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1 Infinite sequences and series

1.1 Sequences [Thomas’ Calculus, Section 9.1]

A sequence is a list of numbers in a given order:
A1,02,43,...,0p,y... .

Each of the ai, as, etc. represents a number; these are the terms of the sequence. For
example

2,4,6,8,...,2n,...
has first term a; = 2, second term as = 4 and nth term a,, = 2n. The integer n is called
the indez of a,, and denotes where a,, occurs in the list.
We can consider the sequence ai, as,as, ..., a,,... as a function that sends 1 to ay, 2 to as,
etc. and in general sends the positive integer n to the nth term a,,.

DEFINITION  Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive
integers.

Sequences can be described by rules or by listing terms. For example,
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Sequences can be illustrated graphically either as points on a real axis or as the graph of a
function defining the sequence:
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1.1 Sequences

Consider the following sequences:
111 1
1, CEE LIRS terms approach 0 as n gets large

terms approach 1 as n gets large

)
{\/I, \/5, \/§, \/4_1, on, . } terms get larger than any number as n increases

terms oscillate between 1 and —1,

never converging to a single value

This leads to the definition of convergence, divergence and a limit:

DEFINITIONS Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number € there
corresponds an integer N such that for all n,

n>N = lay — L] <€.

If no such number L exists, we say that {a,} diverges.
If {@,} converges to L, we write lim,— a, = L, or simply a, — L, and call
L the limit of the sequence

The concept of a limit is illustrated in the following figure:
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Here a, — L if y = L is a horizontal asymptote of the sequence of points {(n, a,)}.

We will now consider two examples of the application of the definitions.



4 1 Infinite sequences and series

Example:

We want to prove that

1
lim — = 0.
n—,oo N,

Let € > 0 be given. We need to find an integer N such that for all n,

n>N =
n

.
——0] <e.

This condition will be satisfied provided 1/n < €, which means n > 1/e. Therefore if N is
any integer greater than (or equal to) 1/e, the implication will hold for all n > N. Hence
lim,, o (1/n) = 0. For example, suppose we take ¢ = 0.01 then the condition is just n > 100.

Example:
We want to prove that the sequence

{1,-1,1,-1,...,(-=1)"",...} diverges.

proof by contradiction: Assume that the sequence converges to some number L. Choose

€= % in the definition of the limit and so all terms a,, of the sequence with n larger than

some N must lie within € = % of L:

1
n>N = |an—L|<§.

Since 1 is in every other term of the sequence, 1 must lie within € of L. Hence

1 1 3
1-L|=|L-1]< < —<L<—.
| =1 |<2 o 2< <2

Then —1 is also in every other term and so we must have

1 3 1
L—-(-1)]<=- or —=-<L<-—=.
However, this is a contradiction: Both conditions cannot be satisfied simultaneously. There-
fore no such limit exists and so the sequence diverges.

There is a second type of divergence:

DEFINITION  Diverges to Infinity
The sequence {a,} diverges to infinity if for every number M there is an integer
N such that for all n larger than N, a, > M. If this condition holds we write
lim a, = or a, —> o,
n—*0C
Similarly if for every number m there is an integer N such that for all n > N we
have a, < m, then we say {a,} diverges to negative infinity and write

lim a, = — o or ap—>—00,
n—0

Example:

lim v/n =00 (proof?)
n—oo
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note: The sequence {1,—2,3,—4,5,...} also diverges, but not to co or —co.

Sequences are functions with domain restricted to n € N, hence:

THEOREM 1

Let {a,} and {5, } be sequences of real numbers and let 4 and B be real numbers.
The following rules hold if lim,—x a, = 4 and limy— b, = B.

1.  Sum Rule: limy—scla, + b,) =4 + B

2. Difference Rule: limp—soo(ety — by) = A — B

3. Product Rule: limy—oc(a, b,) = A-B

4.  Constant Multiple Rule: lim,—ocl(k<b,) = k+B  (Any number &)
5. Quotient Rule: limyno 22 = 4 ifB# 0

We can use these rules to help us calculate limits of sequences.

Example:
Find lim "
n—0o00 n
-1 1
lim == = lim (1——) —lm 1 limi—1-0=1,
n—00 n n—00 n n—o0 n—oo N,
Example:
Find lim i
n—o0 n2 5 1 1
lim —2:5- Im —- lim —=5-0-0=0.
n—oo 1, n—oo 1, n—oo N,

The Sandwich Theorem for Sequences provides another method for finding the limits
of sequences:

THEOREM 2  The Sandwich Theorem for Sequences

Let {a,}, {b.}, and {c,} be sequences of real numbers. If a, = b, = ¢, holds
for all n beyond some index N, and if limy—o a, = lim,—.x ¢, = L, then
lim,—sc b, = L also.

Note that if |b,| < ¢, and ¢, — 0 as n — oo, then b, — 0 also, because —¢,, < b, < ¢,.

Example:

sinn
Find lim
n—oo N
By the properties of the sine function we have —1 < sinn < 1 for all n. Therefore

sinn sinmn

= lim =0

n—o0 n

<

<

S|
S|

n

because of lim,, o (—1/n) = lim,,,»(1/n) = 0 and the use of the Sandwich Theorem.
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Example:
1
Find lim —.
n—oo 2M
1/2" must always lie between 0 and 1/n (e.g. 3 < 1,1 < 3,5 < 3,75 < 1,...). Therefore
1 1 1
0<—<-— = lim — =0
=20 T nosoo 21

The limits of sequences can also be determined by using the following theorem:

THEOREM 3 The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If @, — L and if f is a function that is
continuous at L and defined at all a,,, then f(a,) — f(L).

Example:

Determine the limit of the sequence {21/ ”} as n — 00.

We already know that the sequence {1} converges to 0 as n — co. Let a, = 1/n, f(z) =27
and L = 0 in the continuous function theorem for sequences. This gives

oVm — f(1/n) = f(L)=2"=1 as n— 0.
Hence the sequence {21/ ”} converges to 1.

We can also make use of 'Hopital’s Rule to find the limits of sequences. To do so we need
to make use of the following theorem:

THEOREM 4
Suppose that f(x) is a function defined for all x = ng and that {a,} is a sequence
of real numbers such that @, = f(n) forn = ng. Then

xl-Lngof[x) = L = ningoa,, =L.
Example:
Inn
Show that lim — = 0.
ow that liy 75
lim Inn = lim L/n

n—00 \/ﬁ n—00 (1/2)n_1/2
(using I'Hopital’s Rule by treating n as a continuous real variable)
n'/? 1
= lim2 - — =2 lim —5 =0.

n—00 n n—oo n1/2

Example:
Does the sequence whose nth term is a,, = ((n+1)/(n—1))" converge? If so, find lim,,_,; ay,.
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If we just take the straightforward limit we get the indeterminate form 1°°. Typically with
questions of this type we take the logarithm. This gives:

n+1\" n+1
Ina, =1In =nln )
n—1 n—1

Hence

. . n+1) . In(3h)
lim Ina, = lim nln = lim ———=
n—00 n—o00 n—1 n—o00 1/n
, In(n+1) —In(n — 1)
= 1l
n—00 1/n
—2/(n?* -1
= nh—>nolo % (using I'Hopital’s Rule)
2 2
S T

xT

Let b, = Ina, Then lim, .. b, = 2 and since f(z) = €” is continuous we have by the

continuous function theorem for sequences
a, =" =¢ehn 52 as n— oo,

Therefore the sequence {a,} converges to €.

|End of Week 1]

The following Theorem summarizes some common results for the limits of sequences:

THEOREM 5
The following six sequences converge to the limits listed below:

Inn

i Hl_l)mmT =0
2. lim V=1
n— 00
3. lim x'" =1 (x > 0)
H— 0
4, li)n;jx" = (x| < 1)

n
5. lim (l + %) =g* (any x)

n—=>00
6. lim =—~=0 (any x)

In Formulas (3) through (6), x remains fixed as n — 0.

The first result can be proved using I’Hopital’s rule. The second and third results can be
proved using logarithms and applying the previous theorems. Proofs of the remaining re-
sults are given in Appendix 5 of Thomas’ Calculus.
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Example:
Show that lim,,_,., Vn2 = 1.

lim Vn2 = lim n?" = lim (nl/”)2 = (1)2 =1.

n—o0 n—oo n—oo

For bounded, monotonic sequences there is the following theorem:

THEOREM 6—The Monotonic Sequence Theorem If a sequence {a,} is both
bounded and monotonic, then the sequence converges.

For example, look at a bounded, monotonically increasing function:

Yy
A
=M
M y
¥ &
L .....I..
> X
0

Example:
1
lim (1 — —) =1.
n—oo n
1.2 Series

1.2.1 Infinite series and some examples [Thomas’ Calculus, Section 9.2]

An infinite series is the sum of an infinite sequence of numbers

ay +az +az+ -+ ap At

Example:

I 1n_1+
2 4 2
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DEFINITIONS  Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers {a, }, an expression of the form

ay +a +az A+ toa, o

is an infinite series. The number 4, is the ath term of the series. The sequence
{s,} defined by

81 = ay

82 = ) +Hz

n
Se=apt @t tan= Y a
k=

is the sequence of partial sums of the series, the number s, being the #th partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

oo
Ct|+a'z+"'+ﬂ'"+"'= ZaﬂzL-
n=1

If the sequence of partial sums of the series does not converge, we say that the
series diverges,

Example:
A geometric series has the form

o0 oo
a~|—ar~|—ar2+---~|—arn_1+---=§ ar"‘lzg ar”
n=1 n=0

where a and r are fixed real numbers and a # 0. The quantity r is called the ratio of the
geometric series and can be positive or negative.
In the special case where » = 1 the nth partial sum is

sp=a+a-1+a- 1"+ 4+a-1""=na

and the series diverges because lim,, ., s,, = +00 depending on the sign of a. If r = —1 the
series diverges because either s, = a or s, = 0 depending on the value of n.
Now consider the case of a geometric series with |r| # 1. We have

Sn = a-+ar+ar®+---+ar"?
rsy, = ar+ar’+---+ar" P+ ar®
Sp—TSp, = a—ar" or S,(1—r)=a(l—1r")
a(l —r")
=5, = — 7 1).
o= T A

Therefore, if |r| < 1 then ™ — 0 as n — oo and hence s,, — a/(1 —r). If |r| > 1 then
|| — oo and the series diverges. So we have

= a
Zar"’l = for |r| <1
n=1

1—7r
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and the geometric series converges.
For example,

1 1 1 =11\ (1/9) 1
=t =) (= = = - =1/9, r=1/3
o o7 T al Z9(3) T~ 6 @ ler=13)
and
5 5 5 = (—1)"5 5
VTR Vi nzzo T T+ (1/4) (a=5r=—-1/4)
Example:

Find the sum of the series
1
; n(n+1)°

Note that we can use partial fractions to write

1 1 1

nn+1) n n+1

Hence the sum of the first k& terms is

k

1 1 1
Sy (en)
and so the kth partial sum is

n=1 n=1
O N L D L DI (L I
= \17 2 273 371 ko k+1
S G NI G D DUIUURRTIY G ATIR N
1 2 2 3 3 ko k kE+1

Hence s — 1 as k — oo and so the series converges giving
=~ 1
St
“—~ n(n+1)

Suppose the series > 7 a, converges to a sum S and the nth partial sum of the series is
Sp =ay+as+---+a,. When n is large, both s, and s,,_; are close to S and therefore their
difference a,, is close to zero. Using the Difference Rule for sequences we have

Up =8, —Sn-1 — S—=—8=0 as n— .

Hence:

THEOREM 7

o

If D' a, converges, then a, — 0.

n=1
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This, in turn, leads to

The nth-Term Test for Divergence
E a, diverges if lim a, fails to exist or is different from zero.
n=1 n—0

Examples:
Z n? diverges because n? — 0o
n=1
- 1 1
Z n diverges because n —1
~ n n
Z(—l)”+1 diverges because  lim (—1)""'  does not exist
n—oo
n=1
= -n ) ) —-n 1
diverges because lim =——%#0
— 2n+5 n—oo 2N + 5 2

Note that the converse of the above theorem is false: If a,, — 0 this does not imply that
the series Y > | a, converges.

