Mathematical problems of General Relativity Lecture 2

Juan A. Valiente Kroon

School of Mathematical Sciences Queen Mary, University of London j.a.valiente-kroon@qmul.ac.uk,

LTCC Course LMS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime
- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

< ロト < 同ト < ヨト < ヨト

Outline

1 The 3 + 1 decomposition of General Relativity

• Submanifolds of spacetime

- Foliations of spacetime
- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

Submanifolds

Intuitive definition:

A submanifold of *M*, is a set *N* ⊂ *M* which inherits a manifold structure from *M*.

Submanifolds

Intuitive definition:

• A submanifold of \mathcal{M} , is a set $\mathcal{N} \subset \mathcal{M}$ which inherits a manifold structure from \mathcal{M} .

Embeddings:

- An embedding map $\varphi : \mathcal{N} \to \mathcal{M}$ which is injective and structure preserving;
- The restriction $\varphi : \mathcal{N} \to \varphi(\mathcal{N})$ is a diffeomorphism.

イロン イ団 と イヨン イヨン

Submanifolds

Intuitive definition:

A submanifold of *M*, is a set *N* ⊂ *M* which inherits a manifold structure from *M*.

Embeddings:

- An embedding map $\varphi : \mathcal{N} \to \mathcal{M}$ which is injective and structure preserving;
- The restriction $\varphi : \mathcal{N} \to \varphi(\mathcal{N})$ is a diffeomorphism.

Rigoruous definition of submanifold:

- In terms of the above concepts, a submanifold N is the image φ(N) ⊂ M of a k-dimensional manifold (k < n).
- Very often it is convenient to identify \mathcal{N} with $\varphi(\mathcal{N})$.
- In what follows we will mosty be concerned with 3-dimensional submanifolds. It is customary to call these **hypersurfaces**.

イロン イヨン イヨン イヨン

Outline

1 The 3 + 1 decomposition of General Relativity

• Submanifolds of spacetime

• Foliations of spacetime

- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

Foliations

Globally hyperbolic spacetimes:

- In what follows, we assume that the spacetime (\mathcal{M}, g_{ab}) is globally hyperbolic.
- That is, we assume that its topology is that of $R \times S$, where S is an orientable 3-dimensional manifold.
- Globaly hyperbolic spacetimes are the natural class of spacetimes on which to formulate a Cauchy problem.

Definition of a foliation:

• A spacetime is said to be **foliated** by (non-intersecting) hypersurfaces S_t , $t \in R$ if

$$\mathcal{M} = \bigcup_{t \in \mathbb{R}} \mathcal{S}_t$$

where we identify the leaves S_t with $\{t\} \times S$.

• It is customary to think of the hypersurface S_0 as an initial hypersurface on which the initial information giving rise to the spacetime is to be prescribed.

Time functions

Definition:

- In what follows it will be convenient to assume that the hypersurfaces S_t arise as the level surfaces of of a scalar function t which will be interpreted as a global time function.
- From t one can define the the covector

$$\omega_a = \nabla_a t.$$

By construction ω_a denotes the normal to the leaves \mathcal{S}_t of the foliation.

• The covector ω_a is *closed* —that is,

$$\nabla_{[a}\omega_{b]} = \nabla_{[a}\nabla_{b]}t = 0.$$

(日) (同) (三) (三)

The lapse function

Definition:

• Fom ω_a one defines a scalar α called the **lapse function** via

$$g^{ab}\nabla_a t\nabla_b t = \nabla^a t\nabla_a t \equiv -1/\alpha^2.$$

- The lapse measures how much proper time elapses between neighbouring time slices along the direction given by the normal vector $\omega^a \equiv g^{ab}\omega_b$.
- Assume that $\alpha > 0$ so that ω^a . Notice that ω^a is assumed to be timelike so that the hypersurfaces S_t are spacelike.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The lapse function

Definition:

• Fom ω_a one defines a scalar α called the **lapse function** via

$$g^{ab}\nabla_a t\nabla_b t = \nabla^a t\nabla_a t \equiv -1/\alpha^2.$$

- The lapse measures how much proper time elapses between neighbouring time slices along the direction given by the normal vector $\omega^a \equiv g^{ab}\omega_b$.
- Assume that $\alpha > 0$ so that ω^a . Notice that ω^a is assumed to be timelike so that the hypersurfaces S_t are spacelike.

