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The 3 + 1 decomposition of General Relativity Submanifolds of spacetime

Submanifolds

Intuitive definition:

A submanifold of M, is a set N ⊂M which inherits a manifold structure
from M.

Embeddings:

An embedding map ϕ : N →M which is injective and structure preserving;

The restriction ϕ : N → ϕ(N ) is a diffeomorphism.

Rigoruous definition of submanifold:

In terms of the above concepts, a submanifold N is the image ϕ(N ) ⊂M of
a k-dimensional manifold (k < n).

Very often it is convenient to identify N with ϕ(N ).

In what follows we will mosty be concerned with 3-dimensional submanifolds.
It is customary to call these hypersurfaces.
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The 3 + 1 decomposition of General Relativity Foliations of spacetime

Foliations

Globally hyperbolic spacetimes:

In what follows, we assume that the spacetime (M, gab) is globally
hyperbolic.

That is, we assume that its topology is that of R× S, where S is an
orientable 3-dimensional manifold.

Globaly hyperbolic spacetimes are the natural class of spacetimes on which to
formulate a Cauchy problem.

Definition of a foliation:

A spacetime is said to be foliated by (non-intersecting) hypersurfaces St,
t ∈ R if

M =
⋃
t∈R
St,

where we identify the leaves St with {t} × S.

It is customary to think of the hypersurface S0 as an initial hypersurface on
which the initial information giving rise to the spacetime is to be prescribed.
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The 3 + 1 decomposition of General Relativity Foliations of spacetime

Time functions

Definition:

In what follows it will be convenient to assume that the hypersurfaces St
arise as the level surfaces of of a scalar function t which will be interpreted as
a global time function.

From t one can define the the covector

ωa = ∇at.

By construction ωa denotes the normal to the leaves St of the foliation.

The covector ωa is closed —that is,

∇[aωb] = ∇[a∇b]t = 0.

Juan A. Valiente Kroon (QMUL) Mathematical GR 7 / 40



The 3 + 1 decomposition of General Relativity Foliations of spacetime

The lapse function

Definition:

Fom ωa one defines a scalar α called the lapse function via

gab∇at∇bt = ∇at∇at ≡ −1/α2.

The lapse measures how much proper time elapses between neighbouring
time slices along the direction given by the normal vector ωa ≡ gabωb.
Assume that α > 0 so that ωa. Notice that ωa is assumed to be timelike so
that the hypersurfaces St are spacelike.

Unit normal:

In what follows we define the unit normal na via

na ≡ −αωa.
The minus sign in the last definition is chosen so that na points in the
direction of increasing t.

One can readily verify that nana = −1.

One thinks of na as the 4-velocity of a normal observer whose worldline is
always orthogonal to the hypersurfaces St.
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The 3 + 1 decomposition of General Relativity The intrinsic metric of an hypersurface

The intrinsic metric (I)

Definition:

The spacetime metric gab induces a 3-dimensional Riemannian metric hij on
St.
The relation between gab and hab is given by

hab ≡ gab + nanb.

In the previous formula we regard the 3-metric as an object living on
spacetime.

Properties:

The tensor hab is purely spatial —i.e. it has no component along na.

Contracting with the normal:

nahab = nagab + nan
anb = nb − nb = 0,

The inverse 3-metric hab is obtained by raising indices with

hab = gab + nanb
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The 3 + 1 decomposition of General Relativity The intrinsic metric of an hypersurface

The intrinsic metric (II)

Use as a projector:

The 3-metric hab can be used to project all geometric objects along the
direction given by na.

Effectively, hab decomposes tensors into a purely spatial part which lies on
the hypersurfaces St and a timelike part normal to the hypersurface.

In actual computations it is convenient to consider

ha
b = δa

b + nan
b.

Given a tensor Tab its spatial part, to be denoted by T⊥ab is defined to be

T⊥ab ≡ hachbdTcd.
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The 3 + 1 decomposition of General Relativity The intrinsic metric of an hypersurface

The normal projector

Definition:

One can also define a normal projector Na
b as

Na
b ≡ −nanb = δa

b − hab.

In terms of these operators an arbitrary projector can be decomposed as

va = δabv
b = (ha

b +Na
b) = v⊥a − nanbvb.

