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Energy and momentum in General Relativity Basic definitions

Energy and momentum in theories of gravitation: basic
issues

The equivalence principle:

It is a well know problem in General Relativity that energy and momentum of
the gravitational field cannot be localised.

This is a direct consequence of the equivalence principle.

As a consequence one cannot define, for example, a density of energy for the
gravitational field.

However, it is still possible to define some global conserved quantities
which, in turn, can be interpreted as the total energy of a gravitating system.

These quantities behave in a similar way to electromagnetic charges —that
is, they take the form of volume integrals which are transformed into surface
integrals.
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Energy and momentum in General Relativity Basic definitions

The ADM energy and momentum (I)

The definition:

In what follows let (S, hij ,Kij) denote an initial data set for the vacuum
Einstein field equations —i.e. they satisfy the constraints.

Let xα denote asymptotically Cartesian coordinates —i.e. a system of
coordinate for which hαβ is δαβ to first order.

One defines the ADM energy as the surface integral

E =
1

16π

∫
S∞

(∂βhαβ − ∂α)nαdS, h ≡ hαβδαβ .

where S∞ denotes the sphere at infinity, and nα is the outward pointing
normal to the sphere. Similarly, the ADM momentum is given by

pα =
1

8π

∫
S∞

(Kα
β −Kδαβ)nαdS.
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Energy and momentum in General Relativity Basic definitions

The ADM energy and momentum (II)

Coordinate independence:

The expressions can be shown to be coordinate independent.

In particular, a change to another asymptotically Cartesian system gives the
same ADM mass and momentum.

The energy E and the momentum pα are the components of a 4-dimensional
vector (4-vector) —the ADM 4-momentum vector:

pµ = (E, pα).

Finiteness:

If one has an initial data set (S, hij ,Kij) satisfying

hαβ − δαβ = O(1/r), Kij = O(1/r2),

then one can readily verify that

E <∞, pα <∞.
The verification of the above statement for pα makes use of the constraint
equations.
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Energy and momentum in General Relativity Basic definitions

The ADM energy and momentum (III)

Some intuition: the Schwarzschild spacetime

In order to obtain intution into the content of the ADM energy and
momentum, it is convenient to evaluate them on the Schwarzschild
spacetime.

Make use of the time symmetric hypersurface given in standard coordinates
by constant t.

As already seen, for this hypersurface it has been seen that Kij = 0.
Moreover, one has that

hαβ =
(

1 +
m

2r

)4
δαβ .

A calculation then shows that

E = m, pα = 0.

The ADM energy of the time symmetric slice of the Schwarzschild spacetime
coincides with its mass parameter.
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Energy and momentum in General Relativity Basic definitions

Conservation of the ADM energy and momentum (I)

Intuition:

As pα provides a measure of the total energy of a gravitating system, it is natural
to expect that its components satisfy some sort of conservation behaviour.

Showing the conservation:

Consider an evolution off the hypersurface S such that

α = 1 +O(1/r), βα = O(1/r).

The latter corrresponds to an evolution into nearby hypersurfaces S which are
essentially a time translation at infinity. From the above assumptions it follows that
Lβgµν = O(1/r4).

One then computes ∂tE to obtain

∂tE =

∫
S∞

(∂t∂
βhαβ − ∂t∂αh)nαdS.

Using the ADM evolution equations one can readily verify by inspection that

∂t∂
βhαβ − ∂t∂αh = O(1/r3) =⇒ ∂tE = 0.
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Energy and momentum in General Relativity Basic definitions

Conservation of the ADM energy and momentum (II)

Showing the conservation:

A similar argument shows that ∂tp
α = 0. Thus, indeed, the components of

pµ are conserved, at least for evolutions which behave as a time translation
at infinity.
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Energy and momentum in General Relativity Basic definitions

Some further remarks (I)

E =
1

16π

∫
S∞

(∂βhαβ − ∂α)nαdS, h ≡ hαβδαβ

Observe that although E measures thetotal energy contained in S, it is
expressed as a surface integral on an asymptotically end.

An asymptotic end is a subset U ⊂ S which is diffemorphic (i.e. it can be
identified) with the complement of a ball in R3. That is, U ≈ R3 \BR.