Example:
Consider the unusual case of a series where a,, — 0 but the series itself diverges:

UL UL UL UL
2 2 4 4 4 4 ACAL AL
where there are two terms of 1/2, four terms of 1/4, ..., 2" terms of 1/2", etc. In this case

each grouping of terms adds up to 1 so the partial sums must increase without bound and
so the series diverges, even though the terms of the series form a sequence that converges to 0.

If we have two convergent series, we can add them term by term, subtract them term by
term, or multiply them by constants to make new convergent series:

THEOREM 8

If 2a, = A and Zh, = B are convergent series, then

1.  Swum Rule: >(a, + b,)=Za,+ 2b,=A+ B
2. Difference Rule: Sla,— b)) =Za, — 2b,=A— B

3. Constant Multiple Rule: >ka, = k2a, = kA (Any number k).
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Example:
Find > (3" ' —1)/6"'.

o gn—1_1 e 1 1 > 1 > 1
Si - Y en) -t
n=1 n=1 n=1 n=1
1 1 (t tri . )
= — WO geometric series
1—(1/2)  1—(1/6) &
4
_g _ 4
5 5

We can add a finite number of terms or delete a finite number of terms without altering the
convergence or divergence of a series but if the series is convergent this will usually alter the
sum. Consider the series

Zan:a1+a2+---+ak,1+2an.
n=1 n=k

If > a, converges, then > a, converges for any k& > 1. Conversely, if Y >, a,
converges for any k > 1, then ) °  a, converges.

Note that re-indexing a series (e.g. changing the starting value of the index) does not alter
its convergence, provided the order of the terms is preserved.

For example, raise the starting value of the index A units:

[e's) [e's)
n=k—~nh: Zan:Za/kih:al+a2+a3+....
n=1 k=1+h

Lower the starting value of the index h units:

n=k+h: Zan:Zak+h:al+a2+a3+..._
n=1 k=1—h

1.2.2 The Integral Test [Thomas’ Calculus, Section 9.3]

For a given series Y a,, we want to know: (1) Does it converge? (2) If it converges, what is
its sum?

A corollary of the Monotonic Sequence Theorem is that the series Y ° | a,, of non-negative
terms converges if and only if (why?) its partial sums are bounded from above.

Example:
Counsider the harmonic series:

o

2:1—1+1+1+ iy
n o 2 3 n

n=1

This series is actually divergent even though the nth term 1/n — 0 as n — oo, cf. the n-th
term test seen before. However, the series has no upper bound for its partial sums. We can
see this by writing the series as

FEEEY (i DY I U R
2" \3 "4 56 78 9" 10 16
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1,1 2 _ 1 1,011 1 4 _ 1 1,1 1 8 _ 1
NOW§+Z>Z_§’ stgtzt3s >3 =3 §+1—0+-"+1—6>E—§andso
on. Therefore the sum of the 2" terms ending with 1/2"*1 is > 27 /27! = 1/2. Therefore

the sequence of partial sums is not bounded from above, and so the harmonic series diverges.

Now consider the series,

il L+ O
Ln? 9 16 n?

Does it converge or diverge? To answer this question we will consider a new approach
involving the use of integration. What we need to do is to compare the series Y - 1/n?
with the integral [~ 1/2* dx.

.
(1, f(1))
' |
Graph of f(x) = =
2
L1l @
1
1 1
: g8 G.f3) >
L / L {n, fin))
22 T~ 742 /
ol 1 2 3 4 .. n-1n.
1 1 1 1
Sy, = ﬁ+22+§+ +ﬁ

= f)-1+f2)-14+f@3)-1---+ f(n)-1

n

< f(1)+ — dz lower sum
LT

1
1 x

1 177
Sn<1+/ —de:1+[——} =2.
. T x|,

Thus s,, < 2 for all n, the partial sums are bounded from above (by 2) and therefore (why?)
the series converges. Note that the series and the integral need not have the same value in
the convergent case.

The approach we have just taken leads us to

Therefore
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THEOREM 9  The Integral Test

Let {a,} be a sequence of positive terms. Suppose that @, = f(n), where f isa
continuous, positive, decreasmg function of x for all x = N (N a positive inte-
ger). Then the series E,, wa, and the integral f v Jf{x) dx both converge or both
diverge.

’End of Week 2\

The Integral Test can be used to show that the p-series >~ 1/nP converges if p > 1 and
diverges if p < 1.1

Example:
Show that the series > 2, 1/(n* + 1) converges by the integral test.
The function f(x) = 1/(2* + 1) is positive, continuous and decreasing for z > 1. Also

< 1
/ 5 dz = lim [arctanz]} = lim [arctanb — arctan 1]
1 Tr+ 1 b—o00 b—o0
I
2 4 4

and so the series converges (but we do not know its sum).

1.2.3 Absolute convergence and the Ratio Test [Thomas’ Calculus, Sections
9.5 and 9.6]

For a series with both positive and negative terms it is sometimes useful to consider the
absolute values of its terms:

DEFINITION A series Ea converges absolutely (is absolutely convergent)
if the corresponding series of absolute values, 2 |la,|,

Example:
The series

is a geometric series that converges absolutely, because
4

=0

converges with |r| =r =1/4 <1 (to 20/3). Note that the original series also converges, as

|r| =1/4 <1 (but to 4).
This exemplifies the following theorem:?

6 T
N 4) 4 16 64

n=0

n

1See the Thomas’ Calculus Section 9.3, p.555 for a proof.
2See Section 9.5, p.565 for a short, clever proof.
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THEOREM 12—The Absolute Convergence Test

O o
If > |a,| converges, then > a, converges.

n=1 n=1

This theorem enables us to apply tests that rely on series of positive terms, such as the
integral test, more generally.

Example:
For

By using the Integral Test we have shown before that the latter series converges. The former
thus converges absolutely, and according to the above theorem it therefore converges.

DEFINITION A series that converges but does not converge absolutely
converges conditionally.

Example:

As we show below, the alternating harmonic series

> 1 1 1 1
B o e N N
;( ) n 2+3 4+

converges. However, it does not converge absolutely, because we have seen that the harmonic
series

i1—1+1+1+1+
n 2 3 4 7

n=1

does not converge.

We can prove that the alternating harmonic series converges by applying the following
theorem (also called Leibniz Test):
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THEOREM 15—The Alternating Series Test
The series

o0
DED iy =y~ ouy — g+
n=1

converges if the following conditions are satisfied:

1. The u,’s are all positive.

2. The u,’s are eventually nonincreasing: u, = u,,; for all n = N, for some
integer N.

3. u,—0.

Example:
The above alternating harmonic series satisfies all of the above three requirements with
N =1 and hence converges.

Getting back to the geometric series > a,, = > ar™, we know that it converges for the ratio
|| = |any1/an| < 1. This result is generalised by the following theorem:

THEOREM 13—The Ratio Test
Let Ean be any series and suppose that

Ap+1
a,

lim

n—0o0

:p.

Then (a) the series converges absolutely if p << 1, (b) the series divergesif p > 1
or p is infinite, (c) the test is inconclusive if p = 1.

A proof of the above results is given in the textbook.
The two series we looked at in the last section are good examples of cases where p = 1 and
the test is inconclusive:

Zl : a1 1/(n+1) n

= = -1 (n— o)

ap, 1/n n+1
L YerD?

In each case p = 1 (i.e. the test is inconclusive) and yet we know that > 1/n diverges
whereas > 1/n? converges.

Example:
Use the Ratio Test to investigate the convergence of the following series:

DI wEEL 052
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2"+5 2"t 45
ap = 3n 5 an41 = WJ
Qny1 (271 45)/3m 1 2ntl4s 1 /245.27"
a,  (2n+5)/3» 3 245  3\1+5.2n
1 2 2 .
— 313 < 1 as n — oo and the series converges.
(2n)! (2(n+ 1))
An = 7197 Apt1 = 77 g
(n!)? ((n+1)!)?
any1  (2n+2)! nln!  (2n+2)(2n+1)

a,  (n+Dn+1) 2n)!  (+1)n+1)
dn+2  4+2/n
n+1 1+1/n

— 4 > 1 and the series diverges.

n! (n+1)!
Mp = — gyl = e

nn Tt 1)ntl
nr  (n+Dn"  (n+1)n"

an (n+1)nHn!  (n+1)7(n+1)

B n"  ( n \"_ 1 "_>1<1
 (n+Dr \n+1)  \1+1/n e

and the series converges.

As we can see, the Ratio Test is often useful when the terms of a series contain factorials
involving n or expressions raised to the power involving n.

1.3 Power series

1.3.1 Power series and convergence [Thomas’ Calculus, Section 9.7]

A power series is like an “infinite polynomial”, i.e., it is an infinite series in powers of
some variable, usually x:

DEFINITIONS Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

o0
chx" =¢t+ox+ eaxt + ot oex” e (1)
fi=A{}
A power series about x = ¢ is a series of the form
(s 4]
Selx—a=c+alx—a)+ealx—al ++elx—ay +- (2
n=0

in which the center « and the coefficients ¢y, ¢, ¢, ..., ¢,, ... are constants.
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If they converge, such series can be added, subtracted, multiplied, differentiated and inte-
grated to give new power series.

Example:
Consider the power series

1 1 ) 1\" .
1—5(1’—2)4—1@—2) — 4 <_§) (x—2)"4---.
This matches the form of (2) in the former definition with a = 2, ¢, = (—=1/2)". Tt is a

geometric series with the first term 1 and ratio r = —(x — 2)/2. The series converges for
|(z —2)/2] <1lor0 <z <4 Thesum is

L 1 B
l—r 1+(x—-2)/2 =z
Hence
2 (x—2) (z—2)? 1\?
Z_1- . _Z NS 4.
. 5t -3 (x—=2)"4+---, 0<z<

We can consider the series as a sequence of partial sums which are polynomials P,(x) that
approximate 2/x:

2
f(x):;; F(r) = 1=
1 T
Pi(x) = 1—5(5”—2): —§:y1
1 3r a2
P. = 1—-=(z-+-(x—-22*=3-"Z"4" =
(@) (=2 +7@-22=3-F+T =
ete.
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The convergence and divergence of a power series is clarified by the following theorem:

THEOREM 18 The Convergence Theorem for Power Series

e

If the power series za,,x" =ap + ajx + ax® + -+ converges for
n=0
x = ¢ # 0, then it converges absolutely for all x with |x| < |¢|. If the series

diverges for x = d, then it diverges for all x with [x| > |d|.

COROLLARY TO THEOREM 18

The convergence of the series >c,(x — a)” is described by one of the following

three possibilities:

1. There is a positive number R such that the series diverges for x with
|x — a| = R but converges absolutely for x with |[x — a| < R. The series
may or may not converge at either of the endpoints x = & — R and
x=a+R.

2. The series converges absolutely for every x (R = 09,

The series converges at x = a and diverges elsewhere (R = 0).

Here R is called the radius of convergence and the interval of radius R centred at z = a
is called the interval of convergence.

Example:
Find the values of z for which the series

o0

Z(Zx)"

n=0

converges absolutely, specifying both the radius and interval of convergence.

This is a geometric series with first term a = 1 and ratio » = 2z. It converges absolutely
for |r| < 1, that is, [2z| < 1 or —1/2 < z < 1/2, and diverges elsewhere. Hence, the radius
of convergence is R = 1/2 and the interval of convergences —1/2 <z < 1/2.

To summarise, we can test a power series for convergence using several methods:

1. Use a test such as the ratio test to find the interval |z — a|] < R where the series
converges absolutely.

2. If the interval of absolute convergence is finite, test for convergence or divergence at
each endpoint using a test such as the integral test or the alternating series test.

