
Stability Analysis of Linear Autonomous
Retarded Differential-Difference Equations

with Constant Coefficients

Ashley Barnes

140880236

Queen Mary
University of London

MTHM038

2014 / 2015

School of Mathematical Sciences

Supervisor: Dr Wolfram Just



Chapter 0 Ashley Barnes 140880236

Abstract

Two methods for the stability analysis of linear autonomous retarded

differential-difference equations are applied to some fundamental first and

second order homogeneous scalar equations. The first method uses Pontrya-

gin’s theorems on the zeros of exponential polynomials, and gives stability

criteria in the form of inequalities that impose upper and lower bounds on

the equation’s parameters. Using this method, stability criteria for the Hayes

equation, a first order equation, and for the general form of damped delayed

harmonic oscillators, where the damping takes only positive values, are ob-

tained. The stability criteria, for each equation, are then shown in the form of

a stability chart, showing the stable domains in the parameter space of each

equation. The second method is the D-subdivision method, and allows us

to more directly compute the stability charts of linear autonomous retarded

differential-difference equations. This method is used to produce stability

charts for three equations. The first is the Hayes equation, the second is an

important second order equation as found in [8] that is often encountered

in control theory and in the theory of balancing, and finally the stability

charts of the general form of damped delayed harmonic oscillators, where

the damping can take negative as well as positive values, are given.
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Chapter 1

Introduction

In many of the branches of science and technology, we often encounter dy-

namical systems in which the current rate of change of state is independent

of the past states, and is determined only by the present state of the sys-

tem. Dynamical systems of this form can often be modelled by differential

equations involving the state, and the rate of change of state of the sys-

tem. However it is not uncommon to encounter dynamical systems with

time-delay, where the current rate of change of state depends not only on

the present state but also on past states of the system. Volterra was one

of the first to introduce a dynamical system that included past dependence,

in his work on predator-prey models in 1928, in which he argued that the

growth of the predator population depends not only on the present quantity

of prey but also on past quantities, for example due to gestation periods.

The development of control theory in the 1940s also showed how time-delay

is commonly found in dynamical systems with feedback control, due to the

finite speed of information transmission and data processing.

For systems with time-delay, standard differential equations are often only

a first approximation to the true nature of the system, and in order to model

the system more precisely, equations that include the past states of the system

are required. These equations are described by functional differential equa-

tions (FDEs), which are equations involving the function x(t) of one scalar

argument t called time, and its derivatives for several values of the argument

t. If the value of the highest derivative, called the order of the FDE, at time

t depends only on the values of lower derivatives at preceding times, then the

equation is called a retarded functional differential equation (RFDE). The

simplest RFDEs are those in which the time-delay takes only discrete values,

which are called retarded differential-difference equations (RDDEs).
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One of the main differences between dynamical systems with and without

time-delay, is that time-delay produces infinite dimensional dynamics, as op-

posed to the finite dimensional dynamics of delay-free systems. Consequently

stability analysis is often more complicated for systems with time-delay.

In this project the focus will be on the stability analysis of some fundamen-

tal homogeneous linear autonomous scalar RDDEs with constant coefficients.

In Chapter 2 we show how to derive the so called characteristic functions and

characteristic equations for RDDEs of this form, and give an important sta-

bility condition as found in [6]. This condition states that if all the roots

of the characteristic equation of a linear autonomous RDDE lie to the left

of the imaginary axis, then the RDDE is said to be asymptotically stable.

There are various analytical and numerical methods available to determine

whether all the characteristic roots of a linear autonomous RDDE lie to the

left of the imaginary axis. However in this project only two methods will be

used.

Chapter 3 will be devoted to an analytical method, which is used to in-

vestigate the stability of two equations. The first is a homogeneous linear

autonomous first order scalar RDDE with constant coefficients, sometimes

called the Hayes equation1. The second is the general form of a damped

delayed harmonic oscillator2, where the damping takes only positive values,

which corresponds to a second order homogeneous linear autonomous scalar

RDDE with constant coefficients. The reason this method can be used to

analyse the stability of these equations, is due to the fact that for both of

these equations, the characteristic function can be reduced to an exponential

polynomial. Hence a result of Pontryagin as found in [7], that gives a nec-

essary and sufficient condition for all the zeros of an exponential polynomial

to lie to the left of the imaginary axis, can be used. This method, for each

equation, yields stability criteria in the form of inequalities that impose up-

per and lower bounds on the equation’s parameters, which are then shown

1The stability criteria for this equation were first shown by Hayes in [5].
2Recall the general form of a damped harmonic oscillator is given bymẍ(t)+cẋ(t)+kx =

0, where m is the mass, c is the damping coefficient and k is the spring constant.
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via a stability chart in the parameter space of the equation.

The second method, called the D-subdivision method in [6] is given in

Chapter 4, and is used to produce stability charts for three equations. The

first is the Hayes equation, which is used to illustrate the techniques used in

the method. The second is a second order homogeneous linear autonomous

scalar RDDE of the form as shown in [8], that is widely seen in control

theory and in the theory of balancing. Finally the third equation is the

general form of the damped delayed harmonic oscillator given in the first

method, although now the damping can take negative as well as positive

values. The stability charts for each of these RDDEs, are constructed by

using the characteristic equation to derive the so called D-curves. These D-

curves subdivide the coefficient space of the RDDE into domains in which

the number of unstable characteristic roots, i.e. roots with positive real part,

is constant. The determination of the number of unstable characteristic

roots in each domain of the subdivided coefficient space, is then done via the

calculation of the root-crossing direction along the D-curves, as shown in [9].

This then allows us to determine the stability domains of the RDDE, which

are the domains with zero unstable characteristic roots.
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Chapter 2

The Characteristic Equation and

Stability

The general form of a differential-difference equation (DDE) of differential

order n and difference order m, that is both homogeneous and autonomous,

is given by

F
[
x(t), x(t− τ1), . . . , x(t− τm), . . . , x(n)(t), x(n)(t− τ1), . . . , x(n)(t− τm)

]
= 0 ,

(2.1)

where F is a given real function of (m + 1)(n + 1) real variables and where

τ1, τ2, . . . , τm are positive constants called the delays. If the highest derivative

in (2.1) at time t depends only on the values of lower derivatives at preced-

ing times then (2.1) is said to be a retarded differential-difference equation

(RDDE). For example, the general form of first order homogeneous linear

autonomous scalar DDEs with constant coefficients is given by

a1ẋ(t) + b1ẋ(t− τ) + a0x(t) + b0x(t− τ) = 0 , (2.2)

where x(t) ∈ R, a0, a1, b0, b1 are real constants, and τ is a positive constant.

If we have that a1 6= 0 and b1 = 0 then equation (2.2) is said to be a RDDE.

The characteristic function of an equation of the form (2.2) is derived by

substituting the trial exponential solution x(t) = Aeλt, A, λ ∈ C into (2.2)

which gives(
a1λ+ b1λe

−λτ + a0 + b0e
−λτ)Aeλt = 0 . (2.3)

Thus x(t) = Aeλt is a solution of (2.2) for all t, if and only if λ is a zero of

the transcendental function

D(λ) = a1λ+ b1λe
−λτ + a0 + b0e

−λτ , (2.4)
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which is called the characteristic function of (2.2). The equation D(λ) = 0 is

called the characteristic equation of (2.2), the roots of which are called the

characteristic roots of (2.2).

