt

where j ≥ 0
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Where is the trend mt is a polynomial of degree k, we have the formula

∇kXt = k!Bk +∇kYt

This means that if the noise fluctuates about zero, then k-th differencing of the time series with a

polynomial of degree k should give a stable process with mean k!Bk. Next we discuss the

autocorrelation function, which is a very helpful tool in assessing the degree of dependence and in

recognising what kind of model the time series follows.

We must first define the autocovariance of time series as

δ(Xt+τ ,Xt) = cov(Xt+τ , Xt)

for all indices t and lags τ

Hence the auto-correlation function becomes

p(τ) =
δ(τ)

δ(0)
= corr(Xt+τ , Xt)

for all t and τ

Note that since δ(0) = var(Xt) then our autocorrelation function can be written as

cov(X,Y )√
var(X)var(Y )

In the more specific case i.e. the sample autocorrelation function, we define our sample

autocovariance function as

ˆδ(τ) =
1

n

n−|τ |∑
t=1

(xt − x̄)(xt+|τ | − x̄)

−n < τ < n

where x̄ = 1
n

∑n
t=1 xt

Hence the sample autocorrelation function is defined by

p̂(τ) =
ˆδ(t)

δ̂(0)

−n < τ < n
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A time series Xt is also stationary if the random vectors (Xt, ..., Xtn) is equal in distribution to

(Xt + τ, ..., Xtn+ τ)T . Part of its properties includes the random variables Xt are identically

distributed for all t and pairs of random vectors (Xt, Xt + τ)T are identically distributed for all t

and τ

White noise, which represents those aspects of the time series of interest which could not have

been predicted in advance, has a mean zero and variance σ2 written as

ε WN(0, σ2)

if and only if εt has zero mean and covariance function as

γε(h) = [σ2]

if h is 0 and

γε(h) = 0

if h is not zero
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2.3 Fourier Transform

2.3.1 Background

Our drive in this section is to have an understanding of the characteristics of the Fourier

transform from the point of data and graphs in time series. In order to devise good representation

techniques we cultivate different tools that allow us to find distinct features of a function -

functions such as Amplitude (i.e. loudness) and Phase (the exponent). The study of Fourier

transform, its strengths and flaws, is the vocal point towards other periodic functions. For

example this happens in our everyday lives and in technology: motions are analysed and

interpreted by our senses, a representation is grasped from this analysis and it is sent to the

brain. To make sense of the structures of the Fourier Transform we must analyse it having used

the works of Feldman [5] and J.A. Peacock [6].

Using a periodic function with period L > 0, that is, f(t+ L) = f(t). We denote by L2
T the space

of periodic functions of period T which are square integrable. Giving us,∫ t0+T

t0

|f(t)|2dt <∞

By the Fourier serious the function f can be decomposed as

f(s) =

+∞∑
j=−∞

aje
i2πωjs

,

aj ⊂ R

We call this decomposition the Fourier series of f as the above equation is an orthogonal basis

representation of the function f . The Fourier series shows that any periodic function can be

broken down as a sum of sines and cosines. The Amplitude combines an amplitude of both sine

and cosine and the Phase is the relative proportions of sine and cosine. This decomposition allows

us to make an analysis of the frequencies present in a time series model.

To get an exact representation of the function, we compute the frequency amplitude aj using the

equation,

aj =

∫ L

0
f(u)ei2πωjudu,

Here we measure a function x(t) that is episodic of period 2L, while computing the coefficients

from the measurements. x(t) being the amplitude of a periodic indicator at time t. Since we cant

fix x(t) for some values of t, assume that x(t) is measured for values of t ranging from 0 ≤ t < 2L.
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Since we can’t compute the complex Fourier coefficient exactly, we can get a Riemann approx by

dividing the Integral domain into N intervals with length 2L
N .

