Mathematical problems of General Relativity

Juan A. Valiente Kroon
School of Mathematical Sciences
Queen Mary, University of London
j.a.valiente-kroon@qmul.ac.uk,

LTCC Course LMS

Outline

(1) Outline of the course
(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions
(4) The Einstein equation as a wave equation
- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Objectives and content

Objectives:

- Provide a discussion of General Relativity as an initial value problem.
- Provide an introduction to applied methods of Differential Geometry and partial differential equations.
- Give an overview of main ideas and methods of mathematical General Relativity;

Topics to be covered

(1) A review of Differential Geometry
(2) A survey of General Relativity
(3) The Einstein equation as a wave equation
(0) The $3+1$ decomposition of General Relativity

- The constraint equations of General Relativity
- The ADM evolution equations
(3) Time independent solutions
(3) Energy and momentum in General Relativity (if time permits)

Resources and further material

Notes:

- Available at: www.maths.qmul.ac.uk/~jav/LTCC
- These include notes of the lectures, slides and an extended overview of Differential Geometry —all comments abut these welcome!

Problems:

- 4 problem sheets will be provided.
- Mainly to elaborate one calculations briefly discussed in the lectures.

Assessment

The course contains a light assessment consisting of a problem sheet to take home and to be handed back two weeks after.

About me

About me:

(PhD in General Relativity)

University of London

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
(Ist postdoc)
(2nd postdoc)

Queen Mary
University of London
(Reader)

EPSRC
Engineering and Physical Sciences
Research Council
(Advanced Research Fellow)

Outline

(1) Outline of the course
(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Outline

(1) Outline of the course
(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric

3 A brief survey of General Relativity

- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Manifolds (I)

Definition:

- The basic concept in Differential Geometry is that of a differentiable manifold (or manifold for short).
- A manifold \mathcal{M} is essentially a (topological) space that can be covered by a collection of charts (\mathcal{U}, ϕ) where $\mathcal{U} \subset \mathcal{M}$ is an open subset and $\phi: \mathcal{U} \rightarrow \mathbb{R}^{n}$ for some n is a smooth injective (one-to-one) mapping.
- The notion of a manifold requires certain compatibility between overlapping charts.
- In what follows, for simplicity and unless otherwise stated, it is assumed that all structures are smooth.
- Attention will be restricted to manifolds of dimensions 4 and 3 .

Manifolds (II)

Local coordinates:

Given $p \in \mathcal{U}$ one writes

$$
\phi(p)=\left(x^{1}, \ldots, x^{n}\right) .
$$

The $\left(x^{\mu}\right)=\left(x^{1}, \ldots, x^{n}\right)$ are called the local coordinates on \mathcal{U}.

Orientability:

A manifold \mathcal{M} is said to be orientable if the Jacobian of the transformation between overlapping charts is positive.

Scalar fields over a manifold:

A scalar field over \mathcal{M} is a smooth function $f: \mathcal{M} \rightarrow \mathbb{R}$. The set of scalar fields over \mathcal{M} will be denoted by $\mathfrak{X}(\mathcal{M})$.

Curves on manifold

Definition:

- A curve is a smooth map $\gamma: I \rightarrow \mathcal{M}$ with $I \subset \mathbb{R}$.
- In terms of coordinates $\left(x^{\mu}\right)$ defined over a chart of \mathcal{M} one writes the curve as

$$
x^{\mu}(\lambda)=\left(x^{1}(\lambda), \ldots, x^{n}(\lambda)\right),
$$

where $\lambda \in I$ is the parameter of the curve.

Vectors on a manifold (I)

Tangent vector:

- The concept of tangent vector formalises the physical notion of velocity.
- In local coordinates, the tangent vector to the curve $x^{\mu}(\lambda)$ is given by

$$
v^{\mu}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \lambda}
$$

- In modern Differential Geometry one identifies vectors with homogeneous first order differential operators acting on scalar fields over \mathcal{M}.
- This approach allow to encode in a simple manner the classical transformation properties of vectors between charts.
- Following this perspective, in local coordinates a vector field will be written as

$$
v^{\mu} \partial_{\mu} .
$$

Vectors on a manifold (II)

Abstract index notation:

- In what follows we will mostly make use of the abstract index notation to denote vectors and tensors.
- A generic vector will in this formalism denoted as v^{a}.
- The role of the superindex in this notation is to indicate the character of the object in question.
- For the components in some coordinate system $\left(x^{\mu}\right)$ write v^{μ}.