Unit normal:

• In what follows we define the **unit normal** n_a via

 $n_a \equiv -\alpha \omega_a$.

- The minus sign in the last definition is chosen so that n^a points in the direction of increasing t.
- One can readily verify that $n^a n_a = -1$.
- One thinks of n^a as the 4-velocity of a normal observer whose worldline is always orthogonal to the hypersurfaces S_t .

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime

• The intrinsic metric of an hypersurface

- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

The intrinsic metric (I)

Definition:

- The spacetime metric g_{ab} induces a 3-dimensional Riemannian metric h_{ij} on $\mathcal{S}_t.$
- The relation between g_{ab} and h_{ab} is given by

 $h_{ab} \equiv g_{ab} + n_a n_b.$

• In the previous formula we regard the 3-metric as an object living on spacetime.

Properties:

- The tensor h_{ab} is **purely spatial** —i.e. it has no component along n^a .
- Contracting with the normal:

$$n^a h_{ab} = n^a g_{ab} + n_a n^a n_b = n_b - n_b = 0,$$

• The inverse 3-metric h^{ab} is obtained by raising indices with

$$h^{ab} = g^{ab} + n^a n^b$$

The intrinsic metric (II)

Use as a projector:

- The 3-metric h_{ab} can be used to project all geometric objects along the direction given by n^a .
- Effectively, h_{ab} decomposes tensors into a **purely spatial part** which lies on the hypersurfaces S_t and a **timelike part** normal to the hypersurface.
- In actual computations it is convenient to consider

$$h_a{}^b = \delta_a{}^b + n_a n^b.$$

• Given a tensor T_{ab} its spatial part, to be denoted by T_{ab}^{\perp} is defined to be

 $T_{ab}^{\perp} \equiv h_a{}^c h_b{}^d T_{cd}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The normal projector

Definition:

• One can also define a normal projector $N_a{}^b$ as

$$N_a{}^b \equiv -n_a n^b = \delta_a{}^b - h_a{}^b.$$

• In terms of these operators an arbitrary projector can be decomposed as

$$v^{a} = \delta^{a}{}_{b}v^{b} = (h_{a}{}^{b} + N_{a}{}^{b}) = v^{\perp a} - n^{a}n_{b}v^{b}.$$

<ロト <回ト < 回ト < 回ト

Covariant derivatives on hypersurfaces (I)

A definition of a covariant drivative:

- The 3-metric h_{ij} defines in a unique manner a covariant derivative D_i —the Levi-Civita connection of h_{ij} .
- Work from a 4-dimensional (spacetime) perspective so that we write D_a .
- One requires D_a to be torsion-free and compatible with the metric h_{ab} .
- For a scalar ϕ

$$D_a \phi \equiv h_a{}^b \nabla_b \phi,$$

and, say, for a (1,1) tensor

$$D_a T^b{}_c \equiv h_a{}^d h_e{}^b h_c{}^f \nabla_d T^e{}_f,$$

with an obvious extension to other tensors.

• In coordinates, the covariant derivative D_a is associated to the spatial Christoffel symbols

$$\gamma^{\mu}{}_{\nu\lambda} = \frac{1}{2}h^{\mu\rho}(\partial_{\nu}h_{\rho\lambda} + \partial_{\lambda}h_{\nu\rho} - \partial_{\rho}h_{\nu\lambda}).$$

Covariant derivatives on hypersurfaces (II)

The curvature of D_{i}

• Being a covariant derivative, one can naturally associate a curvature tensor $r^a{}_{bcd}$ to D_a by considering its commutator:

$$D_a D_b v^c - D_b D_a v^c = r^c{}_{dab} v^d$$

One can verify that $r^c{}_{dab}n^d = 0$.

• Similarly, one can define the Ricci tensors and scalar as

$$r_{db} \equiv r^c{}_{dcb}, \qquad r \equiv g^{ab} r_{ab}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime
- The intrinsic metric of an hypersurface

• The extrinsic curvature of an hypersurface

- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

The extrinsic curvature (I)

Motivation:

- The Einstein field equation $R_{ab} = 0$ imposes some conditions on the 4-dimensional Riemann tensor $R^a{}_{bcd}$.
- In order to understand the implications of the Einstein equations on an hypersurface one needs to decompose R^a_{bcd} into spatial parts. This decomposition naturally involves r^a_{bcd} .
- The tensor $r^a{}_{bcd}$ measures the **intrinsic curvature** of the hypersurface S_t . This tensor provides no information about how S_t fits in (\mathcal{M}, g_{ab}) .
- The missing information is contained in the so-called extrinsic curvature.

