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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

Adapted coordinates (I)

Remarks:

The discussion of the evolution equations given in the previous section has
been completely general.

The only assumption that has been made about the spacetime is that it is
globally hyperbolic so that a foliation and a corresponding time vector exist.

The discussion of the 3 + 1 can be further particularised by introducing
adapted coordinates. In this section we briefly discuss how this can be done.

Choosing the time coordinate:

Recall that the hypersurfaces of the foliation of a spacetime (M, gab) can be
given as the level surfaces of a time function t.

We already have seen that ∇ata = 1. The latter combined with
∇µt = (1, 0, 0, 0) readily imply that tµ = (1, 0, 0, 0). Hence, the Lie
derivative along the direction of ta is simply a partial derivative —that is,

Lt = ∂t.
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

Adapted coordinates (II)

The shift vector:

From the previous discussion it follows that the spatial components of the
unit normal must vanish —i.e. nα = 0.

Since the contraction of spatial vectors with the normal must vanish, it
follows that all components of spatial tensors with a contravariant index
equal to zero must vanish.

For the shift vector one has that nµβ
µ = n0β

0 = 0 so that βµ = (0, βα).

Since one has that ta = αna + βa, it follows then that

nµ = (α−1,−α−1βα).

Moreover, from the normalisation condition nan
a = −1 one finds

nµ = (−α, 0, 0, 0).
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

Adapted coordinates (III)

The 3-metric:

Recalling that hab = gab + nanb one concludes that

hαβ = gαβ .

In these adapted coordinates the 3-metrics of the hypersurfaces of the
foliation are simply the spatial part of the spacetime metric gab.

Moreover, since the time components of spatial contravariant tensors have to
vanish, one also has that hµ0 = 0.

One concludes that one can write

gµν = hµν − nµnν =

Å
−α−2 α−2βγ

α−2βδ hγδ − α−2βγβδ

ã
.

This last expression can be inverted to yield

gµν =

Å
−α2 + βγβ

γ βγ
βγ hγδ

ã
,

where βγ ≡ hγδβδ.
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

The 3+1 form of the metric

The line element in adapted coordinates:

An alternative way of presenting the latter is via the line element

g = −α2dt2 + hγδ(β
γdt+ dxγ)(βδdt+ dxδ).

The latter is known as the 3 + 1 form of the spacetime metric.

Juan A. Valiente Kroon (QMUL) Mathematical GR 7 / 44



The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

The constraint and evolution equations in adapted
coordinates

A summary:

The constraint and ADM evolution equations can be written in adapted
coordinates as

r +K2 −KijK
ij = 0,

DjKij −DiK = 0,

∂thij = −2αKij +Diβj +Djβi,

∂tKij = −DiDjα+ α(rij − 2KikK
k
j +KKij)

+βkDkKij +KikDjβ
k +KkjDiβ

k.
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

An example: the Schwarzschild spacetime (I)

Isotropic coordinates:

The metric Schwarzschild spacetime can be expressed in standard coordinates
in terms of the line element

g = −
Å

1− 2m

r

ã
dt2 +

Å
1− 2m

r

ã−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

This form of the metric is not the best one for a 3 + 1 decomposition of the
spacetime.

Instead, introduce an isotropic radial coordinate r̄ via r = r̄
(
1 + m

2r̄

)2
.

In terms of the later one obtains the line element of the Schwarzschild
spacetime in the form

g = −
Å

1−m/2r̄
1 +m/2r̄

ã2

+
(

1 +
m

2r̄

)4

(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ).
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

An example: the Schwarzschild spacetime (II)

The gauge functions:

The normal ωa = ∇at is then readily given by

ωµ = (1, 0, 0, 0).

Thus, one readily reads the lapse function to be

α =
1−m/2r̄
1 +m/2r̄

,

while the unit normal is

nµ =
1 +m/2r̄

1−m/2r̄
(1, 0, 0, 0).

Also, the shift vanishes: βα = 0.
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The 3 + 1 decomposition of General Relativity The 3+1 form of the spacetime metric

An example: the Schwarzschild spacetime (III)

The intrinsic metric and the extrinsic curvature:

The spatial metric is then

h =
(

1 +
m

2r̄

)4

(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ).

Since βi = 0 and hij is independent of time, one can readily finds that the
extrinsic curvature vanishes

Kij = 0.

The isotropic form of the Schwarzschild readily yields a foliation of spacetime
that follows the static symmetry of the spacetime.

In this foliation, the intrinsic 3-metric of the leaves does not seems to evolve.