3. If R is finite, the series diverges for |z — a| > R.
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Example:
Use the ratio test to determine the convergence of

o x2n71 1'3 {['5
—1)n1 —r—
;( L v A T
We have
Un+1 rtop — 1| 2n—1 , 5
Uy, 2n +1 g2n-1 2n + 1

Therefore the series converges absolutely for 2 < 1 and diverges for 2 > 1. At x = 1 the
series is 1 — % + % — % + .-+ which converges by the alternating series test. The series also
converges at x = —1, as can be shown by the alternating series test.

’End of Week 3‘

1.3.2 Taylor and Maclaurin series [Thomas’ Calculus, Section 9.8]
Assume that the function f(x) can be represented as a power series,
f(x) :Zan(x—a)”:a0+a1(:1c—a)—|—--~—i—an(x—a)”—|—--~ :
n=0

which converges for a — R < z < a+ R with R > 0. Can we calculate the coefficients a,, in
terms of f(z)?

It can be shown? that f(x) has derivatives of all orders inside this interval by differentiating
the power series term by term:

fllz) = a1 +2a(x—a)+--+na,(z—a)" " +---
f"(r) = 1-2a3+2-3as(x —a)+---+nn—Da,(z —a)" 2 +---
f™(z) = nla,+ asum of terms with (z — a) as a factor.
Therefore
fl(a)=ay, f"(a)=1-2ay, f"(a)=1-2 3as, ..., f™(a)=nla,.
This gives us a formula for the coefficients in the power series:

7).

n!

Ay —

It also suggests that if f has a power series representation then it must be

"(a () (g
f(@) = Fa@) + e —a) + T -y g g L0

(x_a)"+...

3This is a theorem, which can be proved. Likewise, it can be proved that f(z) can be integrated term by
term; see Thomas’ Calculus, end of Section 9.7. for details.
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leading us to the following definition:

DEFINITIONS  Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining & as an interior point. Then the Taylor series generated by f at x = a is

oo ek )
Euf k{ﬁ') (x — u]"' = f{a) + fr(a)(x s fz(;a) fige a]2
{a)
+ o 4 f (G‘) ("- = {I)" &R,

n!

The Maclaurin series generated by f is

= o n
%xk = f(0) + f(0)x:+ fz{!mxz + -0+ %x" + ey

the Taylor series generated by fatx = 0.

Example:

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the

series converge to 1/x7?

f@) = o f@ =2 =
fla) = o F@)= o
" o -3. f”(2)_ -3 _ 1
f(l') —2'1’3, T_Qs_ﬁ

| (2 —1)"
fz) = (=1)"nla Y ! n'( ) - (2n+)1 :

The Taylor series is

(9 (n) 9
f2)+ f2)(z—2)+ f2(‘ )(x—2)2+--~+ / n'( )(x—Q)”—l—
This is a geometric series with first term 1/2 and ratio r = —(z — 2)/2. It converges
absolutely for |z — 2| < 2, or 0 < 2 < 4 with sum
e Y2 11
1+ (z—-2)/2 2+ (x—-2) x

Related to the Taylor series is the Taylor polynomial of order n:
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DEFINITION  Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1, 2,..., N in some inter-

val containing g as an interior point. Then for any integer n from 0 through ¥, the

Taylor polynomial of order n generated by f at x = ¢ is the polynomial

f"(a)
2!

ftﬂ(a)
k!

Pyx) = fla) + fa)(x — a) + (e — g)ft +ooe

ftur{a)

+ (x—a)lf+-+ o (x — a)".

There is a similar definition for Maclaurin polynomials.

Example:
Find the Taylor polynomials of order 0, 2 and 4 for the function f(x) = cosx at a = 0.
We have

f(x)=cosx, f(z)=—sinz, f'(z)=—cosxz, [f"(z)=sinz, [fP()=cosz

and
fO)=1, f(0)=0, f"0)=-1, f"(0)=0, fP0)=1.

By using the previous definition, the first three Taylor polynomials of f(z) = cosz about
a =0 are

Po(QI) = 1

2

T
Py(z) = ~ar

{L‘2 1'4

The following figure shows how successive Taylor polynomials provide better and better
approximations to the function as n — oo:

¥
2-
Py Fef FPpa Py
Py
| - —
_ //‘\\_/F=msx
1 1 1 1 I 1 1 l tk.l'
0 1 g
1}
Py \Pi
2k
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Below we give the Taylor series expansions for a variety of functions about a =0 and a = 1.
These can all be derived using the methods in this section.

Taylor series about a = 0:

2 .3 4
R B
N B
cosxr = 1—54-1_54_...
o
coshz = 1+§+I+a+...
I B
sinhz = x+§+a+ﬁ+...

Taylor series about a = 1:

Iz = (z—1) = gl — 17+ 3@ 1~ gz -1+
VE = 11— o= )P4 e 1)

1.3.3 Hyperbolic functions [Thomas’ Calculus, Section 7.7]

This is a Supplement to Calculus I that I was asked to include, as this material was not
covered in the last semester. While you need to know what hyperbolic functions are - see
above ! -, this part is not directly examinable for Calculus I1.

You are strongly encouraged to read through Section 7.7 in the textbook, as here I only cover
essential parts of it.

Every function f can be decomposed into

oy = LI | S0~ do)
) even f:nction o odd fl‘l:lction ’

For f(x) = e” we have

e +e ™ et —e*

CETy vt
—_—— —{—
=coshz =sinh z

called hyperbolic sine and hyperbolic cosine.

Define tanh, coth, sech and csch in analogy to trigonometric functions:
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TABLE 7.5 The six basic hyperbolic functions

y ’y y = cosh x ¥y
et 3 3 y = cothx
Y=75 5L o —% % 2k
T 9 ///y_smhx y:% 2 y_% y=1 [
1 \ =7 y = tanh x
A L L_L. ST i LA A N L > X
—3—2—11,:\’1 2 3 3351 [ 13 3 B 1 2
Laby=-% ol ¥=-1
-3F y = coth x
(a) (b) (©)
Hyperbolic sine: Hyperbolic cosine: Hyperbolic tangent:
. — e &+ &% sinhx ¢ —e&™*
sinh x = coshxy = &—— = =
2 2 Tl coghg & +—&”
Hyperbolic cotangent:
y y
coth x = coshx _ e + e
gl y=1 ik sinhx e — ¢~
—"/M‘x L1 i, %
20| \1 2 = 1/ 2
y = sechx 1_y=c:schx
=
(d) ©)
Hyperbolic secant: Hyperbolic cosecant:
2
sechx = : cschx = i

cosh x T+ e

sinhx & —e*

Compare the following with trigonometric functions:

TABLE 7.6 lIdentities for hyperbolic
functions

cosh®?x — sinh®x = 1
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh?x + sinh%x

coshlx = cosh 22x + 1
sinhx = cosh 22x -1

tanh?x = 1 — sech?x
coth’x = 1 + csch®x
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How do we differentiate hyperbolic functions?

example:
, de*—e ™ e"+e”
—sinhx = — = = coshx
dx dx 2 2
det+e ™ ¥ —e® .
—coshr = — = = sinhz
dx dx 2 2
Inverse hyperbolic functions are defined in analogy to trigonometric functions:
Y y=sinhx y=x
F3
— 7/
B S 5 )i y = cosh x,
i & y—su'lh x =0 y=x Y =x
L/,  (x=sinhy) 8 ., y =sech ' x S
5L e T 7 (x=sechy, 7
" fir 4 Nyz=o 7
[ I I N | T I | X 5 // //
-6 -4-24/1 2 4 6 <L P 5 #
P4 — 4 rd
s 3 o4 P
/ - 7 - -1 7 —
P 5 - 25 47 y=cosh™ " x 1 y = sech x
P - 114 (x =coshy,y=0) x=0
/ L oo i Bl ot o e o I I x
"4 ol 123456738 0 1 2 3
(@) (b) (©)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries
about the line y = x.

1.3.4 Convergence of Taylor Series and error estimates [Thomas’
Calculus, Section 9.9]
There are still two unanswered questions about Taylor series:

1. When does a Taylor series converge to the function that generated it?

2. How accurately do a function’s Taylor polynomials approximate the function on
a given interval?

To answer these questions we need to make use of Taylor’s Formula:

Taylor's Formula
If f has derivatives of all orders in an open interval / containing «, then for each
positive integer n and for each x in 7,

flx) = fla) + f'(a)x —a) + f’;i!aj (x — a) +---
+ f":(!ﬂ} (x — a)" + R,(x), -
where
Rilx) = e (x — a)*! for some ¢ between a and x. (2)

(n+ 1)
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The quantity R, (z) in this formula is called the remainder of order n or the error term
for the approximation of f by P,(x) over I. If R,(z) — 0 as n — oo for all x € I, we say
that the Taylor series converges to f on I and we write

o £(k) (4
o) =3 1@ oy

k!
k=0

Taylor’s formula is a special case of Taylor’s Theorem, which in addition requires differen-
tiability at the end points I. This theorem can in turn be understood as a generalization of
the Mean Value Theorem (set n = 0 in the above formula).

Finally we can use the Remainder Estimation Theorem to provide an estimate of the
error:

THEOREM 23  The Remainder Estimation Theorem
If there is a positive constant M such that | f"*"(¢)| = M for all t between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-
equality

II o a|n+1

B = Mo

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).

’End of Week 4\

The usefulness of this theorem is demonstrated by the following example:

Example:
Show that the Taylor series for sinz at a = 0 converges to sinz for all x.
The Taylor series for sinx at a = 0 was

. 23 . PRI ¢ - (—1)kg 2ttt .
snr=2r——4+———+...+ ——+...
3t 507! (2k +1)! '
see the list of Taylor series on p.23. According to Taylor’s Formula we have
‘ I (—1)kg2h+1
SIHSL’:I—§+§—"'+W+R2k+1($).
Applying the Remainder Estimation Theorem with M = 1 gives
|2+
‘R2k+1(l’)| <1 m — 0 as k — oo for all z.

(cf. the list of sequences and their limits discussed in Week 1) Therefore Rox.1(z) — 0 and
the Maclaurin series for sinz converges to sinx for every x.

note:

1. Analogous results of convergence for all z about x = 0 hold for e* and cosz, see the
textbook.

2. Since every Taylor series is a power series, they can be added, subtracted and multiplied
on the intersection of their intervals of convergence.



2 Partial derivatives
2.1 Functions of two variables, their limits and derivatives

2.1.1 Functions of Several Variables [Thomas’ Calculus, Section 13.1]

Reminder: What is a function?

In Calculus 1 and in Numbers, Sets and Functions you have learned the following:

Definition:

A function from a set D (domain) to a set Y (range) is a rule that assigns a unique (single)
value y € Y to each x € D.

So far you have dealt with functions of a single variable, such as
fR=>R | z—y=f()
with, for example, f(z) = 2.

Functions of several variables are defined in complete analogy to functions of one variable
in terms of uniqueness, domain, codomain, range, etc. (without involving complex numbers):

DEFINITIONS Suppose D is a set of n-tuples of real numbers (x, X, . .., X,).
A real-valued function f on D is a rule that assigns a unique (single) real
number

w = flx1,x2,..., %)

to each element in D. The set D is the function’s domain. The set of w-values
taken on by f is the function’s range. The symbol w is the dependent variable
of f, and f is said to be a function of the » independent variables x; to x,. We
also call the x;’s the function’s input variables and call w the function’s output
variable.

In the following we will focus on functions of two variables.
Examples:

V = V(r,h) =7r*h (volume of cylinder, radius r, height h)

4
M = M(r,p) = §7W3’0 (mass of sphere, radius r, density p)

In the case of V' the quantities r and h are the input (independent) variables and V' is the
unique output (dependent) variable.

If f is a function of two independent variables,  and y, the domain of f is a region in the
-y plane.

Example:
(Natural) domains and ranges for function of two variables
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Function Domain Range
w = m y = x? [0, c0)
w =% w # 0 (—00,0) U (0, 00)
w = sinxy Entire plane [—1,1]

Interior points, boundary points, open and closed sets are defined in higher dimensions in
analogy to dealing with intervals on the real line.!