Let us now look at the more general form of homogeneous linear au-

tonomous scalar DDEs, of differential order n and difference order m, with

constant coefficients, given by

m∑
i=0

n∑
j=0

aijx
(j)(t− τi) = 0 , (2.5)

where x(t) ∈ R, the aij and τi are constants, and where 0 = τ0 < τ1 <

· · · < τm. If a0n 6= 0 and ain = 0 for i = 1, . . . ,m then (2.5) is said to

be a RDDE. The characteristic function for equations of the form (2.5) can

be obtained, as in the first order case, by substituting the trial exponential

solution x(t) = Aeλt, A, λ ∈ C into (2.5). Hence the characteristic function

of (2.5) is given by

D(λ) =
m∑
i=0

n∑
j=0

aijλ
je−λτi . (2.6)

The importance in deriving, for a DDE, the corresponding characteristic

function is due to the role the characteristic roots often play in the stability

analysis of the DDE. For example, it is shown in [6] that for a RDDE, if

all the characteristic roots have negative real parts then the trivial solution

x(t) ≡ 0 of the RDDE is asymptotically stable. In addition to this, it is also

shown in [6] that in the case of a linear autonomous RDDE, if the trivial

solution is asymptotically stable then we can say that the RDDE itself is

asymptotically stable.

In order to simplify later analysis in determining whether all the charac-

teristic roots of a DDE have negative real parts, it is often convenient, for

equations of the form (2.2), to multiply the characteristic equation (2.4) by

eλτ to get

D∗(λ) = a1λe
λτ + b1λ+ a0e

λτ + b0 = 0 , (2.7)
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and for DDEs of the form (2.5) to multiply the characteristic equation by

eλτm to get

D∗(λ) = eλτm
m∑
i=0

n∑
j=0

aijλ
je−λτi = 0 . (2.8)

It is shown in [1] that, for equations of the form (2.2) and (2.5), the roots

of D(λ) = 0 are the same as the roots of D∗(λ) = 0. Therefore determining

whether all the roots of D(λ) = 0 lie to the left of the imaginary axis is

equivalent to determining whether all the roots of D∗(λ) = 0 lie to the left

of the imaginary axis. Thus with this in mind, for equations of the form

(2.2) and (2.5), the equation D∗(λ) = 0 shall also be called the characteristic

equation.
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Chapter 3

The Pontryagin Method

The analytical method presented in this chapter uses the fact that the charac-

teristic function of a homogeneous linear autonomous RDDE, with constant

coefficients and commensurable delays, can be reduced to an exponential

polynomial, that is a polynomial in z and ez. Consequently a theorem found

in [7], which gives a necessary and sufficient condition for the zeros of an

exponential polynomial to lie to the left of the imaginary axis, can be used

to determine the stability of the RDDE. For completeness the relevant def-

initions and theorems needed for stability analysis, as found in [7]1, will be

included, without proof, in Section 3.1. Then by using the techniques as

shown in Chapter 13 of [1], in [2], and in the appendix of [4], the stability of

two RDDEs will be investigated.

3.1 Definitions and Theorems

Definition 1. Let h(z, w) be a polynomial in the two variables z and w with

coefficients that may be complex

h(z, w) =
∑
m,n

amnz
mwn , (3.1)

where m,n are non-negative integers. The term arsz
rws is called the principal

term of the polynomial (3.1) if ars 6= 0 and for every other term of the

polynomial amnz
mwn with amn 6= 0 we either have r > m and s > n, or

r > m and s = n, or we have r = m and s > n.

The importance of this principal term in stability analysis is shown in the

next theorem.

1These definitions and theorems are also found in the appendix of [4] and in Chapter

13 of [1].
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Theorem 1. If the polynomial h(z, w) in (3.1) has no principal term then the

function H(z) = h(z, ez) has an unbounded number of zeros with arbitrarily

large positive real part.

Definition 2. Let f(z, u, v) be a polynomial in the variables z, u and v which

we can write in the form

f(z, u, v) =
∑
m,n

zmφ(n)
m (u, v) , (3.2)

where φ
(n)
m (u, v) is a polynomial of degree n that is homogeneous in u and v.

The principal term of the polynomial (3.2) is defined as the term zrφ
(s)
r (u, v)

such that for all other terms of the polynomial zmφ
(n)
m (u, v), we either have

r > m and s > n, or r > m and s = n, or we have r = m and s > n.

Similar to Theorem 1 for polynomials of the form (3.1), we have the fol-

lowing theorem for polynomials of the form (3.2).

Theorem 2. If the polynomial (3.2) does not have a principal term, then

the function defined as F (z) = f(z, cos(z), sin(z)) has an unbounded number

of roots that are not real.

Before the next theorem is given, we first introduce the following nota-

tion. Suppose we have a polynomial of the form (3.2) with principal term

zrφ
(s)
r (u, v), we let φ∗(s)(u, v) denote the coefficient of zr in (3.2), and we

define Φ∗(s)(z) = φ∗(s)(cos(z), sin(z)). This notation is used in the next the-

orem which is one of the two main theorems we will use for stability analysis,

and gives conditions such that a polynomial of the form (3.2) has only real

roots.

Theorem 3. Let f(z, u, v) be a polynomial of the form (3.2) with principal

term zrφ
(s)
r (u, v). If ε is such that Φ∗(s)(ε + iy) 6= 0, for every y ∈ R, then

in the strip −2kπ + ε ≤ x ≤ 2kπ + ε, z = x + iy, the function F (z) =

f(z, cos(z), sin(z)) will have, for all sufficiently large integers k exactly 4ks+

r zeros. Therefore the function F (z) = f(z, cos(z), sin(z)) will have only real

roots if and only if, for sufficiently large integers k, F (z) has exactly 4ks+ r

roots in the strip −2kπ + ε ≤ x ≤ 2kπ + ε.
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Theorem 3 is used in conjuction with the next theorem, which represents

the second of the two main theorems we shall use to investigate stability.

Theorem 4. Let H(z) = h(z, ez), where h(z, w) is a polynomial with a

principal term. Suppose the function H(iy), y ∈ R, is decomposed into its

real and imaginary parts, that is we get H(iy) = F (y) + iG(y). If all the

zeros of the function H(z) lie to the left of the imaginary axis, then the zeros

of F (y), G(y) are real, alternating and

G′(y)F (y)−G(y)F ′(y) > 0 , (3.3)

for y ∈ R. Conversely, all the zeros of H(z) will lie to the left of the imaginary

axis provided that either of the following conditions is satisfied

(a) All the zeros of the functions F (y), G(y) are real, alternate and the

inequality (3.3) is satisfied for at least one value of y.

(b) All the zeros of the function F (y) are real, and for each zero the in-

equality (3.3) is satisfied, that is F ′(y)G(y) < 0 at all the zeros of

F (y).

(c) All the zeros of the function G(y) are real and for each zero inequality

(3.3) is satisfied, that is G′(y)F (y) > 0 at the zeros of G(y).

11
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3.2 The Hayes Equation

One of the simplest examples of a system with time-delay is the Hayes

equation, which is a homogeneous linear autonomous first order scalar RDDE

given by

ẋ(t)− a0x(t)− b0x(t− τ) = 0 , (3.4)

where a0, b0 ∈ R, and τ is a positive constant. Substituting the trial expo-

nential solution into (3.4), and multiplying by eλτ yields the characteristic

function

D∗(λ) = (λ− a0)eλτ − b0 , (3.5)

and introducing the non-dimensional quantity z = λτ into (3.5) gives the

exponential polynomial

H1(z) = (z − p)ez − q , (3.6)

where p = a0τ and q = b0τ . Since the exponential polynomial (3.6) has

principal term zez, Theorem 4 can be applied to determine when the zeros

of (3.6) all lie to the left of the imaginary axis. Substituting z = iy, y ∈ R,

into (3.6) gives

H1(iy) = −ysin(y)− pcos(y)− q + i[ycos(y)− psin(y)] , (3.7)

and so

F1(y) = −ysin(y)− pcos(y)− q , (3.8)

G1(y) = ycos(y)− psin(y) . (3.9)

As the function G1(y) is of a slightly simpler form than F1(y), we will try

to determine the values of p and q such that condition (c) of Theorem 4 is

satisfied. Firstly it should be noted that the principal term of (3.9) is given

by ycos(y), hence Φ∗(1)(y) = cos(y) and so we can take ε = 0 in Theorem 3.