For t in the interval n2L
N ≤ t < (n+ 1) 2l

N predict the Integrand x(t)eik
π
l
t by its value at t = n 2l

N

that is x(n 2l
N )e−ik

π
l
n 2l
N = x(n 2l

N )e−2πi
kn
N hence estimate the integral over n 2l

N ≤ t < (n+ 1) 2l
N by

the area of a rectangle with height x(n 2l
N )e−2πi

kn
N and width 2l

N which gives us

ck ≈ c
(N)
k =

1

2l

N−1∑
n=0

x(n
2l

N
)e−2πi

kn
N

2l

N
=

1

N

N−1∑
n=0

x(n
2l

N
)e−2πi

kn
N

Since x[n], x̂[k] are both periodic in period N, there is the vector (x̂[k])k=0,1,2,...,N−1, defined as,

x̂[k] =
1

N

N−1∑
n=0

x[n]e−2πi
kn
N

Which we call our Discrete Fourier Series that is used for discrete time periods and models.

So in a brief summary, given a sequence of N samples, a Discrete Fourier Transform is defined as

X(K) where

X(k) =
1

N

N−1∑
n=0

x[n]e−2πi
kn
N

and the Inverse Discrete Fourier Transform (which had hitherto not been discussed) can be used

to determine x(k) where the IDFT is

x(k) =
1

N

N−1∑
n=0

x[n]e+2πi kn
N

For simplicity purposes, when considering the Fast Fourier Transform, we ignore the scaling

factors and simply define the FFT and IFFT as

FFTN (k, x) =
N−1∑
n=0

x[n]e−2πi
kn
N =

√
NX(k)

and

IFFTN (n,X) =

N−1∑
n=0

x[n]e+2πi kn
N =

√
Nx(n)
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Due to its relevancy to understanding linearity of time series models, we will derive some of the

properties, namely the conjugation and Parseval relation.

Conjugation

Given x[n] is a discrete-time indication for the period N, y[n] = ¯x[n]. The kth Fourier coefficient

of y[n] is

ŷ[k] =
1

N

N−1∑
n=0

y[n]e−2πi
nk
N =

1

N

N−1∑
n=0

¯x[n]e−2πi
nk
N =

¯
1

N

N−1∑
n=0

x[n]e−2πi
n(−k)
N = ¯x̂[−k]

We can infer the kth Fourier coefficient of the episodic discrete-time indicator ¯x[n] is ¯x̂[−k]. x[n]

is a real value on the condition that ¯x[n],for all n, which is correct given that the Fourier

coefficients of x[n] and y[n] = ¯x[n] are equivalent i.e.

x[n] is real for all n ←→ ¯x̂[−k] = x̂[k] for all k

Parseval’s relation

For our Fourier time series we prove via the Fourier Transform;

N−1∑
k=0

|x̂[k]|2 =
N−1∑
k=0

ˆx[k]x̂[k]

=

N−1∑
k=0

(
1

N

N−1∑
n=0

ˆx[n]e2πi
kn
N )x̂[k]

=
1

N

N−1∑
n=0

N−1∑
k=0

¯x[k]e2πi
kn
N x̂[k]

=
1

N

N−1∑
n=0

ˆx[n](
N−1∑
k=0

e2πi
kn
N x̂[k])

=
1

N

N−1∑
n=0

¯x[n]x[n]

=
1

N

N−1∑
n=0

|x[n]|2
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3 Data

3.1 Brief example of Logarithmic return graph

Top : Hourly logarithmic return for the spot prices in the Nordic electricity market (Nord Pool)

from May 1992 until December 1998. Bottom: Hourly logarithmic return for the spot prices from

January 1999 until January 2007. This piece of data was used in a similar project supervised by

Dr Just and counts as an example of the type of data produced.
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3.2 Data Analysis

Having been provided by Dr Just with a data set on an Excel spreadsheet reaching up to 70122

entries of electricity spot market prices ranging from the year 1999 to 2007, i have taken an

average of every month of the years 2007 and 1999 in order to simplify the measure of

quantitative’s and make a comparison. It is worthy to note that throughout all respective data

analysis i have used NUMXL features to make derivations as NUMXL is one of the main

Microsoft Excel add-ons used to process time series analysis of econometric data.