Tangent space and tangent bundle:

- The set of vectors at a point p of \mathcal{M} is the tangent space at $p, T_{p} \mathcal{M}$.
- A (smooth) prescription of a vector at every point of \mathcal{M} is called a vector field.
- The collection of all tangent spaces on \mathcal{M} is called the tangent bundle $T \mathcal{M}$.

Covectors

Definition:

- A covector (or 1-form) is real valued function of a vector.
- In abstract index notation denoted by ω_{a}.
- The action of ω_{a} on v^{a} will be denoted by $\omega_{a} v^{a} \in \mathfrak{X}(\mathcal{M})$.

Cotangent space

- The set of covectors at a point $p \in \mathcal{M}$ is the cotangent space $T_{p}^{*} \mathcal{M}$.
- The set of all cotangent spaces on \mathcal{M} is the cotangent bundle $T^{*} \mathcal{M}$.

Definition:

- Higher rank objects (tensors) can be constructed by analogy.
- A tensor of type (m, n) is a real-valued functions of m covectors and n vectors that are linear in all their arguments.
- For example, the tensor $T^{a b}{ }_{c}$ is of type $(2,1)$.
- Traditionally, superindices in a tensor are called contravariant while subindices ones are called covariant.

Symmetric and antisymmetric tensors:

- A tensor is symmetric if it remains unchanged under the interchange of two of its arguments $T_{a b}=T_{b a}$.
- A tensor is antisymmetric if it changes sign with an interchange of a pair of arguments as in $S_{a b c}=-S_{a c b}$.
- The symmetric and antisymmetric parts of a tensor can be constructed by adding together all possible permutations with the appropriate signs. For example

$$
T_{(a b)}=\frac{1}{2}\left(T_{a b}+T_{b a}\right), \quad T_{[a b]}=\frac{1}{2}\left(T_{a b}-T_{b a}\right) .
$$

Outline

(1) Outline of the course
(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Metric tensors (I)

Definition:

- A metric on \mathcal{M} is a non-degenerate symmetric $(0,2)$ tensor field $g_{a b}$.
- Non-degenerate: if $g_{a b} u^{a} v^{b}=0$ for all u^{a} if and only if $v^{a}=0$.
- The metric encodes the geometric notions of orthogonality and norm of a vector.
- The norm of a vector is given by $|v|^{2}=g_{a b} v^{a} v^{b}$
- If $g_{a b} v^{a} u^{a}=0$, then v^{a} and u^{a} are said to be orthogonal.

Riemannian and Lorentzian metrics

- In terms of a coordinate system $\left(x^{\mu}\right)$ the components of $g_{a b}, g_{\mu \nu}$, are a $n \times n$ matrix. Because of symmetry, this matrix has n real eigenvalues.
- The signature of $g_{a b}$ is the difference between the number of positive and negative eigenvalues.
- If the signature is $\pm n$ then one has a Riemannian metric.
- If the signature is $\pm(n-2)$ then the metric is said to be Lorentzian.

Metric tensors (II)

Index gymnastics:

- A metric $g_{a b}$ can be used to define a one-to-one correspondence between vectors and covectors.
- In local coordinates denote by $g^{\mu \nu}$ the inverse of $g_{\mu \nu}$. This defines a $(2,0)$ tensor which we denote by $g^{a b}$.
- By construction $g_{a b} g^{b c}=\delta_{a}{ }^{c}$ where $\delta_{a}{ }^{c}$ is the Kroneker delta.
- Given a vector v^{a} one defines $v_{a} \equiv g_{a b} v^{a}$.
- Similarly, given a covector ω_{a} one can define $\omega^{a} \equiv g^{a b} \omega_{b}$.

Remarks for Lorentzian metrics

Classifying vectors according to their causal nature:

- In these lectures all Lorentzian metrics will be defined on a 4-dimensional manifold and will be assumed to have signature 2 -that is, one has one negative eigenvalue and 3 positive ones.
- A Lorentzian metric can be used to classify vectors according to the sign of their norm.
- v^{a} is said to be timelike if $g_{a b} v^{a} v^{b}<0$;
- v^{a} is said to be null if $g_{a b} v^{a} v^{b}=0$;
- v^{a} is said to be spacelike if $g_{a b} v^{a} v^{b}>0$.