This is because if ε = 0, then for all β ∈ R,

Φ∗(1)(ε+ iβ) = Φ∗(1)(iβ) = cos(iβ) =
e−β + eβ

2
6= 0 . (3.10)
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(a) p = 0.5 (b) p = −0.5 (c) p = 1.5

Figure 3.1: Plot showing the first positive root of (3.11) for different values of p.

Therefore in order for all the roots of G1(y) = 0 to be real, there must be

exactly 4k + 1 roots of G1(y) = 0 in the interval [−2kπ, 2kπ] for sufficiently

large integers k. To determine the number of roots of G1(y) = 0 in this

interval, we first observe that y0 = 0 is a root, and that G1(y) = 0 can be

rewritten as

y = p tan(y) . (3.11)

The analysis of the number of roots of (3.11) in the interval [−2kπ, 2kπ] is

split into the three cases: p = 1, p > 1 and p < 1. Firstly if p = 1 then we

have G′1(y0) = 0, and so the inequality (3.3) is not satisified at the root at

the origin, therefore for stability we must have that p 6= 1.

If p > 1, then due to the shape of the tangent curve, as shown in Fig-

ure 3.1c, there is no root of G1(y) = 0 in the interval (0, π), whereas in every

other interval (jπ, (j+1)π), where j is a positive integer, there is exactly one

root. Therefore for every positive integer k, in the interval (0, 2kπ] there are

only 2k− 1 roots, and as both the left and right hand side of (3.11) are odd

in y, there must also be 2k−1 roots in the interval [−2kπ, 0). Thus for p > 1,

including the root at the origin, there are only 4k − 1 roots of G1(y) = 0 in

the interval [−2kπ, 2kπ] no matter how large the integer k is chosen to be.

Whereas if p < 1, then for every integer n there is exactly one root in

the interval (nπ, (n + 1)π). Hence, for all non-negative integers k, there

13
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are exactly 2k roots in the interval (0, 2kπ], and as both sides of (3.11) are

odd, there must also be 2k roots in the interval [−2kπ, 0). Thus for p < 1,

for every non-negative integer k, including the root at the origin, there are

exactly 4k + 1 roots of G1(y) = 0 in the interval [−2kπ, 2kπ]. Therefore in

order for all the roots of G1(y) = 0 to be real, we must have that p < 1.

Let p < 1, then all the roots of G1(y) = 0 are real, and according to

Theorem 4, in order for all the zeros of H1(z) to lie to the left of the imaginary

axis, the inequality F1(y)G′1(y) > 0 must be satisfied at all the roots of

G1(y) = 0. To simplify the analysis of this inequality, we first label the roots

of G1(y) = 0. Firstly the root at the origin is labelled y0, and to the root

in the interval ((j − 1)π, jπ), where j is a positive integer, we attach the

label yj. As the zeros of G1(y) come in pairs of the form ±y, as can be seen

from (3.11), the negative roots of G1(y) = 0 are labelled as y−j = −yj, for

j = 1, 2, . . . .

Since we have that

F1(y) = −ysin(y)− p cos(y)− q , (3.12)

G′1(y) = (1− p)cos(y)− ysin(y) , (3.13)

which are both even functions in y, and as the zeros of G1(y) = 0 come

in pairs of the form ±y, the requirement that F1(y)G′1(y) > 0 at all roots

reduces to F1(y)G′1(y) > 0 at the non-negative roots of G1(y) = 0. Firstly at

y0 = 0,

F1(0)G′1(0) = −(p+ q)(1− p) , (3.14)

and as p < 1 we must have that p < −q in order for F1(y0)G
′
1(y0) > 0 to

be satisfied. At the positive roots of G1(y) = 0, F1(y) and G′1(y) can be

rewritten using (3.11) and the fact that

sin(yj) =
(−1)j−1yj√
p2 + y2j

, (3.15)

14
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at the jth positive root of G1(y) = 0, and so we have that

F1(yj)G
′
1(yj) =

 1√
p2 + y2j

(y2j + p2 − p
) (√

p2 + y2j + (−1)j−1q
)
, (3.16)

at the jth positive root of G1(y) = 0. The second expression in (3.16) can be

rewritten as

y2 + p2 − p =

(
y

sin2(y)

)(
y − 1

2
sin(2y)

)
, (3.17)

which is positive at any nonzero root of G1(y) = 0. Therefore in order for

F1(y)G′1(y) > 0 to be satisfied at the positive roots we require that, for every

positive integer j,√
p2 + y2j + (−1)j−1q > 0 . (3.18)

At the odd labelled positive roots, (3.18) simplifies to
√
p2 + y2 + q > 0, and

at the even labelled positive roots, (3.18) simplifies to
√
p2 + y2 − q > 0.

Since both
√
p2 + y2 + q and

√
p2 + y2 − q are increasing quantities in y,

in order for (3.18) to be satisfied at all positive roots we just need that√
p2 + y21 + q > 0 and

√
p2 + y22 − q > 0. However as p < −q, we have that√

p2 + y22 − q > |p|+ p ≥ 0, and so (3.18) is satisfied at all the even labelled

positive roots of G1(y) = 0. Therefore in order for F1(y)G′1(y) > 0 to be

satisfied at the non-negative roots of G1(y) = 0, and thus for all the roots of

G1(y) = 0, we require that p < −q <
√
p2 + y21. It should be noted that if

p = 0, then G1(y) = ycos(y) and so y1 = π
2
, and the above condition becomes

0 < −q < π
2
.

We have therefore shown, by loosely following the proof in [1], the result

as found in [5], that the zeros of H1(z) = (z − p)ez − q all lie to the left of

the imaginary axis, and thus equation (3.4) is asymptotically stable if and

only if

(i) p < 1 , and

(ii) p < −q <
√
p2 + y21 ,

15
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Figure 3.2: The stability chart for equation (3.4) in the parameter space (p, q).

where p = a0τ and q = b0τ , and where y1 denotes the root of y = p tan(y)

such that 0 < y < π if p 6= 0 and y1 = π
2

if p = 0. The resulting stability

chart for equation (3.4) is shown in Figure 3.2, with the stability domain

shaded grey.
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3.3 Damped Delayed Harmonic Oscillators

Damped harmonic oscillators subjected to time delayed feedback control,

where the damping only takes positive values, are governed by second order

homogeneous linear autonomous scalar RDDEs of the form

ẍ(t) + a1ẋ(t) + a0x(t) = Kx(t− τ) , (3.19)

where a1 > 0, a0, K ∈ R, and τ > 0. The characteristic function of (3.19) is

given by

D∗(λ) =
[
λ2 + a1λ+ a0

]
eλτ −K , (3.20)

and substituting the non-dimensional quantity z = λτ into (3.20) yields the

exponential polynomial

H2(z) = (z2 + az + b)ez − c , (3.21)

where a = a1τ , b = a0τ
2 and c = Kτ 2, and so a > 0, as a1 > 0, and b, c ∈ R.

As (3.21) has the principal term z2ez, Theorem 4 can be applied to determine

when the zeros of (3.21) all lie to the left of the imaginary axis. Substituting

z = iy, y ∈ R into the exponential polynomial (3.21) gives

H2(iy) = (b−y2)cos(y)−aysin(y)−c+i[(b−y2)sin(y)+aycos(y)] , (3.22)

and so

F2(y) = (b− y2)cos(y)− aysin(y)− c , (3.23)

G2(y) = (b− y2)sin(y) + aycos(y) . (3.24)

As in the case of the Hayes equation, since the function G2(y) is of a slightly

simpler form than F2(y), we shall try to use part (c) of Theorem 4 to deter-

mine the appropriate conditions such that all the zeros of (3.21) lie to the

left of the imaginary axis.