・ロン ・四 と ・ ヨン ・ ヨン

The extrinsic curvature (II)

Definition:

• The extrinsic curvature is defined as the following projection of the spacetime covariant derivative of the normal to S_t:

$$K_{ab} \equiv -h_a{}^c h_b{}^d \nabla_{(c} n_{d)} = -h_a{}^c h_b{}^d \nabla_c n_d.$$

The second equality follows from the fact that n_a is rotation free.

- By construction the extrinsic curvature is symmetric and purely spatial.
- It measures how the normal to the hypersurface changes from point to point.
- It also measures the rate at which the hypersurface deforms as it is carried along the normal **Ricci identity**.

(日) (同) (三) (三)

The acceleration

Definition:

• The acceleration of a foliation is define via

$$a_a \equiv n^b \nabla_b n_a.$$

• Using $n^d \nabla_c \nabla_d = 0$, one can compute

$$\begin{aligned} K_{ab} &= -h_a{}^c h_b{}^d \nabla_c n_d \\ &= -(\delta_a{}^c + n_a n^c)(\delta_b{}^d + n_b n^d) \\ &= -(\delta_a{}^c + n_a n^c)\delta_b{}^d \nabla_c n_d \\ &= -\nabla_a n_b - n_a a_b. \end{aligned}$$

E

イロン イ団 とくほと くほとう

An alternative expression for the extrinsic curvature

The Lie derivative of the intrinsic metric:

One computes

$$\mathcal{L}_n h_{ab} = \mathcal{L}_n (g_{ab} + n_a n_b)$$

= $2\nabla_{(a} n_{b)} + n_a \mathcal{L}_n n_b + n_b \mathcal{L}_n n_a$
= $2(\nabla_{(a} n_{b)} + n_{(a} a_{b)})$
= $-2K_{ab}$.

(日) (四) (空) (空) (空)

Mean curvature

Definition:

• A related object is the so-called mean curvature:

$$K \equiv g^{ab} K_{ab} = h^{ab} K_{ab}.$$

• One can compute (exercise):

$$K = -\mathcal{L}_n(\ln \det h).$$

- Thus the mean curvature measures the fractional change in 3-dimensional volume along the normal n^a .
- An hypersuface for which K = 0 everywhere is called **maximal** —it encloses maximum volume for a given area.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime
- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface

• The Gauss-Codazzi and Codazzi-Mainardi equations

- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

The Gauss-Codazzi equation

Motivation:

- Given the extrinsic curvature of an hypersurface S_t , we now look how this relates to the curvature of spacetime.
- A computation using the definitions of the previous section shows that

 $D_a D_b v^c = h_a{}^p h_b{}^q h_r{}^c \nabla_p \nabla_q v^r - K_{ab} h_r{}^c n^p \nabla_p v^r - K_a{}^c K_{bp} v^p.$

• Combining with the commutator

 $D_a D_b v^c - D_b D_a v^c = r^c{}_{dab} v^d,$

after some manipulations one obtains

 $r_{abcd} + K_{ac}K_{bd} - K_{ad}K_{cb} = h_a{}^p h_b{}^q h_c{}^r h_d{}^s R_{pqrs}.$

• This equation is called the **Gauss-Codazzi equation**. It relates the spatial projection of the spacetime curvature tensor to the 3-dimensional curvature.

・ロン ・四と ・ヨン ・ヨン

The Codazzi-Mainardi equation

Motivation:

- A further important identity arises from considering projections of R_{abcd} along the normal direction. This involves a spatial derivative of the extrinsic curvature.
- One has that

$$D_a K_{bc} = h_a{}^p h_b{}^q h_c{}^r \nabla_p K_{qr}.$$

• From this expression after some manipulations one can deduce

 $D_b K_{ac} - D_a K_{bc} = h_a{}^p h_b{}^q h_c{}^r n^s R_{pqrs}.$

• This equation is called the Codazzi-Mainardi equation.

イロン イ団と イヨン イヨン

The Codazzi-Mainardi equation

Motivation:

- A further important identity arises from considering projections of R_{abcd} along the normal direction. This involves a spatial derivative of the extrinsic curvature.
- One has that

$$D_a K_{bc} = h_a{}^p h_b{}^q h_c{}^r \nabla_p K_{qr}.$$

• From this expression after some manipulations one can deduce

 $D_b K_{ac} - D_a K_{bc} = h_a{}^p h_b{}^q h_c{}^r n^s R_{pqrs}.$

• This equation is called the Codazzi-Mainardi equation.