The Levi-Civita connection (I)

Covariant derivatives

- A covariant derivative is a notion of derivative with tensorial properties.
- A metric $g_{a b}$ allows to define a covariant derivative ∇_{a} over \mathcal{M}-the so-called Levi-Civita connection.
- The covariant derivative of a vector v^{a} is denoted by $\nabla_{a} v^{b}$. For a covector ω_{b} one writes $\nabla_{a} \omega_{b}$.

The Christoffel symbols

- Explicit formulae in terms of local coordinates involve the so-called Christoffel symbols

$$
\Gamma_{\nu \lambda}^{\mu}=\frac{1}{2} g^{\mu \rho}\left(\partial_{\nu} g_{\rho \lambda}+\partial_{\lambda} g_{\nu \rho}-\partial_{\rho} g_{\nu \lambda}\right)
$$

- Notice that $\Gamma^{\mu}{ }_{\nu \lambda}=\Gamma^{\mu}{ }_{\lambda \nu}$.
- The Christoffel symbols do not define a tensor. In a neighbourhood of a any $p \in \mathcal{M}$ there is a coordinate system (normal coordinates) in which the components of the Christoffel symbols vanish at the point.

The Levi-Civita connection (II)

Explicit coordinate expressions:

- In terms of the Christoffel one defines the components of $\nabla_{a} v^{b}$ as

$$
\nabla_{\mu} v^{\nu} \equiv \partial_{\mu} v^{\nu}+\Gamma^{\nu}{ }_{\lambda \mu} v^{\lambda} .
$$

- For a covector ω_{a} one can deduce:

$$
\nabla_{\mu} \omega_{\nu}=\partial_{\mu} \omega_{\nu}-\Gamma^{\lambda}{ }_{\nu \mu} \omega_{\lambda} .
$$

- These expressions generalise in an obvious way to higher valence tensors. For example:

$$
\nabla_{\mu} T^{\nu}{ }_{\lambda \rho}=\partial_{\mu} T^{\nu}{ }_{\lambda \rho}+\Gamma^{\nu}{ }_{\sigma \mu} T^{\sigma}{ }_{\lambda \rho}-\Gamma^{\sigma}{ }_{\lambda \mu} T^{\nu}{ }_{\sigma \rho}-\Gamma^{\sigma}{ }_{\rho \mu} T^{\nu}{ }_{\lambda \sigma} .
$$

- The Levi-Civita connection is defined in such a way that $\nabla_{a} g_{b c}=0$.

Geodesics

Definition:

- Let v^{a} denote the tangent vector to a curve $\gamma: I \rightarrow \mathcal{M}$, then the curve is a geodesic if and only if

$$
v^{a} \nabla_{a} v^{b}=f v^{b}
$$

with f some function of the curve parameter λ.

- In the case $f=0$, the parameter is called affine. An affine parameter is unique up to an affine transformation $\lambda \mapsto a \lambda+b$ for constants a and b.
- A vector field u^{a} defined a long a curve γ with tangent v^{a} is said to be parallelly transported along γ if $v^{a} \nabla_{a} u^{b}=0$.

Lie derivatives

Explicit expressions:

- The Lie derivative is another type of derivative defined on a manifold.
- It is independent of the metric tensor.
- The Lie derivative measures the change of a tensor as it is transported along the direction prescribed by a vector field v^{a} and it is denoted by \mathcal{L}_{v}.
- The Lie derivative of a tensor $T^{a}{ }_{b c}$ is given in local coordinates by

$$
\mathcal{L}_{v} T_{\lambda \rho}^{\mu}=v^{\sigma} \partial_{\sigma} T_{\lambda \rho}^{\mu}-\partial_{\sigma} v^{\mu} T_{\lambda \rho}^{\sigma}+\partial_{\lambda} v^{\sigma} T_{\sigma \rho}^{\mu}+\partial_{\rho} v^{\sigma} T_{\lambda \sigma}^{\mu},
$$

and can be verified to be a tensor.

- Lie derivatives of other tensors can be defined in an analogous way.