Any other foliation not aligned with the static Killing vectors will give rise to
a non-trivial evolution for both hij and Kij .
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A closer look at the constraint equations

The constraint equations —summary (I)

The constraint equations:

The Einstein field equations imply the following constraint equations on a
(spatial) hypersurface S:

r +K2 −KijK
ij = 0, Hamiltonian constraint

DiKij −DjK = 0. Momentum constraint

These equations constraint the possible choices of pairs (hij ,Kij)
corresponding to initial data to the Einstein field equations.

They are intrinsic equations, that is, they only involve objects which are
defined on the hypersurface S without any further reference to the “bulk” of
the spacetime (M, gab).
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A closer look at the constraint equations

The constraint equations —summary (II)

PDE properties:

The Einstein constraint represent a highly coupled, highly non-linear system
of equations for (hij ,Kij).

The main difficulty in constructing an solution to the equations lies in the
fact that the equations constitute an underdetermined system: one has 4
equations for 12 unknowns —the independent components of two symmetric
spatial tensors.

Even exploiting the coordinate freedom to “kill off” three components of the
tensors, one is still left with 9 unknowns.

There should be some freedom in the specification of data for the equations.

The task is to identify what this free data is!!!
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A closer look at the constraint equations

Simplifying assumptions: time symmetry

Vanishing of the extrinsic curvature

In order to render the problem manageable, we make a standard simplifying
assumption and consider initial data sets for which Kij = 0 everywhere on S.

This class of initial data are called time symmetric.

The reason for this is that if Kij = 0 at S then the evolution equations imply
that

∂thij = 0, on S.

This equation is invariant under the replacement t 7→ −t.
It follows that the resulting spacetime has a reflection symmetry with respect
to the hypersurface S which can be regarded as a moment of time
symmetry.
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A closer look at the constraint equations

The time symmetric constraints

The Hamiltonian constraint:

If Kij = 0 everywhere on S then the momentum constraint is automatically
solved, and the Hamiltonian constraint reduces to

r = 0.

That is, the initial 3-metric has to be such that its Ricci scalar —notice that
this does not mean that the hypersurface is flat!

The time symmetric Hamiltonian constraint regarded as an equation for hij
is highly non-linear.

Moreover, one still has 6 unknowns and equation —even choosing
coordinates, one still has 3 unknowns .
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A closer look at the constraint equations

Conformal rescalings and the Yamabe problem

A strategy:

Clearly, for an arbitrary metric h̄ij one has that r̄ 6= 0.

An idea to solve the constraint is to introduce a factor that compensates this.

This idea leads naturally to the notion of conformal transformations.

Conformal rescalings:

Two metrics hij , h̄ij are said to be conformally related if there exists a
positive scalar ϑ (the conformal factor) such that

hij = ϑ4h̄ij .

The metric h̄ will be called the background metric.

Loosely speaking, the conformal factor absorbs the overall scale of the metric.

At the level presented here, the conformal transformation introduced above is
just a mathematical trick to solve equations. At a deeper level, the conformal
transformation defines an equivalence class of manifolds and metrics.
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A closer look at the constraint equations

More on conformal transformations

Transformation laws for derived objects:

The 3-dimensional Christoffel symbols are given by

Γαβγ = 1
2h

αδ(∂βhγδ + ∂γhβδ − ∂δhβγ).

It follows that

Γαβγ = Γ̄αβγ + 2(δβ
α∂γ lnϑ+ δγ

α∂β lnϑ− h̄βγ h̄αδ∂δ lnϑ).

A lengthier computation yields the following transformation law for the Ricci
tensor:

rij = r̄ij − 2(D̄iD̄j lnϑ+ h̄ij h̄
lmD̄lD̄m lnϑ)

+4(D̄i lnϑD̄j lnϑ− h̄ij h̄lmD̄l lnϑD̄m lnϑ).

Furthermore (and more importantly for our purposes) one has that

r = ϑ−4r̄ − 8θ̄−5D̄kD̄
kϑ.

In the above expressions D̄ denotes the covariant derivative of the
background metric h̄ij .
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A closer look at the constraint equations

The Yamabe equation (I)

The Hamiltonian constraint and conformal rescalings:

Using r = 0 in the transformation law for the Ricci scalar given above, one
readily finds that

D̄kD̄
kϑ− 1

8 r̄ϑ = 0.

This equation is sometimes called the Yamabe equation in Differential
Geometry.

Given a fixed background metric h̄ij , then it can be read as an equation for
the conformal factor ϑ.