Juan A. Valiente Kroon (QMUL) Mathematical GR 12 / 40



The 3 + 1 decomposition of General Relativity The intrinsic metric of an hypersurface

Covariant derivatives on hypersurfaces (I)

A definition of a covariant drivative:

The 3-metric hij defines in a unique manner a covariant derivative Di —the
Levi-Civita connection of hij .

Work from a 4-dimensional (spacetime) perspective so that we write Da.

One requires Da to be torsion-free and compatible with the metric hab.

For a scalar φ
Daφ ≡ hab∇bφ,

and, say, for a (1, 1) tensor

DaT
b
c ≡ hadhebhcf∇dT ef ,

with an obvious extension to other tensors.

In coordinates, the covariant derivative Da is associated to the spatial
Christoffel symbols

γµνλ = 1
2h

µρ(∂νhρλ + ∂λhνρ − ∂ρhνλ).
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The 3 + 1 decomposition of General Relativity The intrinsic metric of an hypersurface

Covariant derivatives on hypersurfaces (II)

The curvature of Da:

Being a covariant derivative, one can naturally associate a curvature tensor
rabcd to Da by considering its commutator:

DaDbv
c −DbDav

c = rcdabv
d

One can verify that rcdabn
d = 0.

Similarly, one can define the Ricci tensors and scalar as

rdb ≡ rcdcb, r ≡ gabrab.
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The 3 + 1 decomposition of General Relativity The extrinsic curvature of an hypersurface

The extrinsic curvature (I)

Motivation:

The Einstein field equation Rab = 0 imposes some conditions on the
4-dimensional Riemann tensor Rabcd.

In order to understand the implications of the Einstein equations on an
hypersurface one needs to decompose Rabcd into spatial parts. This
decomposition naturally involves rabcd.

The tensor rabcd measures the intrinsic curvature of the hypersurface St.
This tensor provides no information about how St fits in (M, gab).

The missing information is contained in the so-called extrinsic curvature.
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The 3 + 1 decomposition of General Relativity The extrinsic curvature of an hypersurface

The extrinsic curvature (II)

Definition:

The extrinsic curvature is defined as the following projection of the spacetime
covariant derivative of the normal to St:

Kab ≡ −hachbd∇(cnd) = −hachbd∇cnd.

The second equality follows from the fact that na is rotation free.

By construction the extrinsic curvature is symmetric and purely spatial.

It measures how the normal to the hypersurface changes from point to point.

It also measures the rate at which the hypersurface deforms as it is carried
along the normal —Ricci identity.
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The 3 + 1 decomposition of General Relativity The extrinsic curvature of an hypersurface

The acceleration

Definition:

The acceleration of a foliation is define via

aa ≡ nb∇bna.

Using nd∇c∇d = 0, one can compute

Kab = −hachbd∇cnd
= −(δac + nan

c)(δb
d + nbn

d)

= −(δac + nan
c)δb

d∇cnd
= −∇anb − naab.
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The 3 + 1 decomposition of General Relativity The extrinsic curvature of an hypersurface

An alternative expression for the extrinsic curvature

The Lie derivative of the intrinsic metric:

One computes

Lnhab = Ln(gab + nanb)

= 2∇(anb) + naLnnb + nbLnna
= 2(∇(anb) + n(aab))

= −2Kab.
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The 3 + 1 decomposition of General Relativity The extrinsic curvature of an hypersurface

Mean curvature

Definition:

A related object is the so-called mean curvature:

K ≡ gabKab = habKab.

One can compute (exercise):

K = −Ln(ln deth).

Thus the mean curvature measures the fractional change in 3-dimensional
volume along the normal na.

An hypersuface for which K = 0 everywhere is called maximal —it encloses
maximum volume for a given area.
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The 3 + 1 decomposition of General Relativity The Gauss-Codazzi and Codazzi-Mainardi equations

The Gauss-Codazzi equation

Motivation:

Given the extrinsic curvature of an hypersurface St, we now look how this
relates to the curvature of spacetime.

A computation using the definitions of the previous section shows that

DaDbv
c = ha

phb
qhr

c∇p∇qvr −Kabhr
cnp∇pvr −Ka

cKbpv
p.

Combining with the commutator

DaDbv
c −DbDav

c = rcdabv
d,

after some manipulations one obtains

rabcd +KacKbd −KadKcb = ha
phb

qhc
rhd

sRpqrs.

