Mathematical problems of General Relativity Assessment problems

Juan Antonio Valiente Kroon * School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.

February 5, 2021

The problems are to be handed in by email (scanned!) by the 8th March 2021.

1. Let n_a denote the unit normal to a spacelike 3-dimensional hypersurface S. Show that the 3-dimensional covariant derivative D_a defined by

$$D_a v^b = h^c_a h^c_d \nabla_c v^d$$

is compatible with the spatial metric $h_{ab} = g_{ab} + n_a n_b$. Moreover, show that D_a is torsion free.

2. Show that in the non-vacuum case

$$R_{ab} - \frac{1}{2}Rg_{ab} = T_{ab},$$

the constraint equations are given by

$$r + K^2 - K_{ab}K^{ab} = 2\rho,$$

$$D^b K_{ab} - D_a K = J_a,$$

where

$$\rho \equiv T_{ab}n^a n^b, \qquad J_a \equiv -h_a{}^b n^c T_{bb}$$

denote, respectively, the energy density and momentum density vector with respect to the normal observer n^a .

3. In spherical *Painlevé-Gullstrand* coordinates, the line element of the Schwarzschild spacetime is given by

$$g = -\mathrm{d}t^2 + \left(\sqrt{\frac{2m}{r}}\mathrm{d}t + \mathrm{d}r\right)^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\varphi^2)$$

Identify the lapse, shift and the 3-metric for this form of the spacetime metric with respect to the foliation given by hypersurfaces of constant t. Compute the extrinsic curvature.

4. Show that in a static spacetime, and using adapted coordinates such that $\xi^a \partial_a = \partial_t$, the Killing vector condition $\mathcal{L}_{\xi}g_{ab} = 0$ together with the definitions of h_{ij} and K_{ij} imply that

$$\partial_t h_{ij} = \partial_t K_{ij} = 0$$

From the above conditions deduce the static equations

$$D_i D_j \alpha = r_{ij},$$
$$r = 0.$$

^{*}E-mail address: j.a.valiente-kroon@qmul.ac.uk