Given a solution ϑ, one has that by construction hij = ϑ4h̄j is such that
r = 0 and one has constructed a solution to the time symmetric Einstein
constraints.
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A closer look at the constraint equations

The Yamabe equation (II)

Mathematical properties of the Yamabe equation

The Yamabe equation is elliptic:

the operator D̄kD̄
k is the Laplacian operator associated to the metric h̄ij ;

if h̄αβ = δαβ the flat metric in Cartesian coordinates, then

D̄kD̄
k = δαβ∂α∂β = ∂2

x + ∂2
y + ∂2

z .

Given a linear second order elliptic equation appropriate boundary
conditions ensure the existence of a unique solution on S.
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A closer look at the constraint equations

A further simplifying assumption: conformal flatness

What is conformal flatness?

Choose the flat metric as background metric. That is, let

h̄αβ = δαβ .

In this case, the metric hαβ = ϑ4δαβ is said to be conformally flat.

Conformal flatness is an interesting property that Riemannian manifolds can
possess. An important result is that conformal flatness is characterised locally
by the vanishing of the Cotton-York tensor

bijk ≡ D[jrk]i − 1
4hi[jDk]r.

For example, any spherically symmetric metric can be shown to be
conformally flat.

Conformal flatness simplifies the calculations that need to be carried out.

One has that r̄ = 0 so that the Yamabe equation reduces to the flat Laplace
equation

D̄kD̄
kϑ = 0.
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A closer look at the constraint equations

Boundary conditions

Describing isolated systems:

In the discussion of isolated systems (i.e. astrophysical sources) one is
interested in solutions which are asymptotically flat. That is,

ϑ = 1 +O(r−1), for r →∞,

where r2 = x2 + y2 + z2 is the standard radial coordinate.

Solutions to the Laplace equation with the above asymptotic behaviour are
well known. In particular, a spherically symmetric solution is given by

ϑ = 1 +
m

2r
,

where m is a constant.
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A closer look at the constraint equations

Data for the Schwarzschild spacetime (I)

Interpreting the solution:

Given
ϑ = 1 +

m

2r
,

the associated solution to the Hamiltonian constraint is the 3-metric of the
Schwarzschild spacetime in isotropic coordinates:

h =
Ä

1 +
m

2r

ä4
(dr2 + r2dθ2 + r2 sin2 θdϕ2).

The above 3-metric is singular at r = 0. This singularity, is a coordinate singularity.
By considering the coordinate inversion

r =
m2

4

1

r̄
,

the metric transforms into

h =
Ä

1 +
m

2r̄

ä4
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2).

The inversion transforms the metric into itself —that is, it is a discrete isometry. In
particular, one has that the point r = 0 is can be mapped to infinity. Thus, the
metric is perfectly regular everywhere and r = 0 is, in fact, the infinity of an
asymptotically flat region.
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A closer look at the constraint equations

Data for the Schwarzschild spacetime (II)

The Einstein-Rosen bridge:

The hypersurface S has a non-trivial topology —it corresponds to a
wormhole.

The radius given by r = m/2 corresponds to the minimum areal radius —this
is called the throat of the black hole.

The throat corresponds to the intersection of the black hole horizon with the
hypersurface S. The inversion reflects points with respect to the throat.

Embdedding diagram of the Schwarzschild data:
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A closer look at the constraint equations

Multiple black hole data (I)

Brill-Lindquist initial data:

The construction described in the previous paragraphs can be extended to
include an arbitrary number of black holes.

This is made possible by the linearity of the flat Laplace equation.

Indeed, the conformal factor

ϑ = 1 +
m1

2r1
+
m2

2r2
, r1 = |xi − xi1|, r2 = |x−xi2|,

where xi1 and xi2 denote the (fixed) location of two black holes with bare
masses m1 and m2.

The solution is called the Brill-Lindquist solution.

It describes a pair of black holes instantaneosly at rest at a moment of time
symmetry. This solution is much used as initial data to simulate the head-on
collision of two black holes.

One finds is that each throath connects to is own asymptotically flat region.
The drawing of the corresponding 3-dimensional manifold gives 3 different
sheets, each corresponding to a different asymptotically flat region.
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A closer look at the constraint equations

Multiple black hole data (II)

Embedding diagram of the Brill-Lindquist data:
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A closer look at the constraint equations

Multiple black hole data (III)

The Misner initial data:

The flat Laplace equation can also be solved using the so-called method of images
to obtain a solution with two holes and two asymptotic regions.

This solution is known as Misner data.

This solution has a reflection symmetry through the throaths, and has only two (as
oppossed to three of the Brill-Lindquist solution) asymptotically flat regions.