This equation is called the Gauss-Codazzi equation. It relates the spatial
projection of the spacetime curvature tensor to the 3-dimensional curvature.
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The 3 + 1 decomposition of General Relativity The Gauss-Codazzi and Codazzi-Mainardi equations

The Codazzi-Mainardi equation

Motivation:

A further important identity arises from considering projections of Rabcd
along the normal direction. This involves a spatial derivative of the extrinsic
curvature.

One has that
DaKbc = ha

phb
qhc

r∇pKqr.

From this expression after some manipulations one can deduce

DbKac −DaKbc = ha
phb

qhc
rnsRpqrs.

This equation is called the Codazzi-Mainardi equation.

In the sequel:

In the sequel, we explore the consequences of the Gauss-Codazzi and
Codazzi-Mainardi equations for the initial value problem in General Relativity.

These give rise to the so-called constraint equations of General Relativity.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The constraint equations

Strategy:

The 3 + 1 decomposition of the Einstein field equations allows to identify the
intrinsic metric and the extrinsic curvature of an initial hypersurface S0 as the
initial data to be prescribed for the evolution equations of General Relativity.

In what follows we will make use of the Gauss-Codazzi and the
Codazzi-Mainardi equations to extract the consequences of the vacuum
Einstein field equations

Rab = 0

on a hypersurface S.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The Hamiltonian constraint (I)

Derivation of the equation:

Contracting the Gauss-Codazzi equation one finds that

hprhb
qhd

sRpqrs = rbd +KKbd −Kc
dKcb,

where K ≡ habKab denotes the trace of the extrinsic curvature.

A further contraction then yields

hprhqsRpqrs = r +K2 −KabK
ab.

Now, the left-hand side can be expanded into

hprhqsRpqrs = (gpr + npns)(gqs + nqns)

= R+ 2npnrRpr + npnrnqnsRpqrs = 0.

The last term vanishes beacuse of the symmetries of the Riemann tensor.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The Hamiltonian constraint (II)

Summarising

Combining the equations from the previous calculations one obtains the so-called
Hamiltonian constraint:

r +K2 −KabK
ab = 0.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The momentum constraint

Derivation:

Contracting once the Codazzi-Mainardi equation one has that

DbKab −DaK = ha
phqrnsRpqrs.

The right hand side of this equation can be, in turn, expanded as

ha
phqrnsRpqrs = −hap(gqr + npnr)nsRqprs

= −hapnsRps − hapnqnrnsRpqrs = 0,

where in the last equatlity one makes use, again, of the vacuum Equations
and the symmetries of the Riemann tensor.

Summarising:

Combining the previous expressions one obtains the so-called momentum
constraint:

DbKab −DaK = 0.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

Initial data and the constraint equations

Discussion:

The Hamiltonian and momentum constraint involve only the 3-dimensional
intrinsic metric, the extrinsic curvature and their spatial derivatives.

They are the conditions that allow a 3-dimensional slice with data (hab,Kab)
to be embedded in a 4-dimensional spacetime (M, gab).

The existence of the constraint equations implies that the data for the
Einstein field equations cannot be prescribed freely.

Remark:

An important point still to be clarified is the sense in which the fields hab and Kab

correspond to data for the Einstein field equations. To see this, one has to analyse
the evolution equations implied by the Einstein field equations.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The constraint equations for the electromagnetic field (I)

A source of insight:

The equations of other physical theories also imply constraint equations. The
classical example in this respect is given by the Maxwell equations.

In order to analyse the constraint equations implied by the Maxwell equations
it is convenient to introduce the electric and magnetic parts of the Faraday
tensor Fab:

Ea ≡ Fabnb, Ba ≡ 1
2εab

cdFcdn
b = F ∗abn

b.

A calculation then shows that the Maxwell equations imply the constraint
equations

DaEa = 0, DaBa = 0.

These constraints correspond to the well-known Gauss laws for the electric
and magnetic fields.
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The 3 + 1 decomposition of General Relativity The constraint equations of General Relativity

The constraint equations for the electromagnetic field (II)

Summarising:

Thus, it follows that data for the Maxwell equations cannot be prescribed
freely. The initial value of the electric and magnetic parts of the Faraday
tensor must be divergence free.

Notice, by contrast that the wave equation for a scalar field φ implies no
constraint equations. Thus, the data for this equation can be prescribed
freely.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The Ricci equation

Strategy:

In a previous lecture we have seen that the Einstein equations imply a wave
equation for the components of the metric tensor. These equations are
second order.