Example:

Describe the domain of the function f(z,y) = \/y — 22.

Since f is defined only where y — 22 > 0, the domain is the closed (the set contains all

boundary points), unbounded (why?) region shown below (shaded). The parabola y = x? is

the boundary of the domain. The points above the parabola make up the domain’s interior.
y

4 Interior points,

where y — x* = 0

/

Outside, The parabola
y—x2<0 I y—x>=10
is the boundary.

| |
-1 0 I

”~ ;1-

There are two ways to visualise a function f(z,y):

Definition:
The set of all points (x,y, z) is called the graph, or surface, of z = f(x,y).

1. Sketch z = f(x,y) in space.

Example:
Counsider the function

f(xay):xz‘i_yg'

To visualise the surface, plot f for a fixed value of y, say ¥y = a. In this case 2 = 22 +a? and
z = z(x). The equation z = 2% + a? defines a parabola in the plane y = a, perpendicular to
the y-axis. Each different value of a gives a different parabola. For example, for y = a = 0 we
have z = 22. Therefore the required surface is made up of parabolas and forms a paraboloid
as shown below.

'If you are not satisfied with this statement, please check out Thomas’ Calculus p.760ff for details.
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Examples of other surfaces are shown in the following figure. It displays the three dimen-
sional surfaces defined by the functions (a) f(z,y) = 2% + y?, (b) f(z,y) = —2* — %, (c)
flzy) =2 +y* +5and (d) f(z,y) =y* —2*

(© (d
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Definition:

The set of points in the domain where a function f(x,y) has a constant value, f(x,y) = ¢,
is called a level curve of f (cf. what is plotted in geographic maps, often called contour
curves therein).

2. Draw and label level curves.

Example:

Graph the function f(x,y) = 100 —2?—y?* and plot the level curves f(z,y) =0, f(z,y) = 51
and f(x,y) = 75 in the domain of f in the plane.

The domain is the entire z-y plane and the range is the set of real numbers < 100. The

graph is the paraboloid given by z = 100 — 22 — 3

When f(z,y) = 0, we have 100 — 22 — y? = 0 or 2% 4+ y* = 100. This corresponds to a circle
of radius 10.

When f(x,y) = 51, we have 100 — 2% — y? = 51 or 2? + y* = 49. This corresponds to a
circle of radius 7.

When f(x,y) = 75, we have 100 — 2% — y? = 75 or 2? + y* = 25. This corresponds to a
circle of radius 5.

a“

The surface

100 1
= Jf ("“l _}‘_)
flxyy) =75 — 100 — x2 — y?

is the graph of 1.

flx,y) =51
(a typical
level curve in
\ the function’s
domain)

The curve in space in which the plane z = ¢ cuts a surface z = f(z,y) is called the contour
curve f(z,y) = c¢. The following figure shows the contour curve produced where the plane
z = 75 intersects the surface z = f(z,y) = 100 — 2% — %
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The contour curve f(x,y) = 100 — x* — y* = 75
is the circle x? + y? = 25 in the plane z = 75.

100[

\E_,,/

7= 100 — x*> — y?

Plane z = 75

X

~__0

P

The level curve f(x, y) = 100 — x> — y> = 75
is the circle x> + y = 25 in the xy-plane.

2.1.2 Limits and continuity in higher dimensions [Thomas’ Calculus,
Section 13.2]

Reminder: Limits

For functions of one variable we say that f(z) approaches the limit L whenever f(x) is
arbitrarily close to L for all x sufficiently close to a, written as

hinf(a:) =L.

Example:
: _ ¥
31612}1(2x -1)=T. S —
Upper bound:
y=2
9 T
To satisfy g
this I [
i
5 |
: : Lower bound:
I I y=35
i
[
g | » X
of 345 '
/ Restrict

1o this
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Analogously, if the values of f(z,y) lie arbitrarily close to a fixed real number L for all
points (x,y) sufficiently close to a point (xg, o), we say that f approaches the limit L as
(x,y) approaches (z¢,yo). More rigorously:

DEFINITION Limit of a Function of Two Variables

We say that a function f(x, v) approaches the limit L as (x, y) approaches (xg. vg).
and write

fle,y)=1L

{x. ¥)—{xo. ¥a)

if, for every number € > 0, there exists a corresponding number 6 = 0 such that
for all (x, v) in the domain of f,

|fle,y) — L] <€ whenever 0 < \/(x — x0)? + (y — ) < 8.

It can be shown that this definition leads to the following properties (you have seen an
analogous theorem for functions of one variable in Calculus 1):

Theorem: Properties of limits of functions of two variables
If L,M,k €R, lim  f(x,y) = L and ( lim  g(z,y) = M then

(z,y)—(w0,y0) z,y)—(x0,y0)

1. lim  (f(z,y) £ g(z,y) =LE+M

(z,y)—(z0,y0)

2. lim  (f(z,9) g(z,y)) =L-M

(z,y)—(x0,y0)

3. lim (kf(x,y)) =kL

(@)= (z0,y0)

L
4. lim ACY) = — M#0
(@y)—=(zowo) g(T,y) M

5. If r and s are integers and s # 0 then
lim  (f(x,y))/* = L"* provided L'/* is a real number.

(z,y)—(w0,y0)

For polynomials and rational functions the limit as (z,y) — (zo,%0) can be calculated by
evaluating the function at (zo,yo) (provided the rational function is defined at (xg, yo)).

|End of Week 5|

Examples:

(1)

lim r—xy+3 0—(0)(1)+3
()= (0,) 22y +5ry —y3 - (0)2(1) +5(0)(1) —
(2) Find
lim M )
(2.9) =000+ 2y \/T — \/Y

We need to avoid the whole path to the limit where x = y, hence the condition = # y.
Accordingly, there is a problem with just setting z = y = 0 because /x — \/y — 0 as
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(x,y) — (0,0). However, we can write
, 2 — xy , ?—zy VT +\Y
lim _— = lim .
(2.9)—(0.0)* 22y /T — \/Y (@)= 0.0 22y /T — /Y T+ Y
N ot R aVE),
()= (0.0)+ 7y (z —y)

= lim r(vVz +4/y) =0.

(,y)—=(0,0)*,z7y

Now we use limits to define continuity for a function of two variables.

Reminder: Continuity
For functions of one variable f(x) is continuous at x = a whenever f(a) is defined,
lim,_,, f(x) exists and the limit L equals f(a), that is, lim,,, f(z) = f(a). Analogously:

DEFINITION Continuous Function of Two Variables
A function f(x, ¥) is continuous at the point (xg, yo) if

1. fisdefined at (xg, o).

2. lim flx, ) exists,

(x, ¥)—{xp, vo)
3. im  flx, y) = flxo, yo).
tx, ¥)—{xo. yo)
A function is continuous if it is continuous at every point of its domain.

It follows from the previous Theorem that polynomials and rational functions of two vari-

ables are continuous on their domains.

Recall that for functions of one variable both the left- and the right-sided limits had to have

the same value for a limit to exist at a point. For functions of two (or more) variables, this

translates into the Two-Path Test for Nonexistence of a Limit: It states that if a

function f(x,y) has different limits along two different paths as (z,y) — (x¢, yo), then
(z,w%o,yo)‘f (:9)

does not exist.

The following figure gives examples of different paths approaching a point in radial and

tangential directions:

(a) (b)
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To have a limit at a point we have to have the same limit as the point is approached from
all directions, including (a) radial directions and (b) tangential directions.

Example:

Show that the function

_ 2x%y
ot 42

f(z,y)

has no limit as (z,y) — (0,0).

We cannot use substitution as it leads to 0/0. However, we can consider what happens as
we approach (0,0) along a family of different curves. Remember, the choice of curves is
up to us as the Two-Path Test does not specify what the path should be. You may wish
to check, as an exercise, what happens for the family of paths y = mz as (z,y) — (0,0).
Here we consider the next more complicated case, which is the family of parabolas given by
y = ka? (z # 0). Along these curves the function is

22%(ka?) 2kxt 2k

2t (ka2)? 2t + k2t 1+ k2

22%y
zt 4+ y?

f(ilf, y) ‘y:ka =

y=kx?
Therefore, as we approach (0,0) along any curve y = kx?, we have

2k
1+k%

tm [ f(, 9] e | =

(z,y)—(0,0)

Consequently, the actual limit depends on which path of approach we take (i.e. which
parabola we are on which is determined by the value of k). By the Two-Path Test there
is hence no limit as (z,y) — (0,0). This is illustrated by looking at the surface of this
function:
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Sometimes it is useful to use polar coordinates.

Reminder: Polar coordinates
As an alternative to Cartesian coordinates (x,y), we can describe a point P in the plane
by using polar coordinates:

Pir, #)
P
Origin (pole)
fi
0 — > X
[nitial ray
Polar Coordinates
P(r, 0)
Directed distance Directed angle from
from O to P initial ray to OP

These coordinates are particularly useful if a function, or a problem, has some circular
symmetry. Typically, we restrict ourselves to 0 < r and 0 < 6 < 27 (why?). Polar and
Cartesian coordinates can be converted into each other:

¥

Ra}fﬂ=g

Pix,y) = Plr, )

r
}I
H E— H= D., r= D= ¥
& Initial ray

For the direction polar to Cartesian coordinates we easily derive
xr=rcosf, y=rsinf

That is, given (r,8), we can compute (z,y). The direction Cartesian to polar coordinates is
left to you as an exercise.?

2If you have not encountered polar coordinates before in sufficient detail, I highly recommend that you
familiarize yourself with Thomas’ Calculus, Section 10.3.
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Example:
Determine the continuity of the function defined by

RN

s if (2,y)

flzy) = { Z (0,0)

if (z,y) = (0,0)
In polar coordinates, i.e., by using x = r cosf, y = rsin#, the function can be written as

2r2 cos A sin 0
0) = = sin 260
f(r.9) r2(cos?  + sin’ 0) o

provided we are not at the origin (i.e. provided r # 0). Therefore, as r — 0, the outcome
depends on the angle §. For example, along § = w/4, f = sin20 = sinw/2 = 1 everywhere
along the line. Therefore the function is not continuous.

2.1.3 Partial derivatives [Thomas’ Calculus, Section 13.3]

Reminder: Derivative
For functions of one variable, y = f(z), the derivative at a point is the slope of the tangent
to the curve at that point.

But for functions of two variables, z = f(z,y), an infinite number of tangents exist at a
point. However, if we fix y = yo in f(x,y) and let x vary, then f(z,yy) depends only on z:

Z

A Vertical axis in
~the plane y = y,

P(xg, 0, f(x0s ¥0))

z=f(x,y)
The curve z = f(x, yg)

in the plane y = y,

Tangent line

Yo

(xO + ks yO)
Horizontal axis in the plane y = y,

That is, we can reduce the problem of the many-variable derivative effectively to the one-
variable case by holding all but one of the independent variables constant.
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Definition:
The partial derivative of f(z,y) with respect to x at the point (xg,yo) is

af — lim f(@o + h,yo) — f (o, o)
h—0 h

= fx(anyO) = %(%,yo)

provided the limit exists.

In complete analogy, the partial derivative of f(x,y) with respect to y at the point (zg, yo)

is
aof ~ lim f(@o,y0 + ) — f(z0, o)
ay h—0 h

0
= fy(%»?JO) = 8—5(330790)

(z0,y0)

provided the limit exists.
For example, if f(x,y) = 2® 4+ y? then f, = 2z, f, = 2y.
Note how we treat the other variables as constants when we do partial differentiation!

We can extend this to three (or more) dimensions. For example, if f(z,y,2) = ry?z3 then
f:r = y223’ fy - 2:L‘yZ3, fz = 3:L‘y222.

Example:
Find df/0x and Of /0y at the point (4, —5) for the function f(z,y) = 2> + 3zy +y — 1.

