Mathematical problems of General Relativity Problem sheet 3

Juan Antonio Valiente Kroon *
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.

January 21, 2021

1. Show that in the non-vacuum case

$$
R_{a b}-\frac{1}{2} R g_{a b}=T_{a b}
$$

the constraint equations are given by

$$
\begin{aligned}
& r+K^{2}-K_{a b} K^{a b}=\rho, \\
& D^{b} K_{a b}-D_{a} K=J_{a}
\end{aligned}
$$

where

$$
\rho \equiv T_{a b} n^{a} n^{b}, \quad J_{a} \equiv-h_{a}{ }^{b} n^{c} T_{b c}
$$

denote, respectively, the energy density and momentum density vector with respect to the normal observer n^{a}.
2. Show that the Lie derivative of the projector $h_{a}{ }^{b}$ along αn^{a} vanishes -i.e.

$$
\mathcal{L}_{\alpha n} h_{a}{ }^{b}=0 .
$$

3. Show that the Lie derivative of any spatial tensor along αn^{a} is again spatial.
4. Show that the determinant $g=\operatorname{det}\left(g_{\mu \nu}\right)$ of the components of the spacetime metric can be written as

$$
g=-\alpha^{2} \gamma
$$

where $\gamma=\operatorname{det}\left(\gamma_{i j}\right)$. Hint: recall the formula for the inverse of a square matrix.
5. Show that the determinant γ of the spatial metric and the trace $K=K_{i}{ }^{i}$ of the extrinsic curvature satisfy the equations

$$
\begin{aligned}
& \partial_{t} \ln \gamma^{1 / 2}=-\alpha K+D_{i} \beta^{i} \\
& \partial_{t} K=-\gamma^{i j} D_{i} D_{j} \alpha+\alpha K_{i j} K^{i j}+\beta^{i} D_{i} K
\end{aligned}
$$

6. Show that for any spatial vector V^{i} one has that

$$
\nabla_{i} V_{j}=D_{i} V_{j}
$$

but that, in general,

$$
\nabla_{i} V^{j} \neq D_{i} V^{j}, \quad \nabla^{i} V_{j} \neq D^{i} V_{j} .
$$

[^0]7. In spherical Painlevé-Gullstrand coordinates, the line element of the Schwarzschild spacetime is given by
$$
g=-\mathrm{d} t^{2}+\left(\sqrt{\frac{2 m}{r}} \mathrm{~d} t+\mathrm{d} r\right)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
$$

Identify the lapse, shift and the 3-metric for this form of the spacetime metric with respect to the foliation given by hypersurfaces of constant t-note: the 3 -metric should be flat! Compute the extrinsic curvature.

[^0]: *E-mail address: j.a.valiente-kroon@qmul.ac.uk