One can have several asymptotic ends in S as in the case of Brill-Lindquist
data. Each asymptotic end has its own wn ADM mass!
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Energy and momentum in General Relativity Basic definitions

Some further remarks (II)

Coordinate invariance:

On each asymptotic end one requires for suitably large R in R3 \BR that the
metric approaches the flat metric δij —asymptotic Euclidean data. For
example

hαβ = δαβ +O(r−1).

The coordinates rendering the above expression are called asymptotically
Euclidean coordinates.

The formula of the ADM mass can be shown to be independent of the
particular choice of asymptotically Euclidean coordinates [Bartnik, 1982].
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Energy and momentum in General Relativity Positivity of energy

Positivity of energy in (pseudo) Newtonian theories (I)

Basic intuition:

On intutitive grounds one would expect the ADM 4-momentum to satsify some
positivity properties.

This is not at all obvious from the definitions in terms of surface integrals of the
ADM energy and momentum.

A toy model:

Let φ denote the gravitational potential and let ρ denote the density of matter.

In physically reallistic situations one expects ρ to be a function of compact
support —that is, it vanishes outside a compact set. This requirement fits naturally
with the notion of isolated system.

The gravitational potential is related to the density via the Poisson equation

∆φ = 4πGρ.

The total mass of the system is just the integral of the density over the whole space:

m =

∫
R3

ρd3x <∞.
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Energy and momentum in General Relativity Positivity of energy

Positivity of energy in (pseudo) Newtonian theories (II)

Computation of the total energy:

The total energy of the system is then given (using special relativistic
arguments) by

Etotal = mc2 + Egrav

= c2
∫
R3

ρd3x+
1

2

∫
R3

ρφd3x

= c2
∫
R3

ρd3x+
1

8πG

∫
R3

φ∆φd3x

= c2
∫
R3

ρd3x− 1

8πG

∫
R3

|∇φ|2d3x.

In the last equation the second term is negative so that the energy is, in
principle, not bounded from below.

This is a problem, as it could mean one could extract and infinite amount of
energy out a gravitating system.

General Relativity deals with this problem by postulating the Universality
of Gravity —that is, the fact that gravity can act as source of itself.
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Energy and momentum in General Relativity Positivity of energy

Energy positivity in General Relativity (I)

Observation:

The universality of Gravity in General Relativity ensures the positivity of the
energy —the so called mass positivity theorem, Schoen & Yau 1979-1981.

Theorem

Consider a time symmetric initial data set for the vacuum Einstein field equations
—i.e. Kij = 0. Assume that S ≈ R3 with

hαβ − δαβ = O(1/r),

and that rijλ
iλj ≥ 0 for λi 6= 0. Then

E > 0.
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Energy and momentum in General Relativity Positivity of energy

Rigidity part of the posivity of energy theorem

Remark:

The theorem has also a rigidity part:

If the energy vanishes and the hypersurface is regular, then the hypersurface is
flat.

This implies that vacuum cannot gravitate —notice that this result depends
strongly on the boundary conditions being used.
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Energy and momentum in General Relativity Positivity of energy

Conformally flat data (I)

Observation:

A simple proof of the positivity of the mass can be given in the case of time
symmetric (Kij = 0), conformally flat data:

hij = ϑ4δij .

The Hamiltonian constraint

In this case the Hamiltonian constrain takes the form

r = ρ

with ρ the energy density. It follows then that

∆ϑ+
1

8
ϑ5ρ = 0.

Asymptotic flatness requires

ϑ = 1 + u, u = O(r−1), ∂αu = O(r−2).
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Energy and momentum in General Relativity Positivity of energy

Conformally flat data (II)

Observing that

∂r = nα∂α =
xα

r
∂α,

and recalling that

E =
1

16π

∫
S∞

(∂βhαβ − ∂α)nαdS,

one finds that

E = − 1

2π

∫
S∞

∂rϑdS = − 1

2π

∫
S∞

∂rudS.