% = %(m2+3xy+y—1)=2$+3y
g_g - a%(x2+3$y+y—1)=337+1-

At the point (4, —5) we have

of

_ of
ox (4.-5)

-7,
Y | 4,-5)

=13.

Example:
Find 0z/0x if the equation yz — In z = = + y (implicitly) defines z = z(z, y).

2(yz —Inz) = 3(JU +v).

ox ox
Hence 5 L8
z z
— ———=1+0
yax z 0% *

This gives

1\ 0z 0z z

Yy—— | 73> = 1 a.
z ) Ox or yz—1

We can also obtain higher order derivatives.
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Example:
If f(x,y) =xcosy+ye”, find

B o*f B o*f B 0*f
f;m—_ fyac_ axaya fyy_a_yQ and fxy

_ o
-~ Oyox

The first step is to find the first partial derivatives:

af N
— = cosy+tuye
ox

0

of = —xsiny+e’.
dy

Now we take the partial derivatives of the first partial derivatives. This gives:

0*f -
o2~ V°
0% f , -
Dyox = —sliny+e
2
;x@fy = —siny +¢€*
0% f
a—y2 = —XICosy.

This illustrates the following Theorem:

Theorem: Mizxed Derivative Theorem

If f(z,y) and its partial derivatives f,, f,, fzy and f,, are defined throughout an open region
containing a point (a,b) and are all continuous at (a,b) then

fﬂﬁy(av b) = fyﬁ(a?b) .

(An example where f,,(a,b) # f,.(a,b) is provided by the function discussed on p.34 of the
lecture notes.)

The theorem can be extended to higher orders, provided the derivatives are continuous.
’End of Week 6\

Reminder:

For functions of a single variable it holds that if y = f(x) is differentiable at © = z;, then
the change in the value of f that results from changing = from xg to zo + Ax is given by
the differential approximation

Ay = f(xg) Az + eAx

in which ¢ — 0 as Az — 0 (see Thomas’ Calculus Section 3.9). For functions of two
variables, the analogous property yields the definition of differentiability:
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DEFINITION Differentiable Function

A function z = f(x, y) is differentiable at (xq, yo) if fi(xg,»0) and f,(x0, y0)
exist and Az satisfies an equation of the form

Az = f(xp, yo)Ax + filxp, yo)Ay + €1Ax + 4y,

in which each of €/, €, — 0 as both Ax, Ay — 0. We call f differentiable if it is
differentiable at every point in its domain.

Note in particular that for z = f(x,y), differentiability is more than the existence of the
partial derivatives, as becomes also clear from the following statement:

If f, and f, are continuous throughout an open region R, then f is differentiable at every
point of R.

It also holds, in analogy to functions of a single variable:
If a function f(z,y) is differentiable at a point (z¢,yo) then f is continuous at (zo,yo).

If you are interested in the details underlying the above statements, like the Increment
Theorem, please check out Thomas” Calculus p.785.

2.1.4 The chain rule [Thomas’ Calculus, Section 13.4]

Reminder: Chain Rule for Functions of One Variable

If w= f(x) is a differentiable function of x and = = ¢(t) is a differentiable function of ¢,
then
dw dwdx

At drdt
Similarly:

Theorem: Chain Rule for Functions of Two Variables

If w = f(x,y) is differentiable and if x = x(t), y = y(t) are differentiable functions of ¢, then
w = f(x(t),y(t)) is a differentiable function of ¢ and

dw  OJwdx . Oow dy
dt Oz dt  oydt’
This straightforwardly follows from the above definition of differentiability.

We can easily extend this theorem to functions w = f(x,y, z) of three variables:

dw (910% 8wd_y (911)%

& ordt  oydt  ordt

We can use tree diagrams to illustrate the application of the Chain Rule:
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(a) (b)
w = flx, y) DcPcndcnt w = flx,v,z) Dependent
variable variable
ax / \3y ax / aw
. . Intermediate Intermediate
X 3 . x z .
) variables : variables
/ dy
dx\ o Jdy dx\ 4
de ~\  / dt de
A4 Independent Independent
f variable variable
dw _dw dx dw dy dw dwdx dwdy  dw dz
d T ===t =t
o dx odr dy dr dt — ax dt oy dt oz dt

(a) To find dw/dt, start at w and read down each route to ¢, multiplying derivatives along
the way; then add the products. (b) For functions of three variables there are three routes
from w to t instead of two, but finding dw/dt is still the same: read down each route,
multiplying derivatives along the way; then add.

Example:
Use the Chain Rule to find the derivative of w = xy with respect to t along the path
r = cost, y = sint.
dw  Owdx n owdy
dt — Oz dt oy dt
Note that we could have done this more directly by noting that

= = t't—l'Qt' d—w——2 2t = 2t
w =y = costsint = gsin2t; —- = -2c0s2t = cos2t.
If w= f(x,y) where x = g(r,s) and y = h(r, s) then
ou_oude owdy 0w _oudn  dwdy
or  Ox Or Oy or ds  Ox ds Oy 0Os

and in analogy for functions w = f(z,y, z). Also, if w = f(z) and = = g(r, s) then

ow dw @ ow  dw @

or  dx or o Os  dr 0s

y(—sint) + z(cost) = —sin®t + cos*t = cos 2t .

and

Example:
For u = w(z,y, z), express Ow/0r and Ow/0s in terms of r and s if

,
w=zr+2y+2>, x=-, y=r’+Ins, z=2r.
s

We have
ou _ wdr  owdy  owd:
or Or Or Oy odr 0z Or

= (1) F@)2) +(22)(2) = - + 12
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and

ou _ dwds owdy | Ouwd
ds Or 0s Oy 0ds 0z 0s

= (1) (;—;) +(2) G) +(22)(0) = % - ;—2

Suppose that w = F(z,y) is differentiable and that F(z,y) = 0 defines y (implicitly) as a
differentiable function of z. Then

dw dx dy dy
0O=—=F,—+F,—=F,+F,—.
dx dz i Ydx * Ydx
Hence, at any point where F}, # 0,
dy I,
dz ~ F,
This is the Formula for Implicit Differentiation.
Example:
Find dy/dx if 3? — 2% — sinay = 0.
F(z,y) = y*— a2 —sinay
dy F,  (-2r—ycosxy) 2x+ycosxy
de. ~  F,  (2y—azcoszy) 2y—xcosxy

You may wish to compare this method with the one that you have learned in Calculus 1,
i.e., differentiating the whole equation with respect to x and then solving for dy/dz.

2.2 Directional derivatives and extreme values

2.2.1 Directional derivatives and gradient vectors [Thomas’ Calculus,
Section 13.5]

We now investigate the derivative of a function f(z,y) at a point in a particular direction:

DEFINITION Directional Derivative

The derivative of f at Py(xg, yo) in the direction of the unit vector u = wu;i +
u3j is the number

(ﬂ’f) _ flxo + suy, yo + sua) — f(xo, yo)
= |im
I-I.Fn

ds S , (1)

=0

provided the limit exists.

It is also denoted by (Duf)p, or Dy f|p, as the derivative of f at the point I in the direction
of the unit vector u. The meaning is illustrated in the following figure:
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Surface S:

% — £z, 5} fxg + sup,yo + suz) — f(xp, yo)

(xg + sup, yg + suy)
Py(xg, ¥o) u=ui+ uj
We can develop a more efficient formula for the directional derivative by considering the line
T = g+ Suy, Y = Yo + Susg

through the point Py(zo, yo), parametrised with the arc length parameter s increasing in the
direction of the unit vector u = wuji + usj. Then, as f = f(z(s),y(s)),

df of dx af dy ) .
(ds ) WP <8a:)P d + <ay)P ds (via the Chain Rule)

_(of of |
— <8x)p0 uy + (ay)PO Us (use unit vector u)

(5), 1 (3), ] e

DEFINITION The gradient vector (or gradient) of f(x, y) is the vector

)
T

The value of the gradient vector obtained by evaluating the partial derivatives
at a point Py(xy, yo) 1S written

Vf |P9 or V f(xo, yo)-

Note that for a function f(z,y, z) we have
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The expression V f = grad f is called “grad f7, “gradient of 7, “del f” or “nabla f”.

We can now write the directional derivative using the gradient:

THEOREM 9—The Directional Derivative Is a Dot Product
If f(x, y) is differentiable in an open region containing Fy(x,, ¥,), then

df _ )
(a)u,})o - Vf'PD u, (4)

the dot product of the gradient V f at P, with the vector u. In brief, D,f = Vf-u.

Example:
Find the derivative of f(z,y) = x eV4cos(zy) at the point (2, 0) in the direction of v = 3i—4j.
The unit vector is

SRR S H ¥
R
Now
fx(2> 0) - (ey - ysin(xy))|(270) = 60 —0=1
fy(2,0) = (e’ — xsin(xy))|(2’0) =929 _-2.0=2.
Hence
V fli) = fo(2,0)i + £,(2,0)j =i + 2]
and so
. . 3. 4. 3 8
Duflion = Vg u=(i+2j)- (51_5J> =5 5 b
Note that

Du.f=Vf-u=|Vf||ulcosh = |V f|cosb

where 6 is the angle between the vectors V f and u. This implies the following:

1. f increases most rapidly when cosf = 1 (i.e. u is parallel to Vf)
2. f decreases most rapidly when cos = —1 (i.e. u is in opposite direction to V f)
3. f has zero change when cosf = 0 (i.e. u is orthogonal to V f).

Point 1 implies (why?): V f points in the direction of mazimal increase of f.

Point 3 implies (why?): At every point (z¢,yo) in the domain of a differentiable function
f(z,y) the gradient of f is normal to the level curve through (xg, yo).

Point 2 is illustrated by the following geographical map.
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The level curve f(x, y) = flxg. vy)

’End of Week 8\
Tangent lines to level curves are always normal to the gradient. If (x,y) is a point on the
tangent line through the point P(xg, o) then

T=(z—20)i+(y—)i,
is a vector parallel to it. The equation of the tangent is then

VT = faolzo, yo)(x — x0) + fy (0, 40)(y — y0) = 0.

An example illustrating the use of this equation will be discussed in the tutorials.

We can use the directional derivative for estimating change in a specific direction.
Recall that for a differentiable function of one variable we can estimate the change df =
f(zo + dz) — f(x) along the increment dz by

df = f'(xo)dzx .

In higher dimensions we can analogously use the directional derivative:

Estimating the Change in f in a Direction u
To estimate the change in the value of a differentiable function f when we move
a small distance ds from a point F, in a particular direction u, use the formula

df = (Vf|P0-u) ds

Directional Distance
derivative increment

2.2.2 Tangent planes and differentials [Thomas’ Calculus, Section 13.6]

DEFINITIONS  Tangent Plane, Normal Line

The tangent plane at the point Py(xp, vo. 2o} on the level surface f(x, v,z) = ¢
of a differentiable function f is the plane through Py normal to Vf|p,.

The normal line of the surface at Py is the line through Py parallel to V£,
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It follows® that the equation of the tangent plane is

Vilr, - PP = FalPo)(@ = 20) + £, (Po)(y — y0) + £:(Po) (= = 20) = 0

and the equation of the normal line is

r=x0+ fo(Po)t, y=yo+ fy(Fo)t, z =2+ f.(Po)t.

Example:
Find the tangent plane and normal line of the (level) surface

flx,y,2) =2+ 1> +2-9=0

(a circular paraboloid) at the point Py(1,2,4)

-
e

The surface

_ X2+ ¥yt 4+2-9=0
Pﬂ{]12s4)

Normal line

\ Tangent plane

Vflpo = (2zi+2y] +k)(1,2,4) =2i+4j+k

where at the point Fy we have f,(F) = 2, f,(Fh) = 4 and f.(F) = 1. Therefore the
equation of the tangent plane is

2 —1)+4y—2)+(z—4) =0

which simplifies to
20 +4y+z=14.

The normal line to the surface at I} is

r=1+2t, y=2+4t, z=4+t.