In the sequel:

- In the sequel, we explore the consequences of the Gauss-Codazzi and Codazzi-Mainardi equations for the initial value problem in General Relativity.
- These give rise to the so-called constraint equations of General Relativity.

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime
- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

The constraint equations

Strategy:

- The 3 + 1 decomposition of the Einstein field equations allows to identify the intrinsic metric and the extrinsic curvature of an initial hypersurface S₀ as the initial data to be prescribed for the evolution equations of General Relativity.
- In what follows we will make use of the Gauss-Codazzi and the Codazzi-Mainardi equations to extract the consequences of the vacuum Einstein field equations

 $R_{ab} = 0$

on a hypersurface S.

(日) (同) (三) (三)

The Hamiltonian constraint (I)

Derivation of the equation:

• Contracting the Gauss-Codazzi equation one finds that

 $h^{pr}h_b{}^qh_d{}^sR_{pqrs} = r_{bd} + KK_{bd} - K^c{}_dK_{cb},$

where $K \equiv h^{ab} K_{ab}$ denotes the trace of the extrinsic curvature.

• A further contraction then yields

$$h^{pr}h^{qs}R_{pqrs} = r + K^2 - K_{ab}K^{ab}.$$

• Now, the left-hand side can be expanded into

$$h^{pr}h^{qs}R_{pqrs} = (g^{pr} + n^p n^s)(g^{qs} + n^q n^s)$$

= $R + 2n^p n^r R_{pr} + n^p n^r n^q n^s R_{pqrs} = 0.$

The last term vanishes beacuse of the symmetries of the Riemann tensor.

・ロン ・四 と ・ ヨン ・ ヨン

The Hamiltonian constraint (II)

Summarising

Combining the equations from the previous calculations one obtains the so-called **Hamiltonian constraint**:

$$r + K^2 - K_{ab}K^{ab} = 0.$$

イロト イ団ト イヨト イヨト

The momentum constraint

Derivation:

• Contracting once the Codazzi-Mainardi equation one has that

 $D^b K_{ab} - D_a K = h_a{}^p h^{qr} n^s R_{pqrs}.$

• The right hand side of this equation can be, in turn, expanded as

$$h_{a}{}^{p}h^{qr}n^{s}R_{pqrs} = -h_{a}{}^{p}(g^{qr} + n^{p}n^{r})n^{s}R_{qprs}$$

= $-h_{a}{}^{p}n^{s}R_{ps} - h_{a}{}^{p}n^{q}n^{r}n^{s}R_{pqrs} = 0,$

where in the last equatlity one makes use, again, of the vacuum Equations and the symmetries of the Riemann tensor.

イロン イ団と イヨン イヨン

The momentum constraint

Derivation:

• Contracting once the Codazzi-Mainardi equation one has that

 $D^b K_{ab} - D_a K = h_a{}^p h^{qr} n^s R_{pqrs}.$

• The right hand side of this equation can be, in turn, expanded as

$$h_{a}{}^{p}h^{qr}n^{s}R_{pqrs} = -h_{a}{}^{p}(g^{qr} + n^{p}n^{r})n^{s}R_{qprs}$$

= $-h_{a}{}^{p}n^{s}R_{ps} - h_{a}{}^{p}n^{q}n^{r}n^{s}R_{pqrs} = 0,$

where in the last equatlity one makes use, again, of the vacuum Equations and the symmetries of the Riemann tensor.

Summarising:

Combining the previous expressions one obtains the so-called **momentum constraint**:

$$D^b K_{ab} - D_a K = 0.$$

Initial data and the constraint equations

Discussion:

- The Hamiltonian and momentum constraint involve only the 3-dimensional intrinsic metric, the extrinsic curvature and their spatial derivatives.
- They are the conditions that allow a 3-dimensional slice with data (h_{ab}, K_{ab}) to be embedded in a 4-dimensional spacetime (\mathcal{M}, g_{ab}) .
- The existence of the constraint equations implies that the data for the Einstein field equations cannot be prescribed freely.

