Mathematical problems of General Relativity *Problem sheet 1*

Juan Antonio Valiente Kroon * School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.

January 6, 2021

- 1. Show that the Levi-Civita connection is characterised in a unique manner by the conditions:
 - (a) $\nabla_a \nabla_b \phi = \nabla_b \nabla_a \phi$ (torsion-freeness);
 - (b) $\nabla_a g_{bc} = 0$ (metric compatibility).
- 2. Show that from the rule for the covariant derivative of a vector v^a in local coordinates

$$\nabla_{\mu}v^{\nu} = \partial_{\mu}v^{\nu} + \Gamma^{\nu}{}_{\lambda\mu}v^{\lambda},$$

and the assumptions that ∇_a satisfies the Leibinitz rule and that $\nabla_\mu \phi = \partial_\mu \phi$ with ϕ as scalar field, it follows that

$$\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} - \Gamma^{\lambda}{}_{\nu\mu}\omega_{\lambda},$$

where ω_{μ} are the components of a covector ω_a in local coordinates.

3. Let $R^a{}_{bcd}$ denote the Riemann tensor of the Levi-Civita connection ∇_a and let v^a be an arbitrary vector. Show that from

$$\nabla_a \nabla_b v^c - \nabla_b \nabla_a v^c = R^c{}_{dab} v^d$$

it follows that for a covector ω_a one has that

$$\nabla_a \nabla_b \omega_c - \nabla_b \nabla_a \omega_c = -R^d{}_{cab} \omega_d.$$

Hint: compute the commutator of $\omega_c v^c$.

4. Given the Riemann tensor of the Levi-Civita connection ∇_a , show that the symmetry

$$R_{abcd} = R_{cdab}$$

follows from the symmetries

$$R_{abcd} = -R_{bacd} = -R_{abdc}, \qquad R_{abcd} + R_{acdb} + R_{adbc} = 0$$

5. Show that for the Levi-Civita connection of a metric g_{ab} the second Bianchi identity implies that

$$\nabla^a (R_{ab} - \frac{1}{2}Rg_{ab}) = 0$$

That is, show that the Einstein tensor is divergence-free.

^{*}E-mail address: j.a.valiente-kroon@qmul.ac.uk

6. Show that the expression

$$\mathcal{L}_{v}T^{\mu}{}_{\lambda\rho} = v^{\sigma}\partial_{\sigma}T^{\mu}{}_{\lambda\rho} - \partial_{\sigma}v^{\mu}T^{\sigma}{}_{\lambda\rho} + \partial_{\lambda}v^{\sigma}T^{\mu}{}_{\sigma\rho} + \partial_{\rho}v^{\sigma}T^{\mu}{}_{\lambda\sigma},$$

for the Lie derivative of a (1, 2)-tensor can be rewritten as

$$\mathcal{L}_{v}T^{\mu}{}_{\lambda\rho} = v^{\sigma}\nabla_{\sigma}T^{\mu}{}_{\lambda\rho} - \nabla_{\sigma}v^{\mu}T^{\sigma}{}_{\lambda\rho} + \nabla_{\lambda}v^{\sigma}T^{\mu}{}_{\sigma\rho} + \nabla_{\rho}v^{\sigma}T^{\mu}{}_{\lambda\sigma},$$

where ∇_{μ} denotes the expression of the covariant derivative ∇_{a} in local coordinates. Use this expression to conclude that $\mathcal{L}_{v}T^{\mu}{}_{\lambda\rho}$ corresponds to the expression in local coordinates of a tensor $\mathcal{L}_{v}T^{a}{}_{bc}$.

7. Let ξ^a denote a vector field over a manifold \mathcal{M} . Show that $\mathcal{L}_{\xi}g_{ab} = 0$ implies the Killing equation

$$\nabla_a \xi_b + \nabla_b \xi_a = 0.$$

8. Show that the vacuum Einstein field equation

$$R_{ab} - \frac{1}{2}Rg_{ab} + \lambda g_{ab} = 0$$

can be rewritten as

$$R_{ab} = \lambda g_{ab}.$$

9. Show that if $R_{ab} = 0$ then a Killing vector satisfies the wave equation

$$\Box \xi^a = 0.$$

10. Use the identity $\partial_c \sqrt{-\det g} = \frac{1}{2}\sqrt{-\det g}g^{ab}\partial_c g_{ab}$ to show that the wave equation $\Box \phi = 0$ can be rewritten as

$$\Box \phi = \frac{1}{\sqrt{-\det g}} \partial_{\mu} \left(\sqrt{-\det g} \, g^{\mu\nu} \partial_{\nu} \phi \right).$$