3See Section 11.5 in Thomas’ Calculus for details if you are in trouble with this.
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We remark that the gradient has the following algebraic properties:

V(kf) = kEVf for any number k
V(f+g) Vf+Vy
V(fg) = [Vg+gVf
V(i) _ 9gVf—1fVyg
2
g g

(the proof is straightforward and left as an exercise)
Before we linearise a function of two variables, recall that a function z = f(x,y) is differen-
tiable at (o, o) if

Az = f(z,y) — f(®o,y0) = fu(o, y0) Az + f, (20, y0) Ay + 1Az + e2Ay

with €1, €2 — 0 (Az, Ay — 0). Solve for f(z,y) and approximate:

DEFINITIONS Linearization, Standard Linear Approximation

The linearization of a function f(x, y) at a point (x, yo) where f is differentiable
is the function

L(x,y) = f(xo,30) + filxo, yo)(x — x0) + fulxo, vo)(¥ — yo). (5)
The approximation

flx,y) = L(x,y)

is the standard linear approximation of f at (xg, ¥o).

Example:
Find the linearisation of

1
f(z,y) =$2—:vy+§y2+3

at the point (3,2).
We first evaluate f, f, and f, at the point (z¢,v0) = (3,2):

1
f(3,2) = (.r2—xy+—y2—|—3) =38
2 (3.2)
0 1
£.3,2) — —(x2—xy+—y2+3) (20— )]y = 4
ox 2 (3.2) (3,2)
0 1
32 = (et g2 43)| = by =1
Yy (3,2)

giving
L(z,y) = f(xo,y0) + ful@o, yo)(® — z0) + fy(T0, %0) (¥ — %o)
= 8+ W)@ —3)+(-1)(y—2) =4z —y—2.

Hence the linearisation of f at (3,2) is L(z,y) = 4z —y — 2.
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Recall that for y = f(x) we have defined the differential dy = f'(x)dz.

DEFINITION Total Differential
If we move from (xq, o) to a point (xg + dx, yo + dy) nearby, the resulting change

df = fdxq, yo) dx + filxo, yo) dv

in the linearization of f is called the total differential of f.

Example:

A cylindrical can is designed to have a radius of 1 unit and a height of 5 units, but the
radius is off by an amount of dr = +0.03 units and the height by dh = —0.1 units. Estimate
the resulting absolute change in the volume of the can.

Using the above total differential we obtain
AV = dV = V,.(rg, ho)dr + Vi(ro, ho)dh .
From V = 7r?h we obtain V, = 27rh and Vj,, = 2. Hence,

dV = 2xrhdr + mr?dh = 0.37 — 0.17 = 0.27 ~ 0.63 .

2.2.3 Extreme values and saddle points [Thomas’ Calculus, Section 13.7]

When we investigated extreme values for functions of one variable we looked for points
where the graph had a horizontal tangent line. For functions of two variables we look for
points where the surface defined by z = f(z,y) has a horizontal tangent plane. This leads
to the following definition:
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DEFINITIONS Local Maximum, Local Minimum

Let f(x, v) be defined on a region R containing the point (a, ). Then

1.  f(a. b) is a local maximum value of f if f(a, b) = f(x. y) for all domain
points (x, v) in an open disk centered at (a, ).

2. f(a, b) is a local minimum value of f if f(a, b) = f(x,y) for all domain
points (x, y) in an open disk centered at (a, b).

Local maxima correspond to “mountain peaks” on the surface z = f(z,y) and local minima
correspond to “valley bottoms”:

Local maxima
(no greater value of fnearby)
i

]
—

—

Local minimum —*

(no smaller value
of f nearby)

Not too hard to show (with knowledge of Calculus I):

THEOREM 10—First Derivative Test for Local Extreme Values  If f(x, y) has a
local maximum or minimum value at an interior point (a, b) of its domain and if
the first partial derivatives exist there, then fy(a, b) = 0 and fy(a, b) = 0.

Define an important object (in complete analogy to Calculus I):

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f, and f, are zero
or where one or both of f, and f, do not exist is a critical point of f.

Therefore local maxima and minima are critical points (why?) but critical points can also
include saddle points:
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DEFINITION Saddle Point

A differentiable function f(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, y) where
flx,») = fla, b) and domain points {(x, y) where f(x, y) < f(a, b). The corre-
sponding point (a, b, f(a, b)) on the surface z = f(x, v) is called a saddle point of
the surface (Figure 14.40).

An example of a saddle point is the origin in the following surface:

Therefore, finding critical points of a function is not sufficient to identify the type of critical
point (local maximum, local minimum or saddle point). To do this we need to make use of
second partial derivatives.

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that
f(x, ) and its first and second partial derivatives are continuous throughout a
disk centered at (@, b) and that fi(a, b) = f,(a, b) = 0.Then

i) f has alocal maximum at (@, b) if fox < 0and fuf,y — fo’ > Oat(a, b).
ii) f has alocal minimum at (a, b) if f,, > Oand f.. f,, — fxyz > (0 at (a, b).
iii) f has a saddle point at (¢, b) if f.f,, — fxy2 < 0 at (a, b).

iv) the test is inconclusive at (a, b) if f. f,, — xyz = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

The quantity fiafyy — gfy is called the discriminant or Hessian of the function f. Note

that i
_ 2 pzed Ty
fx:v fyy fzy fxy fyy

)
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i.e., the Hessian is the determinant (cf. Vectors and Matrices) of the matrix of the second
partial derivatives.?

Example:

Find the local extreme values of f(z,y) = 2y — 2* — y* — 22 — 2y + 4 and determine the
nature of each.

f(z,y) is defined and differentiable for all points in its domain. Hence, at extreme values
fz and f, are simultaneously zero. This gives the two equations

fo=y—20—-2=0; fy=2—-2y—2=0.

The solution of these equations is © = y = —2. Hence (—2, —2) is the only point where f
may take an extreme value. Now take the second derivatives:

fwa::_2<07 fyy:_27 fwyzl(: fya:)
At the point (-2, —2),
fmxfyy - foy = (_2)(_2) —12= 3>0.

S0 fzz < 0 and fo,fyy — :fy > (. Therefore f has a local maximum at (—2, —2). The value
of f at this point is f(—2,—2) = 8.

The previous theorems hold only for interior points. Note that functions defined on closed
and bounded domains may also have local extreme values at boundary points (as in case of
functions of one variable, see Calculus I). But we do not discuss this case in more detail.

4If you want to know why: check out Thomas’ Calculus Section 13.9.
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3.1 Double integrals [Thomas’ Calculus, Section 14.1]

Consider a function f(x,y) defined on a rectangular region R : a <z < b, ¢ <y <d
partitioned into small rectangles Ay:

¥

*

d -
i
A A
{
Ay | 7 &= (xg. vy

aﬂlk

o
' L s

0 a b

The area of a small rectangle with sides Az, and Ay is

Choose a point (xy, yx) in the (suitably numbered) kth rectangle with function value f(z, yx).
We can consider z = f(x,y) as defining the height z at the point (z,y). The product
f(zk, yx) AAg is then the volume of a solid with base area AAj and height f(zg,yx) (for
which we assume that f(zg,yx) > 0):

z=f(x.v)

el

i
. )
b

o k. <
X /<'
ﬂ. -"1 k

(X )

The Riemann sum S,, of these solids over R is

So =Y flwnyn) DAy

k=1

Now consider what happens as AA; — 0 (as n — 00), i.e., we refine the partitioning. When
the limit of these sums exists the function f is said to be integrable and the limit is called
the double integral of f over R, written as

/R [faman o / [y
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The volume of the portion of the solid directly above the base AAy, is f(zx, yx) AAg. Hence
the total volume above the region R is

Volume = lim Sn://f(x,y) dA
R

n—oo

where AA; — 0 as n — oco. The following figure shows how the Riemann sum approxima-
tions of the volume become more accurate as the number n of boxes increases:

(ayn = 16 (hyn = 64 (cyn = 256

|End of Week 9|

Consider the calculation of the volume under the plane z = 4 —  — y over the rectangular
region R: 0 <z <2and 0 <y <1 in the z-y plane.
First consider a slice perpendicular to the z-axis:

\y‘

vo= 1
& aw=[ ¢-x-na
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The volume under the plane is

/ :_ Ar) dr

where A(x) is the cross-sectional area at x. For each value of z we may calculate A(x) as
the integral

A<x>=/y (-2 —y)dy

=0

which is the area under the curve z = 4 — x — y in the plane of the cross-section at x.
In calculating A(x), z is held fixed and the integration takes place with respect to y.

Combining the above two equations we have

=2
Volume = / A(z)dz

=0

B /;02 (/;;M —e-y) dy) dz
Y

We can write

2 1
Volume = / / (4—z—y)dyde.
0Jo

This is an iterated or repeated integral. The expression states that we can get the
volume under the plane by (i) integrating 4 — z — y with respect to y from y =0 to y = 1,
holding x fixed, and then (ii) integrating the resulting expression in x from z = 0 to x = 2.
In other words, first do the dy integral and then do the dx integral.

Now consider the plane perpendicular to the y-axis:
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Pu. %

X Aly) =f ““(4 — X —y)dx

We have
r=2 3;'2 =2
A(y):/ (4—m—y)dx:{4x———xy] =6—2y.
x=0 2 =0
The volume is then
y=1 y=1 .
Volume = / Aly) dy = / (6 —2y)dy = [6y —*], =5
y=0 y=0

as before.
This illustrates

THEOREM 1  Fubini’s Theorem (First Form)

If f(x, y) is continuous throughout the rectangular region R:a = x = b,
¢ =y = d, then

g b "bofrd
/ / flx,y)dAd = / fle,v)dedy = / / Jlx, v) dy dx.
. k o oJd a Je

Example:
Calculate the volume V under z = f(x,y) = 2y over the rectangle R defined by 1 <z < 2,

-3<y<4
r=2 y=4
o e ([ )
R =1 y=-3

x=2 2 27y=4 x=2 r~ 2 37 x=2 4
_ / [fﬂy] dx:/ de:{’ﬂ] _ b
=1 2 y=—3 rx=1 2 6 r=1 6
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Changing the order gives the same result:

V://q:ydA / </ xydx)dy
/y 4 {x y} r=2 ; / =4 Ty {7y2}y:4 49
y=13L 3 l.0 y=-3 3 6 |5 6

In this example we could have separated the integrand into its z and y parts:

=2 y=4 r=2 y=4 7
V:/ (/ :Bdey) dx:(/ xde) (/ ydy)z—-
r=1 y=—3 rx=1 y=—3 3

More generally, if f(z,y) = g(x)h(y), (i.e. the function is separable) and the region is
rectangular then

[ Jownwar = [ /yyjdg<x>h<y>dy) r
= ([ o) ([ rwa).

3.2 Double integrals over general regions and area

7 49
2

3.2.1 Double integrals over general regions [Thomas’ Calculus, Section 14.2]

Now consider the case where the region R is not rectangular:!

THEOREM 2  Fubini’s Theorem (Stronger Form)
Let f(x, v) be continuous on a region R.

1. IfRis defined by a = x = b, g1(x) = y = g>(x), with g, and g> continu-
ous on [a, b], then

" b ,53:(1‘)
ﬂ fle,v)dd = // flx,v) dydx.
a Jgx)
R

2. IfRisdefinedbyc = y = d, hi(y) = x = ho(y), with &, and /15 continuous
on [¢, d], then

haly)
ﬂ)‘ (x, ) dA4 —// flx,») dxdy.
iy

Example:

Find the volume of the prism [/ »(3—1—y)dA where R is the region bounded by the z-axis
and the lines x =1 and y = x.

1See Thomas’ Calculus, beginning of Section 15.2 for details underlying this theorem. Here we sweep
under the rug that integrating over non-rectangular regions involves some further considerations.
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&

/:x
y=x
R
0 y=0 1 *
(b)
¥ x=1
/”
X=Yy
~ —x=1
R
0 | !