Curvature

Remark:

- In what follows assume that ∇_{a} is the Levi-Civita connection of a metric $g_{a b}$

Curvature tensors

- The notion of curvature arises in a natural way by considering the commutator of covariant derivatives acting on a vector v^{a} :

$$
\nabla_{a} \nabla_{b} v^{c}-\nabla_{b} \nabla_{a} v^{c}=R_{d a b}^{c} v^{d}
$$

where $R^{c}{ }_{d a b}$ is the Riemann curvature tensor.

- The corresponding commutator of covariant derivatives for a covector can be found to be

$$
\nabla_{a} \nabla_{b} \omega_{c}-\nabla_{b} \nabla_{a} \omega_{c}=-R_{c a b}^{d} \omega_{d}
$$

- Extensions to higher rank tensors are direct.
- In local coordinates (x^{μ}) one can write

$$
R_{\nu \lambda \rho}^{\mu}=\partial_{\lambda} \Gamma_{\nu \rho}^{\mu}-\partial_{\rho} \Gamma_{\nu \lambda}^{\mu}+\Gamma_{\lambda \sigma}^{\mu} \Gamma_{\nu \rho}^{\sigma}-\Gamma_{\rho \sigma}^{\mu} \Gamma_{\nu \lambda}^{\sigma} .
$$

Contractions and symmetries of the Riemann tensor

The Ricci and Einstein tensors

- Taking traces of $R^{a}{ }_{b c d}$ one defines the Ricci tensor $R_{b d} \equiv R^{a}{ }_{b a d}$ and Ricci scalar $R \equiv g^{a b} R_{a b}$.
- It is also customary to define the Einstein tensor

$$
G_{a b} \equiv R_{a b}-\frac{1}{2} R g_{a b}
$$

Symmetries

The Riemann tensor satisfies the following symmetries:

$$
\begin{aligned}
& R_{a b c d}=-R_{b a c d} \\
& R_{a b c d}=R_{c d a b} \\
& R_{a b c d}+R_{a c d b}+R_{a d b c}=0 .
\end{aligned}
$$

The last of these identities is known as the first Bianchi identity.

Contractions and symmetries (II)

The second Bianchi identity

- In addition the Riemann tensor satisfies a differential identity, the second Bianchi identity:

$$
\nabla_{a} R_{b c d e}+\nabla_{b} R_{\text {cade }}+\nabla_{c} R_{a b d e}=0
$$

- Contracting twice this identity with the metric shows that $\nabla^{a} G_{a b}=0$.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Introduction

Conceptual framework

- General Relativity is a relativistic theory of gravity. It describes the gravitational interaction as a manifestation of the curvature of spacetime.
- As it is the case of many other physical theories, General Relativity admits a formulation in terms of an initial value problem (Cauchy problem) whereby one prescribes the geometry of spacetime at some instant of time and then one purports to reconstruct it from the initial data.
- One has to make sense of what it means to prescribe the geometry of spacetime at an instant of time.
- Also how to reconstruct the spacetime from the data.
- The initial value problem is the core of mathematical Relativity -an area of active research with a number of interesting and challenging open problems.

The Einstein field equations (I)

Basic objects:

- General Relativity postulates the existence of a 4-dimensional manifold \mathcal{M}, the spacetime manifold.
- Point on \mathcal{M} are called events.
- \mathcal{M} is endowed with a Lorentzian metric $g_{a b}$ which in these lectures is assumed to have signature +2 -i.e. $(-+++)$.

Spacetimes:

- By a spacetime it will understood the a pair $\left(\mathcal{M}, g_{\mu \nu}\right)$ where the metric $g_{\mu \nu}$ satisfies the Einstein field equations

$$
R_{a b}-\frac{1}{2} R g_{a b}+\lambda g_{a b}=T_{a b} .
$$

These equations show how matter and energy produce curvature of the spacetime.

- λ denotes the so-called Cosmological constant.
- $T_{a b}$ is the energy-momentum tensor of the matter model.

Conservation equations:

- The conservation of energy-momentum is encoded in the condition

$$
\nabla^{a} T_{a b}=0
$$

- The conservation equation is consistent with the Einstein field equations as a consequence of the second Bianchi identity:

$$
\nabla^{a}\left(R_{a b}-\frac{1}{2} R g_{a b}+\lambda g_{a b}\right)=0
$$

Test particles:

The geometry of the spacetime can be probed by means of the movement of test particles:

- massive test particles move along timelike geodesics;
- rays of light move along null geodesics.