イロト イ団ト イヨト イヨト

Initial data and the constraint equations

Discussion:

- The Hamiltonian and momentum constraint involve only the 3-dimensional intrinsic metric, the extrinsic curvature and their spatial derivatives.
- They are the conditions that allow a 3-dimensional slice with data (h_{ab}, K_{ab}) to be embedded in a 4-dimensional spacetime (\mathcal{M}, g_{ab}) .
- The existence of the constraint equations implies that the data for the Einstein field equations **cannot be prescribed freely**.

Remark:

An important point still to be clarified is the sense in which the fields h_{ab} and K_{ab} correspond to data for the Einstein field equations. To see this, one has to analyse the evolution equations implied by the Einstein field equations.

・ロン ・四 と ・ ヨン ・ ヨン

The constraint equations for the electromagnetic field (I)

A source of insight:

- The equations of other physical theories also imply constraint equations. The classical example in this respect is given by the Maxwell equations.
- In order to analyse the constraint equations implied by the Maxwell equations it is convenient to introduce the **electric** and **magnetic parts** of the Faraday tensor F_{ab} :

$$E_a \equiv F_{ab}n^b, \qquad B_a \equiv \frac{1}{2}\epsilon_{ab}{}^{cd}F_{cd}n^b = F_{ab}^*n^b.$$

• A calculation then shows that the Maxwell equations imply the constraint equations

$$D^a E_a = 0, \qquad D^a B_a = 0.$$

These constraints correspond to the well-known **Gauss laws for the electric** and magnetic fields.

・ロン ・四 と ・ ヨン ・ ヨン

The constraint equations for the electromagnetic field (II)

Summarising:

- Thus, it follows that data for the Maxwell equations **cannot be prescribed freely**. The initial value of the electric and magnetic parts of the Faraday tensor must be divergence free.
- Notice, by contrast that the wave equation for a scalar field φ implies no constraint equations. Thus, the data for this equation can be prescribed freely.

(日) (同) (三) (三)

Outline

1 The 3 + 1 decomposition of General Relativity

- Submanifolds of spacetime
- Foliations of spacetime
- The intrinsic metric of an hypersurface
- The extrinsic curvature of an hypersurface
- The Gauss-Codazzi and Codazzi-Mainardi equations
- The constraint equations of General Relativity
- The ADM-evolution equations

<ロト <回ト < 回ト < 回ト

The Ricci equation

Strategy:

- In a previous lecture we have seen that the Einstein equations imply a wave equation for the components of the metric tensor. These equations are **second order**.
- In order to obtain to obtain evolution equations which are of **first order** one needs a geometric identity relating the Lie derivative of the extrinsic curvature in the direction to the normal of the foliation.

・ロン ・四 と ・ ヨン ・ ヨン

The Ricci equation

Strategy:

- In a previous lecture we have seen that the Einstein equations imply a wave equation for the components of the metric tensor. These equations are **second order**.
- In order to obtain to obtain evolution equations which are of **first order** one needs a geometric identity relating the Lie derivative of the extrinsic curvature in the direction to the normal of the foliation.

Derivation:

Starting from

$$\mathcal{L}_n K_{ab} = n^c \nabla_c K_{ab} + 2K_{c(a} \nabla_{b)} n^c,$$

some manipulations (see the notes) lead the so-called Ricci equation:

$$\mathcal{L}_a K_{ab} = n^d n^c h_a{}^q h_b{}^r R_{drcq} - \frac{1}{\alpha} D_a D_b \alpha - K_b{}^c K_{ac}.$$

• Geometrically, this equation relates the derivative of the extrinsic curvature in the normal direction to an hypersurface S to a time projection of the the Riemann tensor.

The time vector and the shift vector (I)

The time vector:

- The discussion from the previous paragraphs suggests that the Einstein field equations will imply an **evolution** of the data (h_{ab}, K_{ab}) .
- Assumed that the spacetime (\mathcal{M}, g_{ab}) is foliated by a time function t whose level surfaces corresponds to the leaves of the foliation.
- Recalling that $\omega_a = \nabla_a t$, we consider now a vector t^a (the **time vector**) such that

 $t^a = \alpha n^a + \beta^a, \qquad \beta_a n^a = 0.$

イロン イ団と イヨン イヨン

The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The time vector and the shift vector (II)

The shift vector:

- The vector β^a is called the **shift vector**.
- The time vector t^a will be used to **propagate coordinates** from one time slice to another.
- In other words, t^a connects points with the same spatial coordinate —hence, the shift vector measures the amount by which the spatial coordinates are shifted within a slice with respect to the normal vector.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The 3 -- 1 decomposition of General Relativity The ADM-evolution equations