() ()

The region of integration in the z-y plane and the volume defined by z = 3 —x — y are
shown in the figure. In order to do the double integral we will first consider the approach
where we fix the value of x and do the y integral. We have

Yy=x y2 y=x
//(3—x—y)dA = / / 3—x—y dydx—/ {Sy—xy——} dx
R =0 2 y=0

1

3x R x3
- 30— 2 ) dw= |28 0| =1,
[ (%) =[5 -3,

We can also change the order of the integration where we fix the value of y and do the z
integral. We have

/R/(?)—:v—y)dA :/y / 3—z—y dxdy_/ol{?’x_x;_w}::dy
:/0(<3—§—y) (Sy—?g—yz))dy

1 37y=1
5 3 5 y
— S 4yt ) dy= |y -2+ 5| =1.
/0(2 y+2y> Y [2y y+2L0

In some cases the order of integration can be crucial to solving the problem.

Example:
Calculate [[,(sinz)/xdA where R is the triangle in the -y plane bounded by the z-axis,
the line y = x and the line x = 1.
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'j.l
4 x=1

/zx
| .

L 2
3
a1

Taking vertical strips (i.e. keeping z fixed and allowing y to vary) gives

1 T 1 : y=x 1
/ ( / PInE dy) de = / {y i x} dr = / sinz dx
0 o 0 T Jy=o 0

= [~cosa]y=—cosl+cosO=1—cosl.

However, if we reverse the order of integration we get

/l/lsmwdxdy
0Jy x

and [(sinx)/z dz cannot be expressed in terms of elementary functions making the integral
difficult to do.

There are always two ways to do a double integral; choose the simpler because the other
may be impossible!

Summary: A key part of the process of double (and multiple) integration over a region
is to find the limits of the integration. We illustrate the procedure by considering the
double integral of a function over the region R given by the intersection of the line z4+y =1
with the circle 22 4+ y? = 1 (see the picture next page).

(a) Sketch the region of integration and label its boundary curves.

(b) If we decide to use vertical cross-sections first: Find the y-limits of integration.
Imagine a vertical line through the region, R, and mark the points where it enters and
leaves R. In this case such a line would enter at y = 1 — = and leave at y = /1 — z2.

(c) Find the z-limits of integration: Choose the z-limits that include all vertical lines
through R. In this case the lower limit is = 0 and the upper limit is x = 1.

(d) This step may not be necessary: Reversing the order of integration. Then the
x-limits would be from z = 1 —y to x = /1 — y? and the y-limits from y = 0 to

y =1
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(a) (b)

Leaves at
/ y=VI1-—x?

] J
Y Enters at
y=1-x

L
> X
= 0 X 1
(c) (d)
¥ Leaves at Largesty ¥
», B b

y = 2] — a2 isy=1 Enters at
\l x=1- ¥

|
R Enters at
y=1-x

y 3

L Smallest ¥ \ Leaves at .
iS)" :\\0 x:\/l _),..
0 x 1 x 0 1 X
&
Smallest x Largest x
isx=20 isx =1

Example:
Sketch the region of integration for the integral

2 pr2zx
/ / (4z + 2)dy dx
0 Jz?

and write an equivalent integral with the order of integration reversed. Evaluate the integral.

4r 2,4

0 2 T 2

(a) (b)
As written, the order of integration would imply that we do the y-integral first, from y = 22
to y = 2z, followed by the xz-integral from z = 0 to x = 2. However, we are told to reverse
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the order of integration. This means we do the z-integration first, from = = y/2 to x = /y,
followed by the y-integral from y = 0 to y = 4. In other words,

2 2 4
/ / (dz +2)dydx = / / (4x + 2)dzdy
0 Ja? 0 Jy/2

We can evaluate the integral using either ordering. Let us revert to the original:

2 (2 2 2
/ / (dr +2)dydx = / [4ay + 2975 da :/ (82 + 4z — 42® — 227) du
0 Ja2 0 0
2
= / (—49(:3 + 627 + 4:6) dz = [—1:4 + 227 + 2x2]§
0
= —164+16+8=28.

Note that this example is not separable because it is a non-rectangular region (i.e. the limits
on the = and y integrals now depend on the region of integration).

Double integrals can also be calculated over unbounded regions.

Example:
Evaluate the integral [ [z e~ *T2)dz dy.
We have

// ze W dpdy = // "Wy e dady
0o Jo

(integrate by parts with u = z, dv = e~ *dx)

- [Ter{leey - [T e

Double integrals have the following properties:
Let f(z,y),g(x,y) be continuous on the bounded region R. Then

/R/Cf(a:,y)dA = C/R/ f(z,y)dA for any number ¢
/R/(f(x,y)ig(x,y)) dA = /R/ f(x,y)dAi/R/g(x,y)dA

/R/f(w,y)dA > 0 if f(x,y)>0on R

/R/ flx,y)dA > /R/ glx,y)dA if f(z,y) > g(z,y) on R

/R/f(x,y)dA - /Rl/f(x,y)dA+/R2/f(x7y)dA

if R=RURy, RiNRy=10
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3.2.2 Area by double integration [Thomas’ Calculus, Section 14.3]

The area A of a closed, bounded plane region R is given by

A=lim Y :AA,C:/R/ dA,
n—oo
k=1

which is equivalent to calculating [, f(z,y) dA with f(z,y) = L.

L~ — ~
o N
/7 N
Ayk J ._hzxk! J’k)
\ Axk ]
/
N /
\\-.. /
] 4

Example:

Find the area of the region R enclosed by the parabola y = 22 and the line y = z + 2.
Determining the points of intersection is essential to determining the limits on the integra-
tions. We can find the points by setting 22 = z+2 which gives 22 —x—2 = (z+1)(x—2) = 0,
giving x = —1 and = = 2. The corresponding values of y are y = 1 and y = 4. So the points
of intersection are (—1,1) and (2,4).

(=11}
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If we use vertical strips (i.e. fix z and vary y) for the first integral we will not have to split
up the region of integration. From the diagram we see that the lower and upper limits for
the first integration are therefore y = 2 and y = x + 2. This gives

2 a4 2
A = / / dydz = / [y]iﬁ dz
—1Jz2 -1
2 2 372
= / (:c+2—:c2)dx: x_+2x_x_ )
1 2 3

Double integrals can also be used to find the average value of the function f(z,y) over
the region R, which is defined to be

D) = oo . Femaa,

5"

-1

Example:

Find the average value of f(z,y) = x coszy over the rectangle R: 0 <z <7, 0 <y < 1.
The area of the region R is just 7, the product of the length of the two sides of the rectangle.
We just need to find [f, f(z,y) dA and then divide by 7.

T prl T
/ / x cosxydydr = / [sin :Ey];zzé dx
0 Jo 0

= /0 (sinz —0) do = [—cosz]; =1+1=2.

Hence (f) =2/x.

|End of Week 10|

3.3 Substitution and triple integrals

3.3.1 Substitution in double Integrals [Thomas’ Calculus, Sections 14.8 and
14.4]

For functions of one variable it is often useful to integrate by a change of variable, e.g. x =
x(u). Let us review integration by substitution in a slightly different way than you have
learned in Calculus 1, namely backwards: Replace x by x(u) and dz by (dx/du)du.? Then
alter the z-limits to the w-limits with a < b and u; < uy. First, assume that x(u) increases
with u giving a = x(uy) and b = x(ug). Then

[ /;:bf(x) dz = /u::u2f(x(u))j—z du. .

u1

If z(u) decreases with u we have a = x(ug) and b = z(uy), and the u-limits are reversed.
With u; < uy we therefore have a change of sign:

. /;bf(@ dr = — /uu f(a:(u))% du.

=u1

2Note that here we interchange u and = compared to Calculus 1.
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But dz/du < 0 in this case, so we can combine both cases in one formula:

[ rwa= | ety

Note that on the right-hand side of this equation the function f(z) is expressed as f(z(u)).
Also, the right-hand side of the equation includes a scaling factor |dz/du|, multiplying the
du; this comes from transforming from dz to du.

For functions of two variables one would similarly expect that the change in variables

dx

—| du.
duu

r=z(u,v), y=1yu,v)

(for example, for polar coordinates u = r and v = #) would result in a change in the area
dA by a scaling factor S such that

dA =dxdy = Sdudv.
As an example consider a linear change of coordinates:

r = z(u,v) = au + bv, y =y(u,v) = cu+ dv

x\  [a b\ (u
y) \c d)\v
where a, b, ¢ and d are constants.

Let us write M for the transformation matrix composed of a, b, ¢ and d and recall that a
unit square in (u,v) variables is spanned by the unit vectors

U 1 u 0
()= ()= ()= (1) =
To see what happens to this unit square under the transformation M, just apply M. This
gives
a b\ (1 a
Mo = i (22) () ()
b\ (0 b
Me: = = (22) () (3)

where (a,c) and (b, d) represent the coordinates of the new corners in the (z,y) plane:

e}

o 2

b @ y ®
(u=0,v=1) (u=1,v=1) (a+b, c+d)
€ (b, d)
€ P
(u=1,7=0) € (@)
(] u X

(note that the arrows are supposed to reach the respective points)
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Therefore, under the transformation M we find that the unit square in (u,v) based on ey,
e, is transformed into the parallelogram in (z,y) based on €/, €.

Note from the matrix and the diagram that the point (1,1) in (u,v) transforms to the point
(a+0b,c+d)in (z,y).

Let us calculate the area of the parallelogram P:

an b a
c| R C T
S :
T, P r 4
! (b
T, c R c
a b X
We have
Area P = [Total area of rectangle]
— [Area of 2 pairs of equal triangles 77 and T3]
— [Area of 2 rectangles R] .
Therefore,

1 1
Area P = (a+b)(c+d)—2-—ac—2-§bd—260

9
::ad—M:da<ab):dmN[
c d

In view of the equation dA = dozdy = Sdudv one may understand this result such that
the unit square of area du dv gets multiplied by a factor of S = det M. The same argument
shows that a small rectangle of sides du and dv with area dudv also gets multiplied by
S = det M. Therefore, for a linear change of variables a small rectangular area dudv in
the (u,v) plane is transformed into the parallelogram area dz dy = det M du dv in the (x,y)
plane.

Now let us consider a nonlinear change of coordinates. We take the transformation to have
the form

x = z(u,v), y =y(u,v),

where according to the total differential the increments in x and y are given by

ox ox
Oy dy
dy = Sodu+t Sidv
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or, in matrix form,
de\  (Ox/Ou Ox/0v\ (du
dy)  \Oy/ou Oy/ov) \dv) "
The Jacobian matrix is defined to be
_ (0x/0u Ox/0v
M(u,v) = <8y/8u ay/ﬁv)
and the Jacobian determinant, or Jacobian,

d(z,y)
d(u,v)

= det M(u,v).

This suggests that for a nonlinear change of variables we also have that a rectangular area
dudv in the (u, v) plane) is transformed into the (deformed) ‘parallelogram’ area det M du dv
in the (z,y) plane.

(a) V (b) V v+Ov

v+HOv ---- v
R
vl | | u+ou
i i u
- S X
u u+ou

(with du = du dv = év)

Therefore, the required transformation formula for double integrals under a change
of variables is?

//Rf(x,y)dxdyz/ IR {CTORTIRD) 'ggii des o
where ‘géz:gg o

can be thought of as the scaling factor S.

Note that |- | denotes the absolute value of the determinant of the matrix, i.e., the modulus
as in the one variable case. This may not be confused with the case of a matrix, where
vertical lines on either side denote the determinant. For example, if we let

()

a b
det A = e d

then

‘:ad—bc

3For a precise mathematical formulation of this result as a theorem see Thomas’ Calculus p.907.
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and

|det A| = |ad — bc| .

Example:
Evaluate the integral

]://R(xszyQ)dxdy

where R is a disk 2 + y? < a?, by changing to polar coordinates.
In polar coordinates we have

xr =1rcosb, =rsinf.