A calculation then shows that

∆ϑ+
1

8
ϑ5ρ = 0⇐⇒ 1

8
ρ = −∂α

Å
∂αϑ

ϑ5

ã
− 5

∂αϑ∂
αϑ

ϑ6
.
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Energy and momentum in General Relativity Positivity of energy

Conformally flat data (III)

Integrating over R3, using the Gauss theroem, one finds

0 ≤ 1

2π

∫
R3

Å
1

8
ρ+

5|∂ϑ|2

ϑ6

ã
d3x =

1

2π

∫
R3

∂α
Å
∂αϑ

ϑ5

ã
d3x

= − 1

2π

∫
S∞

∂αϑ

ϑ5
nαdS

= − 1

2π

∫
S∞

∂αϑn
αdS = E

as ϑ→ 1 as r →∞. Hence
m ≥ 0.
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Energy and momentum in General Relativity Positivity of energy

Brill-Lindquist data

For Brill-Lindquist data one has

S = R3 \ {i1, i2},

and that
ϑ = 1 +

m1

2r1
+
m2

2r2
, m1,m2 ≥ 0.

In this case one has 3 masses:

E0 = m1 +m2,

E1 = m1 +
m1m2

L
,

E2 = m2 +
m1m2

L
,

with L the Euclidean distance between i1 and i2. The terms m1m2/L are
interaction terms.
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Symmetries and the initial value problem

A simple example: slices of Minkowski spacetime

Local solution to the problem of characterisation of initial data:

The pair (hij ,Kij) of symmetric tensors corresponds (locally) to the first and
second fundamental form of a slice S in Minkowski spacetime if and only if

D[iKj]l = 0,

rijkl = −2Kk[iKj]l.

A global characterisation (Schoen & Yau):

The pair, (hij ,Kij), of smooth asymptotically Euclidean symmetric tensors
corresponds (locally) to the first and second fundamental form of a slice S in
Minkowski spacetime if and only if its ADM mass is zero.
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Symmetries and the initial value problem

Encoding symmetries in the initial data

The problem:

An issue which often ariseses in the analysis of the Cauchy problem for the
Einstein field equations is that of encoding in the initial data the fact that the
resulting spacetime will have a certain symmetry —i.e. a Killing vector. This
naturally leads to the notion of Killing initial data (KID).
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Symmetries and the initial value problem

Some consequences of the Killing equation (I)

Idea:

In order to analyse the question raised in the previous paragraph, it is necessary to first
consider some consequences of the Killing equation

∇aξb +∇bξa = 0.

An integrability condition:

Applying ∇a to the above equation and commuting covariant derivatives one finds that

0 = ∇a∇aξb +∇a∇bξa
= �ξb −Rcbξc,

where it has been used that ∇aξa = 0. Accordingly, in vacuum one has that a Killing
vector satisfies the Killing vector equation

�ξa = 0.

In what follows a ξa satisfying the wave equation (24) will be called a Killing vector
candidate.
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Symmetries and the initial value problem

Some consequences of the Killing equation (II)

A wave equation for the Killing equation

Now, in what follows let
Sab ≡ ∇aξb +∇bξa,

and compute �Sab. To this end notice that commuting covariant derivatives and
using that by assumption Rab = 0 and ∇eRf bea = 0 one has

�Sab = Rea
f
b∇fξe +Rea

f
b∇eξf +∇a�ξb +∇b�ξa

= Rea
f
bSef +∇a�ξb +∇b�ξa.
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Symmetries and the initial value problem

The KID conditions

Obtaining conditions on the initial data:

Assume that one has a vector ξa satisfying �ξa = 0. One has then that

�Sab −Reaf bSef = 0.

If initial data on an hypersurface S can be chosen such that

Sab = 0, ∇cSab = 0, on S

then because of the homogeneity of the wave equation for Sab, it follows that
necessarily Sab = 0 in the development of S so that ξa is, in fact, a Killing vector.
The conditions are called the Killing initial Data (KID) conditions.
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Symmetries and the initial value problem

Intrinsic conditions (I)

A 3 + 1 split:

The KID equations are conditions not only on ξa but also on the initia data
(S, hij ,Kij). Writing

ξa = Nna +Na, naN
a = 0,

where N and Na denote the lapse and shift of the Killing vector, A computation then
shows that the space-space components of the Killing equation ∇aξb +∇bξa = 0 imply

NKij +D(iYj) = 0.

Taking a time derivative of the above equation and using the ADM evolution equations
one finds that

NkDkKij +DiN
kKkj +DjN

kKik +DiDjN = N(rij +KKij − 2KikK
k
j).
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Symmetries and the initial value problem

Intrinsic conditions (II)

Theorem

Let (S, hij ,Kij) denote an initial data set for the vacuum Einstein field equations.
If there exists a pair (N,N i) such that

NKij +D(iYj) = 0,

NkDkKij +DiN
kKkj +DjN

kKik +DiDjN = N(rij +KKij − 2KikK
k
j),

then the development of the initial data has a Killing vector.