3.2.1 Averages of the price data of 1999 and 2007
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Based purely on this, there is nothing thus far to suggest a trend setting. The highest electricity

price in 1999 was 0.0159 approx. in September and the highest in 2007 was 0.0455 approx. in

August.

3.2.2 Discrete Fourier Transform of the data averages for both years
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The FTT is the algorithm that computes the discrete Fourier transform (DFT). Here we have

generated a table for 6 frequency components of the average data prices (the phase and amplitude

are always have the number of cells in data sample which was 12) with amplitude and phase,

however as a limitation of our data set, with such smaller decimals the amplitude remains a very

small zero decimal as the measure of change is not large enough. But our amplitude values for

2007 are comparatively greater than our 1999 values in 5 steps out of 7.

Both FFT give zero phase for zero frequency components however.

Our phase spectrum measures the relative frequency of signals of each component against the

Amplitude as an angle within the range of and and from the results suggests that within the

Fourier transform the phase angle reaches the border of on two occasions. But since it is not

based on the middle values, there is no equivalent distance to the middle so therefore none of the

entries are complex conjugates of each other and therefore they all remain the same - i.e hence

have 2.6965E+3-8

Here is a visual description comparing both amplitudes -the 2007 amplitude decreases over time

whereas the 1999 amplitude increases over time though they both show normality.
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For our Inverse Fourier transform which reconstrusts the Time series we use the subset of the

frequency spectrum to give us

20



It is clear from our values that if we plot these numbers against our original time series for both

years we would match something remotely similar.
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3.2.3 Descriptive Statistics

22



For quality and assurance purposes, we have covered a table of statistical values to further

understand the data set. To begin with, for 1999 we have our mean of 0.001619222 which is higher

than our 2007 mean of -0.015447657 though we would not consider it a crucial measurement of

the data central propensities since our set of values isn’t a set of intervals but rather continuous

time data points. Our 1999 of 0.001931723 which is less than the 2007 standard error of

0.006969442 though both are relatively small which suggests that the sample mean is a close

representative of the true mean of our greater data set. Since Excel automatically measures uses a

margin of error at 95 percent confidence, the standard error + or 2 standard errors from the true

mean. We arrived at our median of as the middle value of the sample data. Our Standard

deviation, which is an index of variability for both years is below 0.02 which is a calculation of

how deviated the data is from the mean which is unsurprisingly small again. One advantage is

that the SD maintains the same unit as our sample data but may be victim to the outliers.

Similarly, with our negative skewed value of -0.3199 in 2009, the majority of our distribution (in

theory) would be focused on the right of the graph which is reflected in the FTT amplitude graph
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whilst the skewness value of 0.6688 for 2007 is reflective of the 2007 FTT amplitude graph, which

shows our data is asymmetric though skewness for discrete distributions. As an application

quota,a goodness-of-fit test such as Dagostinos K-squared test would be recommended to better

establish if our data sample comes from a more normally distributed pool. The Range,

Minimum/Maximum and the Sum/Count is self-intuitive and remains supplementary to our data

analysis.

3.3 Time series analysis

Below is a computation of the FFT in a time series of the data values of 1999 and 2007

It is clear from these graphs that we have significant variations about the trend. We can decipher

a long term trend as the similar cyclical movements of both graphs and seasonal pattern over a

period of 8 years suggests (though we have not discussed white noise fluctuations which we will

cover shortly).
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3.3.1 Stationarity tests

Using NUMXL to automate a Stationarity test of our data values which encompasses with and

without trend, the P value for 1999 without accommodating for trend being high (above 20

percent) indicates there is not enough evidence to reject stationarity hence a FALSE statement,

with trend we have our P values below 5 percent which has enough evidence to reject stationarity

hence TRUE. For 2007 our P value without trend being less than 1 percent also indicates strong

evidence against stationarity hence TRUE. With trend however, another low P value again

suggests no stationarity. This suggests that - with exception to our data in 1999 not

accommodating for trend - suggests a lack of stationarity because the series displays trends and

also seasonality (or changes in variance) though the data can be manipulated using differencing to

produce stationarity.