Therefore, taking u = r and v = #, we can write the Jacobian matrix as

M — dx/0r 0x/d0\  (cosf —rsind
- \9y/or 0y/00) \sinf rcosd

and the Jacobian determinant is

~ O(w,y)
det M = 3. 0) =

cos —rsind
sinf rcosf

=r (cos29 + sin? 9) =r

where here and in the following we assume r > 0, so we do not need to take the absolute
value. The original area R and the transformed area R’ are shown below:

() y (b)

2

Rl

Note that the circle in the (z,y) plane transforms into a rectangle in the (r, ) plane. Here
R is the region given by 2% + y? < a? and R’ is the region given by 0 < r < a, 0 < § < 2.

Therefore
I= //R(x2 +9?)dzdy = // (r*) (r) drdf

where the r? on the right-hand integral comes from the transformed 22 + 4? and the r dr dé
is from the transformed dz dy with r coming from the Jacobian determinant det M. Hence

r=a 0=27m r=a 0=2m 4
1:/ r3drd6’:</ r3dr) (/ d@):ﬂ,
r=0 6=0 r=0 0=0 2

where we note that the integral is separable.
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Example:
Evaluate the double integral

= y/2+12
// - yd dy
x=y/2

by applying the transformation u = (2x —vy)/2, v = y/2 and integrating over an appropriate
region of the u-v plane.
The region R in the z-y-plane looks as follows:

1 x=u+v

'l_" = EEJ
~ = —_— 34

u =1 n=1

of v=0 1 I 0 I
o
The corresponding region GG in the u-v plane can be obtained by first writing x and y in
terms of w and v as x = u + v and y = 2v.
The boundaries of GG are then found by substituting these equations for the boundaries of

R:

xy-equations for Corresponding uv-equations Simplified

the boundary of R for the boundary of G uv-equations
x=y/2 utv=2/2=v u=20
x=(y/2)+1 u+tv=_Qu2)+1=v+1 u=1
y=20 2v=20 v=20
y=4 2v=4 v=2

The Jacobian of the transformation is

dw,y) |0x/ou Ox/ov

det M(u, v) —8(u,v) = |oy/ou dy/ov
|0(u+v)/ou O(u+wv)/Ov| |1 1 _o
| 9(2v)/0u d(2v)/ov | |0 2| 77

and we get

z=(y/2)+1 2:[, y
// dz dy—/ / |detMuv)|dudv—/ / u-2dudv =2
x=y/2

Note that for invertible transformations

A(x,y)  (O(uw)\ "
a(u,w‘(a(sc,y)) ’ (3.1
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as you have seen in Calculus 1 for a function of one variable. This can be useful in solving
some problems.

Example:
Evaluate the integral

I—//1~dxdy
R

(i.e. the area of the region R) where R is enclosed by y? = z, y* = 2z, zy = 1 and zy = 2.

y (a) v (b)

2 y2=2x V:2 --------------
2y R'

= y

1 xy=2 v=1 T !
xy=1 i i

0 0 | |

0 ] " 0 u=1 s

To solve the integral consider the change of variables defined by
u=y*/x, v=1xy.
Then we can write the four bounding curves as
V=recu=1 yY=2cu=2 ay=1lsv=1 sy=2c0v=2.

So the region becomes a square (the region R’ in part (b) of the above figure).

Now, for the Jacobian determinant it is easier to use Eq. (1) above. So, to calculate
d(z,y)/0(u,v) we first calculate d(u,v)/

,p(z,y) and then take the inverse. Using u = y*/x and v = xy we have

O(u,0) _ |ou/0x Oufdy| _|—y*/=* 2y/a| _ ov* _ o
ox,y) |Ov/ox Ov/dy| | r | Tz '
Therefore, using Eq. (1),
Owy) _ (Owv)\"_ 1
O(u,v)  \d(z,y) 3w
Hence
I — //1 dxdy:// 1_’8(:C,y) du dv
R / (U,U)
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’End of Week 11‘

Example:
Evaluate the integral

/ e Ay
If we call this integral I, we can write

o (o) () [

Now transform to polar coordinates with the limits 0 < r < oo and —7 < # < 7. This gives

= /_ﬂ/ —r2/2 |9 ’d 46 = /_W/ re /2 drdf
_ /;[ er”ﬂ0<w——/;(m)—( ))dh:/;d0:2w.

Hence I = /2.

Note that the probability density function for a normal (or Gaussian) distribution is

1 @/
2m

p(r) =

for mean p and standard deviation o. If we write t = (z—p)/o (i.e. express the displacement
from the mean in terms of the standard deviation) then the total probability is

—t2 /24

P - e~ (@=1)?/(20%) 4 —

oV 2T oV 21

—t2/2 d o .
— e t=1. (by our previous result
%/; (by our p )

3.3.2 Triple integrals [Thomas’ Calculus, Section 14.5]

Triple integrals are integrations where the region of integration is a volume. The basic
concepts are similar to those we introduced for two-dimensional (double) integrals, but now
we have for the Riemann sum

Sn = Zf(l’k,yk, Zk) AVk s

where AV, = Azy Ay Az are now small volumes at the point xy, yx, 2, see (a) in the
figure below (where it is AV}, = §V).
The limit as the size of the volume element AV}, — 0 (as n — oco) is written as (if it exists)

Ji_)rgosn—///fxy, )ydV = ///fxy, dzdydz

where V' is the three-dimensional region being integrated over.

The integrals are, as in the two-dimensional case, evaluated by repeated integration where
we integrate over one variable at a time. For example, we could start by integrating over z
first, see (b) in the figure below. The procedure is as follows:
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(@) (b)

Z A I A

y=y1(x)

(a) Sketch the region of integration (if possible), see (a).

(b) Choose a direction of integration and integrate: For example, fix a point (z,y)
and integrate over the allowed values of z in the region V. The z-integral limits are the
small, filled circles at the bottom and the top of the dashed line with, say, z = z(x, y)
at the bottom and z = zy(x,y) at the top as shown in (b). Therefore we are summing
vertically over the boxes shown in (b).

(c¢) This result depends on the choice of (z,y) and is defined in the region R of the (z,y)
plane which is the projection of V" onto this plane as shown in (c). This now identifies
the region in the (z,y) plane over which we must do the = and y integrations.

(d) Now we can take the double integral of the result of the z-integration over the
region R in the (z,y) plane, see (d), where here we first integrate along the y axis.

z=b py=y2(z) rz=z2(zy)
///f(as,y,zmv:/ / f(y,2) dzdydz
v z=a Jy=yi(z) Jz=z1(z,y)

Therefore
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Example:
Evaluate

[ ] [ semaav

over the tetrahedron 7" bounded by the planes z =0,y =0, z2=0and x +y + 2z = 1.
Note that the plane  + y + 2z = 1 passes through = = 1 (putting y = z = 0) and similarly
through y = 1 and z = 1 as shown below:

A A

(a) (b)

X X

Now evidently for fixed (z,y) the z-limits are the heavy dots corresponding to z = 0 at the
bottom and z =1 — x — y at the top. This gives our z-limits.

The projection R of T" onto the (z,y) plane is the triangle on which the tetrahedron rests,
i.e. the triangle given by z =0, y = 0 and = + y = 1 (obtained by setting z = 0). So

r=1 y=1—x z=l—xz—y
I:/ / / f(z,y,2)dzdy dx.
=0 y=0 2=0

For example, if f(x,y,z) =1 then

I:///Tl-dV:///TdV:volumeofT.

Therefore, in this case

=1 y=1l—-zx z=1—x—y =1 y=1l—x _
I = / / / ldzdydz = / / (2]—, " Ydyde
T= y=0 z=0 =0 y=0
r=1 =l-z =1 yg y=1l—x
= / (1—J;—y)dydx—/ {y—xy——} dz
z=0 Jy=0 =0 2 y=0

=1 2
(1—2x) 1
/x:() 5 d:v—6

and this is the volume of the tetrahedron.

Triple integrals can be used to find the average value of a function f(x,y,z) over a
volume D defined as

o2 = g [ Harav
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Example:

Find the average value of f(x,y, z) = xyz over the cube bounded by the planes z = 2, y = 2
and z = 2 in the first octant.

The volume of the cube is 2% = 8. The integral is

2 (2 2 2 2 2 2 3 2272 3
/// xyzdxdydz:/ xdx/ ydy/ zdz = (/ xdaz) = {—} =38,
0JoJo 0 0 0 0 2 1o

because the function is separable and the region is cubic. Therefore the average value of
f(z,y,z) = xyz over the cube is

1 1
(@ y,2)) = volume of cube ///Cube ryzdV = s 8=1.

Example:

Find the volume V of the region D enclosed by the surfaces z = 22 +3y? and z = 8§ — 2% — /%

The two surfaces intersect at x? + 3y?> = 8 — 22 — y2. The equation z? + 2y* = 4 thus
defines the boundary of the projection of D onto the x-y plane, which is the ellipse R:
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Leaves at
) ]
z=8—x" —y°

(-2,0,4)
(2.0, 4) z=x243y?
Enters at
2=xt+3y
Eﬂ[ﬁm atl {_2: {]ﬁ D]
y=-Vd -2
(f}ﬂD] x2+2}’2=4

Leaves at

=V —xHr2

We now have all the information necessary to do the integral:
(4— 12)/2 8—x2—y?
V = /// dzdydcc—/ / / dzdydx
(4— :c2)/2 2243y2
(4 z2
:/ / 22—4y2)dyda:
(4— m2)/2

4 \/ (4—22)/2
= / {(8 —22%)y — y?’} dz
-2 3 - yaman

T

- /2 (8 (4—2x2>3/2_§<4—2x2)3/2> da

— 4\/_/ 3/ dz [since (8 —8/3)/(2%/?) = 41/2/3]
e

= 5 43/ ? (cos 9) -2 cosfdf |using subst. x = 2sin 6]
—7/2
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44/2 m/2 4
= i-16/ cos'0df = —— \/— (3+4cos29+cos40) dé
3 —7/2 3 —71'/28
4v/2 1 /2
— i—-z 30 + 25in 20 + - sin 40
3 4 /2
42 T w

3.3.3 Substitution in triple Integrals [Thomas’ Calculus, Section 14.8]

Changing variables in triple integrals is similar to the procedure used for double integrals.
Suppose

r = x(u,v,w), y = y(u,v,w), z = z(u,v,w) .
We define the Jacobian matrix for change of variables from (z,y, z) to (u,v,w) to be

dx/Ou Ox/Ov Ox/ow
M(u,v,w) = | dy/Ou Jy/Ov 0Oy/ow
0z/0u 0z/0v 0z/0w

and the corresponding Jacobian determinant as

d(z,y, 2)

— =detM
O(u,v,w) ¢

such that the transformation for volume is

O(z,y,2)

drdydz = ’

As before, for invertible transformations we have

o (S

The integral under change of variables becomes

// f(z,y,2)dxdydz =
//V/f (u, v, w), y(u, v, w), Z<uvw))‘§((ugw))

where V' is the transformed volume in (u,v,w) coordinates.

dudvdw,

Example:
A volume V' in the first octant is bounded by the six surfaces zy = 1, 2y = 2, yz = 1,
yz =2, xz =1 and xz = 2. Using the change of variables

=2y, s =1yz, t=uxz

and by assuming that this tranformation is invertible on V| evaluate the integral

/// ryzdrdydz.
v
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3 Multiple integrals

The new limits
determinant is

But

and so

///nyzdxdydz = 1///,
5 [y [s]

arer =1tor =2, s=1tos=2andt =1tot =2 The Jacobian

or/0x Or/dy Or/0z

y x 0
88(7",#@ = |0s/0x 0s/0y 0s/0z| =0 z y
@v:2)  otjor otjoy otjoz| |- 0 =
2y 0y
~ Yo 2 z x

= ylzz)+z(yz) = 2xyz.

Oz, y,2) (a(r,s,t) )—1 1

o(r,s,t)  \0(z,v,2) - 2xyz

rYz
22 1

1 t=2 s=2 r=2 1
‘drdsdt:/ / / —drdsdt
2xyz t=1 Jo=1 Jr=1 2
1
1[t]1:§.1.1.1:§

9 1

THE END
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