Remarks:

The KID conditions are overdetermined. This is natural as not every
spacetime admits a symmetry.

The KID conditions are closely related to the constraint equations and the
ADM evolution equations. This is a deep relation which will not be explored
here!
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

Where are we?

The Cauchy problem for the Einstein Equations

As already pointed out, General Relativity satisfies the remarkable fact that it
admits a formulation in terms of an initial value problem.

The original formulation and proof of this statement is due to Y.
Choquet-Bruhat (1952).

A satisfactory formulation which provides geometric uniqueness is due to Y.
Choquet-Bruhat (1968).
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

A first version of the theorem

Theorem

Given a solution to the Einstein constraint equations of a 3-dimensional manifold
S, there exists an ε > 0 such that on S × [0, ε) there is a metric gab solving the
Einstein field equations. The metric gab implies the provided solution to the
constraints on S,

Remark:

The pair (S × [0, ε), gab) is called a hyperbolic development of the solution
to the constraint equations.

A priori there is no controll on the size of ε unless one provides more
information.
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

On the proof of the theorem

Structure of the proof:

Make use of the wave coordinates condition to obtain the reduced Einstein
equations of the form

gλρ∂λ∂ρgµν +Hµν(g, ∂g) = 0.

The general theory of systems of quasilinear wave equations ensure the
existence of solutions for a short interval of time ε is suitable initial data g?µν
and (∂λgµν)? is provided on S.

The initial data is built from the solution to the constraint equations. In
particular, the 3-metric hαβ provides the spatial part of gµν . The
components g00 and g0α are obtained by the prescription of lapse (α) and
shift (βα) implied by the wave coordinates.
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

The reduced Einstein equations vs the Einstein equations

Some remarks:

At the begining of the lectures it was shown that if the coordinates satisfy
the wave coordinate condition �xµ = 0, then the Einstein field equations
reduce to a system of quasilinear wave equations for the components of the
metric gµν —the so-called reduced Einstein equations.

To conclude the discussion it is now shown that under suitable conditions the
Eistein reduced equations imply a solution of the actual Einstein field
equations.

This in fact, is equivalent to showing that if the contracted Christoffel
symbols Γµ ≡ gνλΓµνλ vanish initially, then they also vanish at any later
time.
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

Propagating the wave coordinate condition

A computation:

The key observation is that the reduced Einstein field equations can be written as

Rµν = ∇(µΓν).

Now, using the contracted Bianchi identity

∇µ(Rµν − 1
2
Rgµ) = 0,

it follows that
�Γµ +RνµQµ = 0.

This is a wave equation for the contracted Christoffel symbol. In view of its
homogeneity, if

Γµ = 0, ∇νΓµ = 0, on S
then Γµ = 0 in the development of S and accordingly Rµν = 0.

Remark:

The initial conditions on the contracted Christoffel symbols are related to the constraint
equations.
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

Issues with uniqueness

Remark:

The hyperbolic development depends on the choice of α and βα.

Different choices of lapse and shift give rise to different hyperbolic
developments (S × [0, ε1)) and (S × [0, ε2)).

On the intersection of the developments the metrics are related by a
coordinate transformation.

However, there is, in principle, an infinite number of hyperbolic
developmemts.

Question:

Can one find a satisfactory formulation of the issue of uniqueness?
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Epilogue: formulation of the Cauchy problem for the Einstein field equations

Addressing geometric uniqueness

Maximal hyperbolic development:

A maximal hyperbolic development of a solution to the constraints is a
hyperbolic development which contains any other.

Theorem (Y. Choquet-Bruhat & R. Geroch, 1968)

Given a solution to the constraints on S there exists a unique maximal hyperbolic
development (M•, g•ab).

Remarks:

The set of hyperbolic developments is endowed with a partial order structure.

The proof of the theorem makes use of Zorn’s lemma: every bounded set
endowed with a partial order has a maximal element.

BIG QUESTION: how to obtain the maximal hyperbolic development of a
solution to the constraints?
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