Firstly, as the principal term of (3.24) is−y2sin(y), we have that Φ∗(1)(y) =

−sin(y), and so we can take ε = π
2

in Theorem 3. This is because for all

17
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Figure 3.3: Distribution of the zeros of (3.26) for a > 0.

β ∈ R, we have Φ∗(1)(ε + iβ) = −
[
e−β+eβ

2

]
6= 0. Therefore in order for all

the roots of G2(y) = 0 to be real, there must be exactly 4k + 2 roots of

G2(y) = 0 in the interval [−2kπ + π
2
, 2kπ + π

2
] for sufficiently large integers

k. To determine the number of roots in this interval, we first note that y = 0

is a root of G2(y) = 0 , and that G2(y) = 0 can be rewritten at the non-zero

roots as

y2 − b
ay

= cot(y) , (3.25)

or alternatively as

b = y2 − aycot(y) . (3.26)

Using Figure 3.3, which shows the distribution of the zeros of G2(y) in the

(b, y2) plane for a > 0, we can see that in order to determine when there are

4k+2 roots, for sufficiently large integers k, in the interval [−2kπ+π
2
, 2kπ+π

2
],

the analysis should be divided into the three cases: b > 0, −a < b ≤ 0 and

b ≤ −a.

18
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Case 1: b > 0

We first count the roots of (3.25) on (0, 2kπ + π
2
], and as y > 0 on this

interval, we have that the function given by the left hand side of (3.25) is

concave, and increases continuously from −∞ to ∞ as y increases from 0 to

∞. We take k large enough so that the left hand side of (3.25) is positive for

y ≥ 2(k − 1)π.

Since the cotangent curve has one branch on each interval (0, π), (π, 2π), . . . ,

and as we know that the left hand side of (3.25) is concave, we have that

there is exactly one root in each interval (0, π), (π, 2π),. . . , ((2k− 1)π, 2kπ),

and so there are exactly 2k roots in the interval (0, 2kπ). Also since we have

that the left hand side is positive for y ≥ 2(k−1)π, and due to the additional

branch of the cotangent curve, there is an additional root of G2(y) = 0 in the

interval (2kπ, 2kπ+ π
2
). Hence there are 2k+1 roots of (3.25) in (0, 2kπ+ π

2
].

As we have that there are 2k + 1 roots of (3.25) in (0, 2kπ + π
2
], and since

there is a root at the origin, in order for Theorem 3 to be satisfied there must

be exactly 2k roots in the interval [−2kπ+ π
2
, 0). Using the fact that the left

hand side of (3.25) is positive for y ≥ 2(k − 1)π, we have that the largest

root of G2(y) = 0 in the interval (0, 2kπ] is in (0, 2kπ − π
2
]. This is because

we took k large enough so that the left hand side of (3.25) is positive on

the interval (2kπ − π
2
, 2kπ], and due to the fact that the cotangent curve is

negative on this interval, thus there can’t be a root of (3.25) in (2kπ− π
2
, 2kπ].

As we know that there are 2k roots in (0, 2kπ], there must be 2k roots in

(0, 2kπ− π
2
], and as both sides of (3.25) are odd, there must also be 2k roots

in [−2kπ + π
2
, 0).

Therefore for sufficiently large integers k, G2(y) = 0 has 4k+2 roots in the

interval [−2kπ + π
2
, 2kπ + π

2
], and so by Theorem 3, for b > 0, all the roots

of G2(y) = 0 are real.

Case 2: −a < b ≤ 0

As before since both the left hand side and right hand side of (3.25) are odd,

we only need to count the zeros of G2(y) on (0, 2kπ + π
2
]. However since

19



Chapter 3 Ashley Barnes 140880236

b ≤ 0 and we know y > 0 on this interval, we have that the left hand side of

(3.25) is positive, and is convex for b < 0 and increases continuously for b = 0.

Therefore we can take k ≥ 1 in Theorem 3. By the same argument as in Case

1, there are exactly 2k + 1 roots in the interval (0, 2kπ + π
2
]. Also since the

left hand side of (3.25) is positive on (2kπ− π
2
, 2kπ] and the cotangent curve

is negative on this interval, there must be 2k roots in [−2kπ + π
2
, 0). Hence

there are 4k + 2 roots in [−2kπ + π
2
, 2kπ + π

2
], and therefore by Theorem 3,

for −a < b ≤ 0, all the roots of G2(y) = 0 are real.

Case 3: b ≤ −a

As b < 0, the left hand side of (3.25) is positive and convex, however as we can

see in Figure 3.3, there is no root of G2(y) = 0 in the interval (0, π). Hence

for every positive integer k, there are at most 2k − 1 roots in (0, 2kπ), and

so there can’t be 4k+ 2 roots in the interval [−2kπ+ π
2
, 2kπ+ π

2
]. Therefore,

as G2(y) can not have only real roots, stability can be ruled out for b ≤ −a.

We now aim to show conditions such that each root of G2(y) = 0 satisfies

the inequality (3.3) in Theorem 4 in both the remaining cases: for b > 0 and

for −a < b ≤ 0. It should be noted that in both the remaining cases, for each

integer n, there is exactly one root of G2(y) = 0 in the interval (nπ, (n+1)π).

In order to simplify the analysis of F2(y)G′2(y) we first label the roots of

G2(y) = 0. The root at the origin is labelled y0 = 0, and for each positive

integer j the root in the interval ((j − 1)π, jπ) is labelled yj. It is apparent

from Figure 3.3 that the roots of G2(y) = 0, except for the root at the origin,

come in pairs of the form ±y. Therefore the negative roots of G2(y) = 0 can

be labelled as y−j = −yj for j = 1, 2, . . . .

We have

F2(y) = (b− y2)cos(y)− aysin(y)− c , (3.27)

G′2(y) = (a+ b− y2)cos(y)− (2 + a)ysin(y) , (3.28)

and as both F2(y) and G′2(y) are even functions in y, we just require that the

inequality F2(y)G′2(y) > 0 is satisfied at the non-negative roots of G2(y) = 0.
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For the root of the origin we have

F2(0)G′2(0) = (b− c)(a+ b) , (3.29)

and using the relation (3.25), at any non-zero root of G2(y) = 0, (3.27) and

(3.28) can be rewritten as

F2(y) =

(
sin(y)

ay

)(
−(y2 − b)2 − y2a2 − c ay

sin(y)

)
, (3.30)

G′2(y) =

(
sin(y)

ay

)(
−(y2 − b)2 − y2a2 − a(y2 + b)

)
. (3.31)

Therefore at the positive roots the inequality F2(y)G′2(y) > 0 becomes

sin2(y)

a2y2

[
−(y2 − b)2 − y2a2 − c ay

sin(y)

] [
−(y2 − b)2 − y2a2 − a(y2 + b)

]
> 0 .

(3.32)

The analysis of (3.32) is separated into the two remaining cases.

Case 1: b > 0

Firstly from (3.29) it is clear that in order for F2(y0)G
′
2(y0) > 0 we require

c < b. Also as the third factor of (3.32) is negative in this case, (3.32)

simpifies to[
−(y2 − b)2 − y2a2 − c ay

sin(y)

]
< 0 , (3.33)

at the positive roots of G(y) = 0. To simplify the analysis of (3.33), we use

a technique shown in [2] and define the positive quantity V (y) by

V (y) =
√

(y2 − b)2 + a2y2 , (3.34)

and using (3.25) we get that

sin(yj) =
(−1)j−1ayj
V (yj)

, (3.35)

at the jth positive zero of G2(y). After substituting (3.35) into (3.33) we get

that in order for F2(y)G′2(y) > 0 at the positive roots, we require

c(−1)j < V (yj), j = 1, 2, . . . . (3.36)
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Therefore at the even labelled positive roots we have inequalities of the form

c < V (y), and at the odd labelled positive roots we have inequalities of the

form −V (y) < c. Recalling that in order for F2(y0)G
′
2(y0) > 0 we require

c < b, then we obtain the following sets of inequalities,

c < b = V (y0), c < V (y2), c < V (y4), . . . , (3.37)

−V (y1) < c, −V (y3) < c, −V (y5) < c, . . . . (3.38)

It is apparent that the sets of inequalities (3.37) and (3.38) bound c from

above and below respectively. To determine the governing inequalities, which

are given by the smallest V (y) in (3.37) and (3.38), we first note that the

quantity in the square root in (3.34) can be rewritten as y4 +(a2−2b)y2 + b2.