In order to obtain to obtain evolution equations which are of first order one
needs a geometric identity relating the Lie derivative of the extrinsic
curvature in the direction to the normal of the foliation.

Derivation:

Starting from
LnKab = nc∇cKab + 2Kc(a∇b)nc,

some manipulations (see the notes) lead the so-called Ricci equation:

LaKab = ndncha
qhb

rRdrcq −
1

α
DaDbα−Kb

cKac.

Geometrically, this equation relates the derivative of the extrinsic curvature in
the normal direction to an hypersurface S to a time projection of the the
Riemann tensor.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The time vector and the shift vector (I)

The time vector:

The discussion from the previous paragraphs suggests that the Einstein field
equations will imply an evolution of the data (hab,Kab).

Assumed that the spacetime (M, gab) is foliated by a time function t whose
level surfaces corresponds to the leaves of the foliation.

Recalling that ωa = ∇at, we consider now a vector ta (the time vector)
such that

ta = αna + βa, βan
a = 0.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The time vector and the shift vector (II)

The shift vector:

The vector βa is called the shift vector.

The time vector ta will be used to propagate coordinates from one time
slice to another.

In other words, ta connects points with the same spatial coordinate —hence,
the shift vector measures the amount by which the spatial coordinates are
shifted within a slice with respect to the normal vector.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The time vector and the shift vector (III)

Gauge functions:

Together, the lapse and shift determine how coordinates evolve in time. The
choice of these functions is fairly arbitrary and hence they are known as
gauge functions.

The lapse function reflects the to choose the sequence of time slices, pushing
them forward by different amounts of proper time at different spatial points
on a slice —this idea is usually known as the many-fingered nature of time.

The shift vector reflects the freedom to relabel spatial coordinates on each
slices in an arbitrary way.

Observers at rest relative to the slices follow the normal congreunce na and
are called Eulerian observers, while observers following the congruence ta

are called coordinate observers.

It is observed that as a consequence of the previous definitions one has that
ta∇at = 1 so that the integral curves of ta are naturally parametrised by t.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The evolution equation for the 3-metric

Derivation of the equation:

Recalling that
Kab = − 1

2Lnhab
and using the equation ta = αna + βa one concludes that

Lthab = −2αKab + Lβhab,

where it has been used that

Lthab = Lαn+βhab = αLnhab + Lβhab.

This equation will be interpreted as an evolution equation for the intrinsic
metric hab.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

Evolution equation for the second fundamental form

Derivation of the equation:

In order to construct a similar equation for the extrinsic curvature one makes
use of the Ricci equation.

It is noticed that

ndncha
qhb

rRdrcq = hcdha
qhb

rRdrcq − haqhbrRrq
= hcdha

qhb
rRdrcq,

where to obtain the second equality Rab = 0 has been used. The remaining
term, hcdha

qhb
rRdrcq is dealt with using the Gauss-Codazzi equation.

Finally, noticing that

LtKab = Lαn+βKab = αLnKab + LβKab,

one concludes that

LtKab = −DaDbα+ α(rab − 2KacK
c
b +KKab) + LβKab.

This is the desired evolution equation for Kab.
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The 3 + 1 decomposition of General Relativity The ADM-evolution equations

The 3+1 equations and the Einstein field equations

Remarks:

The evolution equations deduced in the previous slices determine the
evolution of the data (hab,Kab). These equations are usually known as the
ADM (Arnowitz-Deser-Misner) equations.

Together with the constraint equations they are completely equivalent to
the vacuum Einstein field equations.

The ADM evolution equations are first order equations —contrast with the
wave equation for the components of the metric gab discussed in a previous
lecture. However, the equations are not hyperbolic!

Thus, one cannot apply directly the standard PDE theory to assert existence
of solutions. Nevertheless, there are some more complicated versions which
do have the hyperbolicity property.
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The Maxwell evolution equations

A source of insight:

As in the case of the constraint equations, it is useful to compare with the
Maxwell field equations.

Making use of the electric and magnetic part of the Faraday tensor, a
computation of LtEa and LtBa together with the Maxwell equations allows
to show that

LtEa = εabcD
bEc + LβEa,

LtBa = −εabcDbBc + LβBa.

Notice the similarity with the ADM equations!
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