3.3.2 White noise test
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It is clear from the small P values of 1999 that there is white noise evident in the data and agrees

with stationarity without trend in the year 1999. In 2007 however, the higher P values show that

a lack of white noise must be down to the trend showing a stronger correlation of trend and

seasonality.

3.3.3 Correlation functions

For the Year 1999 we can see our ACF and PACF values displayed below

26



For the Year 2007 we can see our ACF and PACF values displayed below

Having computed and plotted the correlation functions for 10 lags along with the upper and lower

bound values of the significance interval, we can note that for the Year 1999, at lag order 1, both

the ACF and PACF are significant ( 100 percent) suggesting we have unit roots hence

non-stationarity (our data for most of the lags show there is significant autocorrelation).
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For 2007, the ACF and PACF fluctaute which does not make it likely to have unit roots which

shows there is more stationarity in 2007 (which conflicts with our stationarity and white noise

tests) which suggests the correlogram analysis is not a reliable tool to understand the

interdependency of our data values. However we can also use this to suggest that - without

differencing the data - price data correlations can change considerably over the years for external

reasons (looking back at the history of electricity prices, World politics can affect the availability

and demand for electricity and hence the prices will be affected).

3.3.4 Multiple Regression Trend and Seasonality

Our intention here was to use the data to develop a multiple regression model to predict prices

(both trend and seasonal components) using dummy variables to incorporate the seasonal factor.

Instead of comparing the year 1999 and 2007, we predict prices as a whole and evaluate its

accuracy. To create the model we made a column of the years and previous quarters (due to a

lack of quarters in our original data we just randomly sampled them as four variables). We also

create a column called Time which is just a running count of the variables. We then placed a

column for all 32 prices of each respective year/quarter. Having run the regression on the analysis

add-in on Excel, we see that our value for the Adjusted R squared is -0.079972633 is low, possibly

suggesting our model isn’t the best model nor a good predictor of prices. Our R square value of

roughly 6 percent means our variables explain only 6 percent of the variation in our data, though

this is only relevant in a single regression. Our Multiple regression value of roughly 0.24 is a

correlation rate of the prices, which is clearly low.
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4 Conclusion

So far we have observed the history and structure of the Nordic pool system pricing and introduce

some important terminology of production methods relating to what economic and technical

factors determine prices in the market. For our mathematical notation we explained the gist of a

time series with use of distributed lag models. A further introduction of the Fourier transform

listed the essential properties and axioms of periodicity in our data before we finally head to our

data analysis where we compared price findings of two different years for various time series

measures; suggesting that sample correlations are within the lines though following a random

pattern, yet just because we might have white noise more evident in one year to show stationarity,

the multiple regression model which we used to predict the prices over all eight years shows it

does not fit the data perfectly. We can see that in our results and discussion, the huge uncertainty

and the inability to define possible long term forecasts was because a more advanced analysis

involving trade volume data would be required, with my suggestion being, using models involving

wavelet transforms and Hurst components to utilize the independent behaviour of time series

observations since other academic research besides my own have shown this to be fitting to many

research complexities in social sciences.
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6 Excel Formulae

NUMXL automates the formulas which were used in this dissertation including

FAST FOURIER TRANSFORM

INVERSE FAST FOURIER TRANSFORM

STATIONARITY

WHITE NOISE

AUTO CORRELATION FUNCTION
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PARTIAL AUTO CORRELATION FUNCTION
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