The time vector and the shift vector (III)

Gauge functions:

- Together, the lapse and shift determine how coordinates evolve in time. The choice of these functions is fairly arbitrary and hence they are known as gauge functions.
- The lapse function reflects the to choose the sequence of time slices, pushing them forward by different amounts of proper time at different spatial points on a slice —this idea is usually known as the **many-fingered nature of time**.
- The shift vector reflects the freedom to relabel spatial coordinates on each slices in an arbitrary way.
- Observers at rest relative to the slices follow the normal congreunce n^a and are called **Eulerian observers**, while observers following the congruence t^a are called **coordinate observers**.
- It is observed that as a consequence of the previous definitions one has that $t^a \nabla_a t = 1$ so that the integral curves of t^a are naturally parametrised by t.

イロン イヨン イヨン イヨン

The evolution equation for the 3-metric

Derivation of the equation:

• Recalling that

$$K_{ab} = -\frac{1}{2}\mathcal{L}_n h_{ab}$$

and using the equation $t^a = \alpha n^a + \beta^a$ one concludes that

 $\mathcal{L}_t h_{ab} = -2\alpha K_{ab} + \mathcal{L}_\beta h_{ab},$

where it has been used that

$$\mathcal{L}_t h_{ab} = \mathcal{L}_{\alpha n + \beta} h_{ab} = \alpha \mathcal{L}_n h_{ab} + \mathcal{L}_\beta h_{ab}.$$

• This equation will be interpreted as an evolution equation for the intrinsic metric h_{ab} .

・ロト ・回ト ・ヨト ・ヨト

The 3 -- 1 decomposition of General Relativity The ADM-evolution equations

Evolution equation for the second fundamental form

Derivation of the equation:

- In order to construct a similar equation for the extrinsic curvature one makes use of the Ricci equation.
- It is noticed that

$$n^{d}n^{c}h_{a}{}^{q}h_{b}{}^{r}R_{drcq} = h^{cd}h_{a}{}^{q}h_{b}{}^{r}R_{drcq} - h_{a}{}^{q}h_{b}{}^{r}R_{rq}$$
$$= h^{cd}h_{a}{}^{q}h_{b}{}^{r}R_{drcq},$$

where to obtain the second equality $R_{ab} = 0$ has been used. The remaining term, $h^{cd}h_a{}^qh_b{}^rR_{drcq}$ is dealt with using the Gauss-Codazzi equation. • Finally, noticing that

$$\mathcal{L}_t K_{ab} = \mathcal{L}_{\alpha n + \beta} K_{ab} = \alpha \mathcal{L}_n K_{ab} + \mathcal{L}_\beta K_{ab},$$

one concludes that

 $\mathcal{L}_t K_{ab} = -D_a D_b \alpha + \alpha (r_{ab} - 2K_{ac} K^c{}_b + KK_{ab}) + \mathcal{L}_\beta K_{ab}.$

This is the desired evolution equation for K_{ab} .

The 3+1 equations and the Einstein field equations

Remarks:

- The evolution equations deduced in the previous slices determine the evolution of the data (h_{ab}, K_{ab}) . These equations are usually known as the **ADM (Arnowitz-Deser-Misner) equations**.
- Together with the constraint equations they are **completely equivalent** to the vacuum Einstein field equations.
- The ADM evolution equations are first order equations —contrast with the wave equation for the components of the metric g_{ab} discussed in a previous lecture. However, the equations are not hyperbolic!
- Thus, one cannot apply directly the standard PDE theory to assert existence of solutions. Nevertheless, there are some more complicated versions which do have the hyperbolicity property.

<ロ> (日) (日) (日) (日) (日)

The Maxwell evolution equations

A source of insight:

- As in the case of the constraint equations, it is useful to compare with the Maxwell field equations.
- Making use of the electric and magnetic part of the Faraday tensor, a computation of $\mathcal{L}_t E_a$ and $\mathcal{L}_t B_a$ together with the Maxwell equations allows to show that

$$\mathcal{L}_t E_a = \epsilon_{abc} D^b E^c + \mathcal{L}_\beta E_a,$$

$$\mathcal{L}_t B_a = -\epsilon_{abc} D^b B^c + \mathcal{L}_\beta B_a.$$

• Notice the similarity with the ADM equations!

イロト イ団ト イヨト イヨト