Thus if a2 ≥ 2b then V (y) is an increasing function in y, and so the governing

inequalities are c < b = V (y0) and −V (y1) < c. Whereas if a2 < 2b then, by

using differential calculus, we can see that y4 + (a2− 2b)y2 + b2 is minimised

by y2 = b− a2

2
. Therefore if we define y∗ to be the even non-negative labelled

root whose value squared is closest to b − a2

2
and y∗∗ to be the odd positive

labelled root whose value squared is closest to b− a2

2
, then we have that the

governing inequalities are given by −V (y∗∗) < c and c < V (y∗).

Case 2: −a < b ≤ 0

In this case the third factor in (3.32) can be rewritten using (3.34) and (3.35),

to get[
−(y2 − b)2 − y2a2 − a(y2 + b)

]
= −

[
a2y2

sin2(y)
+ ab+ ay2

]
, (3.39)

and since −a < b we have

−
[
a2y2

sin2(y)
+ ab+ ay2

]
< −

[
a2
(

y2

sin2(y)
− 1

)
+ ay2

]
< 0 , (3.40)

where the last inequality is valid because for y 6= 0 we have that y2

sin2(y)
> 1.

This means that just as in Case 1, in order for F2(y)G′2(y) > 0 at the positive

roots we need[
−(y2 − b)2 − y2a2 − c ay

sin(y)

]
< 0 , (3.41)
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and as in Case 1 this leads to requiring

c(−1)j < V (yj), j = 1, 2, . . . . (3.42)

However since in this case b ≤ 0, we have that a2 ≥ 2b and so V (y) is an

increasing function in y. Therefore the governing inequalities are given by

c < b and −V (y1) < c.

We therefore have the following criteria for stability, as found in [2]. Let

H2(z) = (z2 + az + b)ez − c, where a > 0 and b, c ∈ R, then all the zeros of

H2(z) will have negative real parts, and thus equation (3.19) is asymptotically

stable if and only if

(i) b > 0 and −V (y∗∗) < c < V (y∗) , or

(ii) −a < b ≤ 0 and −V (y1) < c < b ,

where a = a1τ , b = a0τ
2 and c = Kτ 2, and where y∗ and y∗∗ denote the even

non-negative and odd positive labelled root respectively whose value squared

is closest to b− a2

2
, and y1 denotes the root of G2(y) = 0 in the interval (0, π).

In order to plot the above criteria in the form of a stability chart, we first

replace the inequalities (3.37) and (3.38) by

c = b, c = V (y2), c = V (y4), . . . , (3.43)

−V (y1) = c, −V (y3) = c, −V (y5) = c, . . . . (3.44)

For a given value of a, (3.43) and (3.44) represent a set of curves in the

(b, c) plane, and in order to satisfy the stability criteria, we must have that c

lies below the lowest curve in the set (3.43) and above the topmost curve in

the set (3.44). However since the curves (3.43) and (3.44) cross themselves,

the zeros of G2(y) that yield the governing inequalities change with b. The

resulting stability chart for equation (3.19), with the stability domain shaded

grey, is shown in Figure 3.4 for a = 1, and for other values of a in Figure 3.5.
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Figure 3.4: The stability chart of equation (3.19), in the (b, c) plane for a = 1.

Figure 3.5: Stability charts of equation (3.19) showing the boundary curves for

stability domains in the (b, c) plane for different values of a.
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Chapter 4

The D-subdivision Method

The stability properties of differential-difference equations are often more eas-

ily represented in the form of stability charts that show the stable domains,

or alternatively the number of unstable characteristic roots, in the coefficient

space of the equation. These stability charts, for linear autonomous RDDEs,

can be constructed via the D-subdivision method. This method, as given in

[6] and in [9], is outlined in Section 4.1, before being applied to produce sta-

bility charts for three homogeneous linear autonomous RDDEs with constant

coefficients.

4.1 Method

Suppose we have a homogeneous linear autonomous scalar RDDE of the

general form

m∑
i=0

n∑
j=0

aijx
(j)(t− τi) = 0 , (4.1)

where a0n 6= 0 and ain = 0 for i = 1, . . . ,m, with the characteristic equation

D(λ) =
m∑
i=0

n∑
j=0

aijλ
je−λτi = 0 , (4.2)

the left hand side of which is often called a quasi-polynomial. In order to

determine conditions under which the characteristic equation (4.2) only has

roots with negative real parts, the D-subdivision method can be applied,

which uses the fact that the roots of the characteristic equation (4.2) are

continuous functions of the system parameters aij and τi.

The method is as follows, we first introduce λ = γ ± iω, ω ≥ 0, into the

characteristic equation (4.2) and then separate the resulting equation into

25



Chapter 4 Ashley Barnes 140880236

its real and imaginary parts. Then letting γ = 0 yields the curves

R(ω) = 0 , S(ω) = 0 , ω ∈ [0,∞) , (4.3)

where ω is the parameter of the curves, and where R(ω) and S(ω) denote

the real and imaginary parts of D(iω) respectively. Thus we can see that the

characteristic equation has a pair of imaginary roots of the form λ = ±iω if

and only if R(ω) = 0 and S(ω) = 0. The curves given by (4.3) are called the

D-curves, and they subdivide the coefficient space of (4.1).

Since the roots of the characteristic equation (4.2) are continuous with

respect to changes in the system parameters, the number of unstable roots

may change only by the passage of some roots through an imaginary axis.

Therefore the D-curves subdivide the coefficient space of (4.1) into domains

in which the number of unstable roots is constant. Hence if the number of

unstable roots is known for at least one point in each domain of D-subdivision,

then the number of unstable roots is known for all points in every domain.

In order to determine the number of unstable roots in each domain, there

are various methods available, such as using Stepan’s formula as shown in

[9]. However we shall use the calculation of the root-crossing direction along

the D-curves, also shown in [9]. This is defined as the sign of the partial

derivative of the real part of the characteristic root with respect to one of

the system coefficients along the D-curves (4.3). Hence if the number of

unstable roots is known for at least one point in the coefficient space, then

by considering the root-crossing direction along the D-curves, the number of

unstable roots in all other domains of the coefficient space can be found.

It should be noted that if the characteristic equation of (4.1) depends on

two parameters then the D-subdivision method produces a stability chart in

the coefficient space of the system, where the stability boundaries are given

by the D-curves that bound domains with zero unstable characteristic roots.