The solution can be also interpreted as a worm hole data by making suitable
topological identifications.

Embedding diagram of the Brill-Lindquist data:
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A closer look at the constraint equations

Multiple black hole data (III)
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A closer look at the constraint equations

Concluding remarks concerning the constraint equations

Remarks:

More complicated solutions to the constraint equations can be obtained by
including a non-vanishing extrinsic curvature.

In this way one can provide data for a rotating black hole or even a pair of
rotating black holes spirialling around each other.

The constraint equations in these cases have to be solved numerically.
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Time independent solutions

Time independent solutions

Motivation:

A systematic analysis of solutions to the vacuum Einstein field equations
must start by considering time independent solutions.

These solutions are interpreted as describing the gravitational field in the
exterior of isolated bodies at rest or in uniform rotation in an otherwise
empty Universe.

The simplest case of a time independent solution is given by the Minkowski
metric.

More sophisticated examples are given by the Schwarzschild and Kerr
spacetimes.

The relevance of these two solutions is that they are thought to describe, in a
suitable sense, the end state of black hole evolution.
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Time independent solutions

A toy model: the wave equation (I)

Time independent solutions to the wave equation

Consider a scalar field on Minkowski spacetime satisfying the wave equation

(∆− ∂2
t )φ = 0,

where ∆ denote the flat Laplacian.

For time independent solutions —i.e. ∂tφ = 0— it follows that

∆φ = 0.

An equation which is origially hyperbolic becomes elliptic under the
assumption of time independence.

This is a generic feature that can be observed in other theories —like the
Maxwell equations and the Einstein field equations.
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Time independent solutions

A toy model: the wave equation (II)

Boundary conditions:

The energy of the scalar field at some time t is given by

E(t) =

∫
St

(
(∂tφ)2 + |∇φ|2

)
d3x.

In order to have finiteness of the energy one needs the boundary conditions

φ(t, xi), ∂tφ(t, xi)→∞, as |x| → ∞.
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Time independent solutions

A toy model: the wave equation (II)

Ellipticity properties:

An important difference between hyperbolic equations and elliptic ones is that
while in the former, properties of solutions can be localised and have finite
propagation speed, for the latter the properties of solutions are global.

For example, if φ = O(1/r) as r →∞ and ∆φ = 0, then it follows that
φ = 0.

This follows from

0 =

∫
R3

φ∆φdx3 =

∫
R3

|∇φ|2dx3,

where Green’s identity has been used. It follows that |∆|2 = 0 everywhere on
R3 so that φ is constant.

Due to the decay conditions, it must necessarily vanish.

This type of argument will be used repeatedly for the Einstein equations.

In order to avoid the vanishing of φ in this case, one needs to consider the
inhomogeneous problem —that is, one needs to consider sources.
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Time independent solutions

Stationarity and static solutions in GR (I)

Intuition:

Mathematically speaking, time independence is imposed by requiring on the
spacetime (M, gab) the existence of timelike KIlling vector ξa —the
spacetime is then said to be stationary.

If, in addition, the Killing vector is hypersurface orthogonal —i.e. it is the
gradient of some scalar function— then one says that ξµ is static.

The Schwarzschild and Kerr solutions are, respectively, static and stationary.

Stationary solutions to the Einstein field equations allow for the possibility
of rotating gravitational fields.
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Time independent solutions

Stationarity and static solutions in GR (II)

Frobenius theorem:

Let na denote the unit normal of an hypersurface S.

If ξana, i.e. the Killing vector if orthogonal to S, then a calculation readily
shows that

ξ[a∇bξc] = 0.

The latter condion characterises hyperusrface orthogonality —that is, a
Killing vector is hypersurface orthogonal if and only if the previous equation
holds
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Time independent solutions

The static vacuum equations (I)

The metric of a static spacetime:

In a stationary spacetime, it is natural to choose adapted coordinates such that
ξµ∂µ = ∂t —that is, the time coordinate is adapted to the flow lines of the Killing
vector.

Using the Killing vector condition Lξgab = 0 and the definitions of hij and Kij one
can show that

∂thij = ∂tKij = 0.
If the Killing vector is hypersurface orthogonal then it follows that the Killing vector
has to be proportional to the normal to the hypersurface S:

ξµ = α∇µt
However, the Killing vector can be decomposed in a lapse and a shift part:

ξa = Nna + βa.

Comparing both expressions one necessarily has that βα = 0.