Isolated systems and the vacuum field equations

Some simplifying assumptions:

- Attention will be restricted to the gravitational field of systems describing isolated bodies. Henceforth we assume that $\lambda=0$.
- Moreover, attention is restricted to the vacuum case for which $T_{a b}=0$. The vacuum equations apply in the region external to an astrophysical source, but they usefulness is not restricted to this.
- One of the main properties of the gravitational field as described by General Relativity is that it can be a source of itself -this is a manifestation of the non-linearity of the Einstein field equations.
- This property gives rise to a variety of phenomena that can be analysed by means of the so-called vacuum Einstein field equations without having to resort to any further considerations about matter sources:

$$
R_{a b}=0
$$

- The field equations prescribe the geometry of spacetime locally. However, they do not prescribe the topology of the spacetime manifold.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Solutions to the Einstein field equations

Some conceptual questions:

- Given the vacuum field equations a natural question is whether there are any solutions.
- What should one understand for a solution to the Einstein field equations?

Some first answers:

- In first instance a solution is given by a metric $g_{a b}$ expressed in a specific coordinate system $\left(x^{\mu}\right)$-i.e. $g_{\mu \nu}$. We call this an exact solution.
- Exact solutions are our main way of acquiring intuition about the behaviour of generic solutions to the Einstein field equations.

The Minkowski spacetime

In a nutshell:

- The solution is encoded in the line element

$$
g=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}, \quad \eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)
$$

- One clearly verifies that for this metric in these coordinates $R_{\mu \nu \lambda \rho}=0$ so that $R_{\mu \nu}=0$.
- As $R_{\mu \nu}$ are the components of a tensor in a specific coordinate system one concludes then $R_{a b}=0$.
- Any metric related to by a coordinate transformation is a solution to the vacuum field equations.

Observation:

The example in the previous paragraph shows that as a consequence of the tensorial character of the Einstein field equations a solution to the equations is, in fact, an equivalence class of solutions related to each other by means of coordinate transformations.

Symmetry assumptions

Motivation:

- In order to find further explicit solutions to the field equations one needs to make some sort of assumptions about the spacetime.
- A standard assumption is that the spacetime has continuous symmetries.

Continuous symmetries and Killing vectors

- The notion of a continuous symmetry is formalised by the notion of a diffeomorphism.
- A diffeomorphism is a smooth map ϕ of \mathcal{M} onto itself.
- Intuitively the diffeomorphism moves the points in the manifold along curves in the manifold -the orbits of the symmetry.
- Let ξ^{a} denote the tangent vector to the orbits. The mapping ϕ is called an isometry if $\mathcal{L}_{\xi} g_{a b}=0$. It can be checked that

$$
\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}=0
$$

This equation is called the Killing equation.

Properties of the Killing equation:

Restrictions on the spacetime

- The Killing equation is overdetermined -i.e. it does not admit a solution for a general spacetime.
- Thus a solution, if exists, imposes restrictions on the spacetime.
- Using the commutator

$$
\nabla_{a} \nabla_{b} \xi_{c}-\nabla_{b} \nabla_{a} \xi_{c}=-R_{c a b}^{d} \xi_{d}
$$

together with the Killing equation one obtains

$$
\nabla_{a} \nabla_{b} \xi_{c}=R_{a b c}^{d} \xi_{d}
$$

This is an integrability condition for the Killing equation -i.e. a necessary condition that needs to be satisfied by any solution.

Spherical symmetry

Spherical symmetry in a nutshell:

- An important type of symmetry is given by the so-called spherical symmetry.
- There exists a 3-dimensional group of symmetries with 2-dimensional spacelike orbits.
- Each orbit is an homogeneous and isotropic manifold.
- The orbits are required to be compact and to have constant positive curvature.

The Schwarzschild spacetime

The metric in standard coordinates:

- In standard coordinates (t, r, θ, φ) by the expression

$$
g=-\left(1-\frac{2 m}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)
$$

- This solution is spherically symmetric and static -i.e. time independent.
- The Schwarzschild solution is of particular interest as it gives the simplest example of a black hole. The spacetime manifold can be explicitly verified to be singular at $r=0$. This singularity is hidden behind a horizon.