26



Chapter 4 Ashley Barnes 140880236

4.2 The Hayes Equation

Recall the Hayes equation is given by

ẋ(t)− a0x(t)− b0x(t− τ) = 0 , (4.4)

where a0, b0 ∈ R, τ > 0, and the characteristic equation is given by

D(λ) = λ− a0 − b0e−λτ = 0 . (4.5)

Following the D-subdivision method, we first substitute λ = γ±iω, ω ≥ 0 into

(4.5) and then decompose the resulting equation into its real and imaginary

parts to get

Re : γ − a0 − b0e−γτcos(ωτ) = 0 , (4.6)

Im : ω + b0e
−γτsin(ωτ) = 0 . (4.7)

Letting γ = 0 in (4.6) and (4.7) gives

R(ω) = −a0 − b0cos(ωτ) = 0 , (4.8)

S(ω) = ω + b0sin(ωτ) = 0 , (4.9)

which yields the D-curves as a parametric function of ω in the form

If ω = 0 : a0 = −b0 , (4.10)

If ωτ 6= kπ , k ∈ N : a0 =
ωcos(ωτ)

sin(ωτ)
, b0 =

−ω
sin(ωτ)

. (4.11)

The D-curves (4.10) and (4.11) are shown in Figures 4.1a and 4.1b in the

coefficient space (a0, b0), for two different values of the delay. As mentioned

in Section 4.1, these D-curves subdivide the coefficient space (a0, b0) into

domains in which the number of unstable characteristic roots is constant. To

determine the stability domains of (4.4), we first take the partial derivatives

of (4.6) and (4.7) with respect to b0
1. This gives

1Using the notation γ
′

b0
and ω

′

b0
, to denote the partial derivatives of γ and ω with

respect to b0.
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(a) τ = 1 (b) τ = 2

Figure 4.1: The D-curves (4.10) and (4.11) for different values of τ , for some

initial parameter intervals.

γ
′

b0
(1 + b0τe

−γτcos(ωτ))− e−γτcos(ωτ) +ω
′

b0
b0τe

−γτsin(ωτ) = 0 , (4.12)

ω
′

b0
(1 + b0τe

−γτcos(ωτ)) + e−γτsin(ωτ)− γ′b0b0τe
−γτsin(ωτ) = 0 , (4.13)

and as γ = 0 along the D-curves, equations (4.12) and (4.13) become

γ
′

b0
(1 + b0τcos(ωτ))− cos(ωτ) + ω

′

b0
b0τsin(ωτ) = 0 , (4.14)

ω
′

b0
(1 + b0τcos(ωτ)) + sin(ωτ)− γ′b0b0τsin(ωτ) = 0 . (4.15)

The solution of (4.14) and (4.15) for γ
′

b0
is given by

γ
′

b0
=

cos(ωτ) + b0τ

(1 + b0τcos(ωτ))2 + (b0τsin(ωτ))2
, (4.16)

which we can use to calculate the root-crossing direction along the D-curves

(4.10) and (4.11).

Firstly as ω = 0 along the D-curve (4.10), equation (4.16) simplifies to

γ
′

b0
= 1

1+b0τ
, and so we see that if b0 >

−1
τ

then γ
′

b0
is positive. Since this

D-curve (4.10) is associated with a real characteristic root crossing the imag-

inary axis at the origin, if γ
′

b0
is positive then as b0 is increased the charac-

teristic root crosses the imaginary axis through the origin from left to right.
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Figure 4.2: Root-crossing direction along the D-curves (4.11).

Hence if the D-curve (4.10) is crossed, by increasing b0, in a region where

b0 >
−1
τ

, then we have that a stable characteristic root becomes unstable.

Similarly for b0 <
−1
τ

we have γ
′

b0
is negative and so the characteristic root

crosses the imaginary axis from right to left, through the origin, as b0 is in-

creased. Hence if we cross (4.10) by increasing b0, in a region where b0 <
−1
τ

,

then an unstable characteristic root becomes stable.

In order to calculate the root-crossing direction along the D-curves (4.11),

we first notice that the denominator of (4.16) is positive, and so equation

(4.16) gives

sgn(γ
′

b0
) = sgn(cos(ωτ) + b0τ) . (4.17)

Thus as we have that b0 = −ω
sin(ωτ)

along the D-curves (4.11), the root-crossing

direction along these D-curves will be given by the sign of cos(ωτ)− ωτ
sin(ωτ)

.

This leads to two possible cases, which are most readily seen from Figure 4.2.

Firstly along the D-curves (4.11), where ωτ ∈ ((2k−1)π, 2kπ), for k ∈ Z+,

we have cos(ωτ)− ωτ
sin(ωτ)

> 0, and so γ
′

b0
is positive. Therefore as the D-curves

(4.11), where ωτ ∈ ((2k − 1)π, 2kπ), for k ∈ Z+, are crossed by increasing

b0, we must have that two stable characteristic roots become unstable. This

is because the D-curves (4.11) are associated with a complex conjugate pair

of characteristic roots of the form λ = ±iω.

Similarly along the D-curves (4.11), where ωτ ∈ (2kπ, (2k + 1)π), for

k ∈ N, we have cos(ωτ) − ωτ
sin(ωτ)

< 0 and so γ
′

b0
is negative. Therefore as
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the D-curves (4.11), where ωτ ∈ (2kπ, (2k + 1)π), for k ∈ N, are crossed by

increasing b0, we have that two unstable characteristic roots become stable.

As the root-crossing direction along the D-curves (4.10) and (4.11) has

been found, in order to determine the number of unstable characteristic roots

in each domain of the subdivided coefficient space, we just need to know the

number of unstable roots at a single point in the coefficient space of (4.4).

Since we have that when b0 = 0, (4.4) reduces to an ordinary differential

equation (ODE) with one characteristic root, given by λ = a, the domain

in the coefficient space (a0, b0) where a0 < 0 and b0 = 0, corresponding to

an asymptotically stable ODE, must have zero unstable characteristic roots.

Using this information, the number of unstable characteristic roots in every

other domain of the coefficient space (a0, b0) can be found.

The corresponding stability chart of equation (4.4), showing the number of

unstable roots in each domain, is given in Figure 4.3 for τ = 1. In Figure 4.3

the black line represents the D-curve (4.10), and the blue and red lines repre-

sent the D-curves (4.11) where we have that ωτ ∈ ((2k − 1)π, 2kπ), k ∈ Z+,

and ωτ ∈ (2kπ, (2k + 1)π), k ∈ N, respectively. The shaded domain in Fig-

ure 4.3 represents the domain where there are zero unstable characteristic

roots. Hence equation (4.4) is asymptotically stable in this shaded domain.

Figure 4.3: The stability chart of equation (4.4) for τ = 1.
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4.3 An Undamped Delayed Oscillator

In the paper [8], Stepan shows that many of the simple mechanical mod-

els of balancing with time-delay, that use the Newtonian equations of the

inverted pendulum, can be reduced to a second order homogeneous linear

autonomous scalar RDDE having the standard linearised form

ẍ(t) + b1ẋ(t− τ) + a0x(t) + b0x(t− τ) = 0 , (4.18)

where a0 < 0, b0, b1 ∈ R and τ > 0, at the upward position of the pendu-

lum. Since the trivial solution x(t) ≡ 0 represents the upward position of

the pendulum, the importance of its stability is clear. This equation also

represents the general form of an undamped harmonic oscillator subjected

to time-delayed proportional derivative control, where a0 represents the neg-

ative stiffness, b0 the proportional gain, b1 the derivative gain, and τ is the

feedback delay.

The characteristic function of (4.18) is given by

D(λ) = λ2 + a0 + b1λe
−λτ + b0e

−λτ , (4.19)

and substituting λ = γ ± iω, ω ≥ 0 into the characteristic equation and

separating the resulting equation into real and imaginary parts yields

Re : γ2−ω2+a0+b0e
−γτcos(ωτ)+b1γe

−γτcos(ωτ)+b1ωe
−γτsin(ωτ) = 0 ,

(4.20)

Im : 2γω−b0e−γτsin(ωτ)+b1ωe
−γτcos(ωτ)−b0γe−γτsin(ωτ) = 0 . (4.21)

Letting γ = 0 in (4.20) and (4.21) gives

R(ω) = a0 − ω2 + b0cos(ωτ) + b1ωsin(ωτ) = 0 , (4.22)

S(ω) = b1ωcos(ωτ)− b0sin(ωτ) = 0 , (4.23)

which yields the D-curves as a parametric function of ω in the form

If ω = 0 : b0 = −a0 , (4.24)
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Figure 4.4: The D-curves (4.24) and (4.25) for a0 = −0.2 and different values of

τ .