Thus, one has that
g = −α2dt2 + hαβdxαdxβ ,

with hαβ time independent.
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Time independent solutions

The static vacuum equations (II)

Vanishing of the extrinsic curvature:

The time evolution equation for hij then takes the form

∂thij = −2αKij = 0.

As the lapse cannot vanish one has that

Kij = 0.

That is, the hypersurfaces of the foliation adapted to the static Killing vector
have no extrinsic curvature —this property is preserved as ∂tKij = 0.
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Time independent solutions

The static vacuum equations (III)

The equations:

Vacuum static solutions are characterised solely in terms of the lapse α and
the 3-metric hij .

In order to obtain equations for these quantities one considers the
Hamilitonian constraint and the evolution equation for Kij .

Setting Kij = ∂tKij = 0 readily yields

DiDjα = rij ,

r = 0,

where, as before, r denotes the Ricci tensor of the 3-metric hij . These
equations are known as the static vacuum Einstein equations.
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Time independent solutions

Properties of the static equations: Licnerowicz theorem (I)

Assumptions and boundary conditions:

As a first example of the content and implications of the static equations let
S ≈ R3

i.e. the hypersurfcae has the topology of Euclidean space.

Suppose that the fields α and hαβ decay at infinity in such a way that

α→ 1, hαβ − δαβ → 0, as r →∞.

The first condition essentially means that it is assumed that the Killing vector
behaves asymptotically like the static Killing vector of Minkowski spacetime.

The second condition means that the 3-metic is assumed to be
asymptotically flat (Euclidean) at infinity.
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Time independent solutions

Properties of the static equations: Licnerowicz theorem (II)

Ellipticity and the static equations:

Taking traces of the first static equation and using the second equation it
follows that

∆α = DkD
kα = 0.

Now, consider

0 =

∫
S
α∆αd3x =

∫
S
|Dα|2d3x,

again, as a consequence of Green’s identity.

Thus
|Dα|2 = hijDiαDjα = 0,

from where it follows that α is a constant.

Using the asymptotic condition α→ 1 it follows α = 1 everywhere.
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Time independent solutions

Properties of the static equations: Licnerowicz theorem
(III)

Flatness of the 3-metric:

Using the first static equation one concludes that

rij = 0.

In 3-dimensions the Ricci tensor determines fully the curvature of the
manifold. Thus

rijkl = 0.

That is, hαβ = δαβ —the Euclidean flat metric.

The solution we have obtained then is

g = −dt2 + δαβdxαdxβ .

This solution is the Minkowski spacetime! This result is known as
Licnerowicz’s theorem.
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Time independent solutions

Properties of the static equations: Licnerowicz theorem
(IV)

Theorem

The only globally regular static solution to the Einstein equations with S having
trivial topology (i.e. S ≈ R3) and such that

α→ 1, hαβ − δαβ → 0, as r →∞

is the Minkowski spacetime.

Morally:

The above theorem demonstrates the rigidity of the Einstein field equations.

In order to obtain more interesting regular solutions, one requires either some
matter sources or a non-trivial topology for S as in the case of the
Schwarzschild spacetime —recall the Einstein-Rosen bridge!

The result can be interpreted as a first, very basic uniqueness black hole
result.

If one wants to have a black hole solution one needs non-trivial topology!
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Time independent solutions

Further properties of static solutions: leading asymptotic
behaviour

Question:

An important question when analysing static spacetimes is to analyse their
asymptotic behaviour beyond the prescribed boundary conditions.

Can one say more?

Theorem (Beig,1980)

Every static vacuum solution to the Einstein equations satisfying

α→ 1, hαβ − δαβ → 0, as r →∞

is Schwarzschildean to leading order in 1/r. That is,

α2 = 1− 2m

r
+O(1/r2), hαβ − δαβ =

2m

r
δαβ +O(1/r2).

Remarks:

Notice that in the previous result the regularity of S is not required. Also, there
could be bounded sources somewhere in the interior.
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Time independent solutions

Further properties of static solutions: multipole moments

Defining multipole moments:

The lapse α can be interpreted as relativistic generalisation of a Newtonian
potential.

The previous theorem on the leading behaviour of static solutions theorem
can be improved to include higher order multipoles.

These lead to a multipolar expansion of the gravitational field.

These mutipoles characterise in a unique manner static solutions.

Theorem (Beig & Simon, 1981; Friedrich 2006)

Given an asymptotically flat static solution to the Einstein vacuum equations, one
obtains a unique sequence of multipole moments. Conversely, given a sequence of
multipole moments, if the lapse constructed from this sequence exists, there exists
a unique static spacetime associated to these multipoles.
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