Properties of the Schwarzschild spacetime

Rigidity results:

- The Schwarzschild spacetime satisfies a number of rigidity properties -i.e. certain properties about solutions to the Einstein field equations immediately imply other properties.
- Staticity can be obtained from the assumption of spherical symmetry -the Birkhoff theorem: any spherically symmetric solution to the vacuum field equations is locally isometric to the Schwarzschild solution
- The Schwarzschild solution can be characterised as the only static solution of the vacuum field equations satisfying a certain (reasonable) behaviour at infinity -asymptotic flatness: the requirement that asymptotically, the metric behaves like the Minkowski metric. This result is known as the no-hair theorem.

Other exact solutions (I)

The Kerr spacetime:

- In order to obtain more exact solutions reduce the number of symmetries -accordingly the task of finding solutions becomes harder.
- A natural assumption is to look for axially symmetric and stationary solutions.
- stationarity is a form of time independence which is compatible with the notion of rotation -to be seen in more detail.
- The above assumptions lead to the Kerr spacetime describing a time independent rotating black hole.

Other exact solutions (II)

Surveys of exact solutions:

- Although there are a huge number of explicit solutions to the Einstein field equation -see e.g. [Stephani et al], the number of solutions with a physical/geometric relevance is much more restricted.
- For a discussion of some of the physically/geometrically important solutions see e.g. [Griffiths \& Podolski].
- For exact solutions describing isolated systems which are time dependent, there are no known solutions without some sort of pathology.

Abstract analysis of the Einstein field equations

An alternative to exact solutions:

- Use the general features and structure of the equations to assert existence in an abstract sense.
- Proceed in the same way to establish uniqueness and other properties of the solutions.
- In this way can explore more systematically the space of solutions to the theory.
- After this of analysis has been carried out one can proceed to construct solutions numerically.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

Introduction:

A strategy:

- A strategy to study generic solutions to the Einstein field equations is to formulate an initial value problem (Cauchy problem) for the Einstein field equations.
- In order to do so, one needs to bring the equations to some standard form in which the methods of the theory of partial differential equations can be applied.
- One expects the Einstein equations to imply some evolution process.
- Suitable equations describing evolutive processess are wave equations.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

The scalar wave equation (I)

The problem:

- On a spacetime $\left(\mathcal{M}, g_{a b}\right)$ consider the wave equation with respect to the metric $g_{a b}$-i.e.

$$
\square \phi \equiv \nabla_{a} \nabla^{a} \phi=0
$$

- In local coordinates it can be shown that

$$
\square \phi=\frac{1}{\sqrt{-\operatorname{det} g}} \partial_{\mu}\left(\sqrt{-\operatorname{det} g} g^{\mu \nu} \partial_{\nu} \phi\right) .
$$

The scalar wave equation (I)

The problem:

- On a spacetime $\left(\mathcal{M}, g_{a b}\right)$ consider the wave equation with respect to the metric $g_{a b}$-i.e.

$$
\square \phi \equiv \nabla_{a} \nabla^{a} \phi=0
$$

- In local coordinates it can be shown that

$$
\square \phi=\frac{1}{\sqrt{-\operatorname{det} g}} \partial_{\mu}\left(\sqrt{-\operatorname{det} g} g^{\mu \nu} \partial_{\nu} \phi\right)
$$

Principal part:

- The principal part of the equation corresponds to the terms containing the highest order derivatives of the scalar field ϕ :

$$
g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi
$$

- The structure in this expression is particular of a class of partial differential equations known as hyperbolic equations.

The scalar wave equation (II)

The scalar wave in Minkowski spacetime

- The most well known hyperbolic equation is the wave equation on the Minkowski spacetime.
- In standard Cartesian coordinates one has that

$$
\square \phi=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=\partial_{x}^{2} \phi+\partial_{y}^{2}+\partial_{z}^{2} \phi-\partial_{t}^{2} \phi=0
$$

Cauchy problem for the wave equation

- The Cauchy problem for the wave equations and more generally hyperbolic equations is well understood at least in a local setting.
- If one prescribes the field ϕ and its derivative $\partial_{\mu} \phi$ at some fiduciary instant of time $t=0$, then the equation $\square \phi=0$ has a solution for suitably small times (local existence).
- This solution is unique in its existence interval and it has continuous dependence on the initial data.
- The solution exhibits finite speed propagation.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

The Maxwell equations (I)

The source free equations:

- A useful model to discuss certain issues arising in the Einstein field equations are the source-free Maxwell equations:

$$
\nabla^{a} F_{a b}=0, \quad \nabla_{[a} F_{b c]}=0
$$

where $F_{a b}=-F_{a b}$ is the Faraday tensor.