If ω 6= 0 : b0 = (ω2 − a0)cos(ωτ) , b1 =
ω2 − a0
ω

sin(ωτ) . (4.25)

As shown in Figure 4.4, for fixed a0, the straight line (4.24) and the

spiralling curve (4.25) divide the coefficient space (b0, b1) into infinitely many

domains. In order to determine the stability domains in the parameter space

(b0, b1), we first calculate the root-crossing direction along the D-curve (4.24)

by taking the partial derivatives of (4.20) and (4.21) with respect to b0, and

since γ = 0, ω = 0 and b0 = −a0 along this D-curve, we get

γ
′

b0
=

−1

a0τ + b1
. (4.26)

Hence for b1 < −a0τ we have γ
′

b0
is positive, and for b1 > −a0τ we have γ

′

b0
is

negative. Since the D-curve (4.24) is associated with a real characteristic root

crossing the imaginary axis through the origin, if this D-curve is crossed by

increasing b0, in a region where b1 < −a0τ , then the associated characteristic

root crosses the imaginary axis from left to right through the origin, and so a

stable characteristic root becomes unstable. Similarly if the D-curve (4.24) is

crossed by increasing b0, in a region where b1 > −a0τ , then the characteristic
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Figure 4.5: The stability chart of equation (4.18) showing the numbers of un-

stable roots in the coefficient space (b0, b1) for a0 = −0.2 and τ = 1, where the

rightmost figure is the marked area in the left figure on a larger scale.

root associated with (4.24) crosses the imaginary axis from right to left, and

so an unstable characteristic root becomes stable.

Since we know that when b0 = 0 and b1 = 0 in (4.18), the resulting or-

dinary differential equation has one unstable characteristic root, using the

calculation of the root-crossing direction along the D-curve (4.24), the num-

ber of unstable characteristic roots in every other domain of the (b0, b1) co-

efficient space can be determined. The resulting stability chart, showing the

number of unstable roots in each domain, is given in Figure 4.5 for a0 = −0.2

and τ = 1. The shaded domain represents the domain where there are zero

unstable roots, i.e. the domain in which equation (4.18) is asymptotically

stable.

The stability domains of equation (4.18) with τ = 1 are shown in Fig-

ures 4.6a to 4.6c for different values of a0, and it is apparent that as a0

decreases the stability domain shrinks, until it disappears completely at a

critical value of a0. Similarly for fixed a0, as shown in Figure 4.6d, as the

delay τ increases, the stability domain shrinks, until it disappears completely
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(a) a0 = −0.5, τ = 1. (b) a0 = −1, τ = 1. (c) a0 = −2, τ = 1.

(d) a0 = −0.5.

Figure 4.6: The stability domains for equation (4.18) for different parameter

values.

at a critical value of the delay τ . These critical values can be determined,

as shown in [9], by analysing the tangent of the parametric curve (4.25) at

ω = 0, which can be found by applying L’Hôpital’s rule, this analysis yields

lim
ω→0

db1
db0

= lim
ω→0

db1
dω
db0
dω

=
12τ + 2a0τ

3

12 + 6a0τ 2
. (4.27)

Therefore in order for the tangent to be vertical we need 12 + 6a0τ
2 = 0, and

so the critical value of a0 is given by acrit0 = −2
τ2

. This can also be rewritten in

terms of the delay, so for fixed a0 the critical delay is given by τ crit =
√
−2
a0

.

Hence if a0 < acrit0 or τ > τ crit then equation (4.18) is unstable for all values

of b0 and b1.
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4.4 Damped Delayed Harmonic Oscillators

Let us now look at the more general form of damped delayed oscillators

like (3.19), that are governed by the second order homogeneous linear au-

tonomous scalar RDDE

ẍ(t) + a1ẋ(t) + a0x(t) = Kx(t− τ) , (4.28)

where a1, a0, K ∈ R and τ > 0. The characteristic equation of (4.28) is given

by

D(λ) = λ2 + a1λ+ a0 −Ke−λτ = 0 , (4.29)

and substituting λ = γ ± iω, ω ≥ 0 into (4.29) and separating the resulting

equation into real and imaginary parts yields

Re : γ2 + a1γ + a0 − ω2 −Ke−γτcos(ωτ) = 0 , (4.30)

Im : 2γω + a1ω +Ke−γτsin(ωτ) = 0 . (4.31)

In the case γ = 0, we get

R(ω) = a0 − ω2 −Kcos(ωτ) = 0 , (4.32)

S(ω) = a1ω +Ksin(ωτ) = 0 , (4.33)

which can be rewritten to give the D-curves in the two cases: a1 = 0 and

a1 6= 0. For a1 = 0, the D-curves are given by

If ωτ = kπ : K = (−1)k
(
a0 −

(
kπ
τ

)2)
, (4.34)

If ωτ 6= kπ : a0 = ω2 , K = 0 , (4.35)

which are straight lines in the (a0, K) plane, and for a1 6= 0 we have

If ω = 0 : a0 = K , (4.36)

If ωτ 6= kπ, k ∈ N : a0 = ω2− a1ωcos(ωτ)

sin(ωτ)
, K =

−a1ω
sin(ωτ)

. (4.37)
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The D-curves (4.36) and (4.37) are shown in Figures 4.7 and 4.8 for different

values of a1 and τ .

(a) a1 = 0.5 and τ = 1.

(b) a1 = 0.5 and τ = 2.

(c) a1 = 2 and τ = 1.

Figure 4.7: The D-curves (4.36) and (4.37) for different values of a1 > 0 and τ .
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(a) a1 = −0.5 and τ = 1.

(b) a1 = −0.5 and τ = 2.

(c) a1 = −1.5 and τ = 1.

Figure 4.8: The D-curves (4.36) and (4.37) for different values of a1 < 0 and τ .
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In order to determine the stability domains of (4.28), we first calculate

the root-crossing direction along the D-curves, and so we take the partial

derivatives of (4.30) and (4.31) with respect to a0, and as γ = 0 along the

D-curves, this yields

γ
′

a0
[a1 +Kτcos(ωτ)] + ω

′

a0
[Kτsin(ωτ)− 2ω] + 1 = 0 , (4.38)

ω
′

a0
[a1 +Kτcos(ωτ)]− γ′a0 [Kτsin(ωτ)− 2ω] = 0 , (4.39)

and the solution of (4.38) and (4.39) for γ
′
a0

is given by

γ
′

a0
=

− (a1 +Kτcos(ωτ))

(a1 +Kτcos(ωτ))2 + (Kτsin(ωτ)− 2ω)2
. (4.40)

The analysis of (4.40) is split into the two cases: a1 = 0 and a1 6= 0.

Case 1: a1 = 0

In this case it is adequate to just calculate the root-crossing direction along

the D-curves (4.34) where we have ωτ = kπ. Along these D-curves, as the

denominator of (4.40) is positive, the root-crossing direction is given by the

sign of
(
kπ
τ

)2 − a0. Hence if a0 < (kπ
τ

)2 then γ
′
a0

is positive and if a0 > (kπ
τ

)2

then γ
′
a0

is negative. Since the D-curve (4.34) with k = 0 is associated with

a real characteristic root crossing the imaginary axis through the origin, if

this D-curve is crossed by increasing a0, in a region where a0 < 0 then a

stable characteristic root becomes unstable, and if this D-curve is crossed

by increasing a0 in a region where a0 > 0 then an unstable characteristic

root becomes stable. Furthermore, as the D-curves (4.34) where k > 0,

are associated with a complex conjugate pair of characteristic roots, if they

are crossed by increasing a0, in a region where a0 < (kπ
τ

)2, then two stable

characteristic roots become unstable, and if they are crossed by increasing a0

in a region where a0 > (kπ
τ

)2, then two unstable characteristic roots become

stable.

Case 2: a1 6= 0

As ω = 0 along the D-curve (4.36), equation (4.40) reduces to γ
′
a0

= −1
a1+Kτ

.

Hence if K < −a1
τ

then γ
′
a0

is positive and if K > −a1
τ

then γ
′
a0

is negative.
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Figure 4.9: Plot showing the values of ωτcot(ωτ)− 1 for ωτ ∈ (0, 3π).

Since the D-curve (4.36) is associated with a real characteristic root crossing

the imaginary axis through the origin, if it is crossed by increasing a0, in a

region where K < −a1
τ

then a stable characteristic root becomes unstable.

Similarly if (4.36) is crossed by increasing a0, in a region where K > −a1
τ

,

then an unstable characteristic root becomes stable.

In order to determine the root-crossing direction along the D-curves (4.37),

we again use the fact that the denominator of (4.40) is positive, and so (4.40)

gives

sgn(γ
′

a0
) = sgn(− [a1 +Kτcos(ωτ)]) . (4.41)

However K = −a1ω
sin(ωτ)

along the D-curves (4.37), and so (4.41) becomes

sgn(γ
′

a0
) = sgn(a1 [ωτcot(ωτ)− 1]) . (4.42)

Using Figure 4.9, we can see that ωτcot(ωτ)−1 < 0 for ωτ ∈ (0, π), whereas

in every other π-interval (π, 2π),(2π, 3π), . . . , the sign of ωτcot(ωτ) − 1

changes. In order to be able to determine the sign of γ
′
a0

we first label

the zeros of ωτcot(ωτ) − 1 in the following way, to the zero in the inter-

val ωτ ∈ (kπ, (k + 1)π), for k ∈ Z+, we attach the label µk. Therefore

for ωτ ∈ (kπ, µk), k ∈ Z+, we have that ωτcot(ωτ) − 1 > 0, and for

ωτ ∈ (µk, (k + 1)π), k ∈ Z+, we have ωτcot(ωτ)− 1 < 0.

Hence for a1 > 0, if ωτ ∈ (0, π) or ωτ ∈ (µk, (k + 1)π), k ∈ Z+, then γ
′
a0

is

negative, and if ωτ ∈ (kπ, µk), k ∈ Z+, then γ
′
a0

is positive. As the D-curves
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(4.37) are associated with a complex conjugate pair of characteristic roots of

the form λ = ±iω we have the following result. If the D-curves (4.37), where

ωτ ∈ (kπ, µk) for k ∈ Z+, are crossed by increasing a0, then two stable roots

become unstable. Similarly if the D-curves (4.37), where either ωτ ∈ (0, π) or

ωτ ∈ (µk, (k + 1)π), k ∈ Z+, are crossed by increasing a0, then two unstable

roots become stable.

Whereas for a1 < 0 we have that if ωτ ∈ (kπ, µk), k ∈ Z+, then γ
′
a0

is

negative, and if ωτ ∈ (0, π) or ωτ ∈ (µk, (k + 1)π), k ∈ Z+, then γ
′
a0

is

positive. Thus if the D-curves (4.37), where ωτ ∈ (kπ, µk) for k ∈ Z+, are

crossed by increasing a0, then two unstable roots become stable, and if the

D-curves (4.37), where either ωτ ∈ (0, π) or ωτ ∈ (µk, (k+ 1)π), k ∈ Z+, are

crossed by increasing a0, then two stable roots become unstable.

Thus the root-crossing direction has been found, in the case of a1 = 0 along

the D-curves (4.34), and in the case of a1 6= 0 along the D-curves (4.36) and

(4.37). In order to establish the stability domains of (4.28), all that needs to

be determined is the number of unstable roots at one point in the coefficient

space (a0, K). As K = 0, a0 < 0 in (4.28), corresponds to an ODE with one

unstable root, using the calculation of the root-crossing direction along the

D-curves (4.34), (4.36) and (4.37) as found above, the number of unstable

roots in every other domain of the coefficient space (a0, K) can be found.

The resulting stability charts, showing the number of unstable roots in

each domain of the coefficient space (a0, K), are shown in Figures 4.10a

to 4.10c for a1 = 0, a1 = 0.5, a1 = −0.5 and τ = 1. It should be noted that

in Figures 4.10b and 4.10c, the black lines represent the D-curve (4.36), and

the burgundy and navy lines represent the D-curves (4.37) where ωτcot(ωτ)−
1 > 0 and ωτcot(ωτ) − 1 < 0 respectively. In Figures 4.10a to 4.10c, the

domains in which there are zero unstable roots, and hence the domains where

equation (4.28) is asymptotically stable are shaded grey. As can be seen from

Figure 4.10b, the stability domains for a1 = 0 consist of an infinite number of

triangles adjoining the axis K = 0, whereas for a1 6= 0 the stability domains

take form in or around these triangles.
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(a) a1 = 0 and τ = 1.

(b) a1 = 0.5 and τ = 1.

(c) a1 = −0.5 and τ = 1.

Figure 4.10: The stability charts of equation (4.28) for different parameter values,

showing the numbers of unstable roots in the domains of the coefficient space

(a0,K).
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Chapter 5

Summary

In this project two different methods for the stability analysis of linear au-

tonomous RDDEs are applied to some fundamental first and second order

homogeneous scalar equations. The first method uses Pontryagin’s results on

the zeros of exponential polynomials, and is used to investigate the stability

of two equations. The first is the Hayes equation which, by loosely follow-

ing the proofs in [1] and the appendix of [4], yields the stability criteria as

found in [5]. The method is then applied to the general form of a damped

delayed harmonic oscillator, where the damping takes only positive values,

the characteristic equation of which reduces to an exponential polynomial

of the form (3.21). The stability analysis, using this method, of a similar

exponential polynomial H(z) = (z2 +az+ b)ez + c for a > 0, b ≥ 0 and c ∈ R
can be found in [1], however this analysis is shown to be defective in [2].

The analysis of the exponential polynomial (3.21), for a > 0 and b, c ∈ R,

as found in this project uses techniques from both [1] and [2], to show the

stability criteria found in [2].

The second method is called the D-subdivision method, and is used to

produce stability charts for three homogeneous linear autonomous scalar

RDDEs. To first illustrate the method, we use the Hayes equation, and

this obtains a stability chart in the coefficient space (a0, b0) equivalent to

the stability chart obtained via the first method. The second equation is an

important second order equation, of the form as found in [8], which yields

the stability chart as shown in [8] and [9]. Finally the third equation is the

general form of the damped delayed harmonic oscillator as given in the first

method, although the damping can now take negative as well as positive

values, and we obtain the stability charts as shown in [3].
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The Pontryagin method can also be used to analyse the stability of damped

delayed harmonic oscillators with negative damping, as shown in [2], however

trying to determine the appropriate stability criteria is complicated. The

analysis using the D-subdivision is not trivial either due to the intrinsic

difficulties in trying to determine the number of unstable roots in each domain

of D-subdivision. It is also shown in [2] that the Pontryagin method can be

used to analyse polynomials of the form H(z) = (z2 +az+b)ez +czn, for n =

1, 2, and for systems with more than one delay term. However this method

can’t be used in general for equations of the form (2.5) with incommensurable

delays. Instead for equations of this form, another analytical method can

be used, as shown in [6], that uses a theorem of Chebotarev, however this

method is not efficient in practice due to the infinitely many inequalities that

have to be considered.

In this project the focus has been on some basic scalar RDDEs, and so

the stability investigations can be approached analytically. However there

are also various numerical methods available for the stability analysis of

linear autonomous RDDEs with constant coefficients, such as the integral

criterion of stability, that uses the argument principle from complex analysis,

or the DDE-biftool package for Matlab, which can approximate the rightmost

characteristic root of the DDE. It should be noted that for the stability

analysis of more complicated equations, like RFDEs with distributed or time-

dependent delays, only numerical methods are viable. The effects of these

different types of delays on the stability domains of the equations given in

this project, would represent an interesting area to study further.
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