- A solution to the second Maxwell equation is given by

$$
F_{a b}=\nabla_{a} A_{b}-\nabla_{b} A_{a},
$$

where A_{a} is the so-called gauge potential.

Gauge freedom:

- The gauge potential does not determine the the Faraday tensor in a unique way as $A_{a}+\nabla_{a} \phi$ with ϕ as scalar field gives the same $F_{a b}$.

The Maxwell equations (II)

An evolution equation for the gauge potential:

- Substituting into the first Maxwell equation one has that

$$
\begin{aligned}
0 & =\nabla^{a}\left(\nabla_{a} A_{b}-\nabla_{b} A_{a}\right) \\
& =\nabla^{a} \nabla_{a} A_{b}-\nabla^{a} \nabla_{b} A_{a} .
\end{aligned}
$$

- Using the commutator

$$
\nabla_{a} \nabla_{b} A_{c}-\nabla_{b} \nabla_{a} A_{c}=-R_{c a b}^{d} A_{d}
$$

one concludes that

$$
\nabla^{a} \nabla_{a} A_{b}-\nabla_{b} \nabla^{a} A_{a}-R^{a}{ }_{b} A_{a}=0 .
$$

- Under what circumstances one can assert the existence of solutions to the last equation on a smooth spacetime $\left(\mathcal{M}, g_{a b}\right)$? Note that the principal part is given by:

$$
\partial^{\mu} \partial_{\mu} A_{\nu}-\partial_{\nu} \partial^{\mu} A_{\mu}
$$

The Maxwell equations (III)

Exploiting the gauge freedom:

- Making the replacement $A_{\nu} \rightarrow A_{\nu}+\nabla_{\nu} \phi$, with ϕ chosen such that

$$
\begin{equation*}
\nabla^{\mu} \nabla_{\mu} \phi=-\nabla^{\mu} A_{\mu} \tag{1}
\end{equation*}
$$

one obtains that

$$
\nabla^{\mu} A_{\mu} \rightarrow \nabla^{\mu} A_{\mu}+\nabla^{\mu} \nabla_{\mu} \phi=0 .
$$

- Equation (1) is to be interpreted as a wave equation for ϕ with source term given by $-\nabla^{\mu} A_{\mu}$. One says that the gauge potential is in the Lorenz gauge and it satisfies the wave equation

$$
\begin{equation*}
\nabla^{\mu} \nabla_{\mu} A_{\nu}=R^{\mu}{ }_{\nu} A_{\mu} . \tag{2}
\end{equation*}
$$

- Equations (1)-(2) are manifestly hyperbolic so that local existence is obtained provided that suitable initial data is provided.
- The initial data consists of $\phi, \nabla_{\mu} \phi, A_{\nu}$ and $\nabla_{\mu} A_{\nu}$ at some initial time.

(1) Outline of the course

(2) A review of Differential Geometry

- Basic notions
- Manifolds with metric
(3) A brief survey of General Relativity
- Basic notions
- Exact solutions

4 The Einstein equation as a wave equation

- The scalar wave equation
- The Maxwell equations as wave equations
- The Einstein equations in wave coordinates

The Einstein equations (I)

The EFE in general coordinates:

- Given general coordinates $\left(x^{\mu}\right)$, the Ricci tensor $R_{a b}$ can be explicitly written in terms of the components of the metric tensor $g_{\mu \nu}$ and its first and second partial derivatives as

$$
\begin{aligned}
& R_{\mu \nu}=\frac{1}{2} \sum_{\lambda, \rho=0}^{3}\left(\partial_{\lambda}\left(g^{\lambda \rho}\left(\partial_{\mu} g_{\rho \nu}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)\right)-\partial_{\nu}\left(g^{\lambda \rho} \partial_{\mu} g_{\lambda \rho}\right)\right) \\
& +\frac{1}{4} \sum_{\lambda, \rho, \sigma, \tau=0}^{3}\left(g^{\sigma \tau} g^{\lambda \rho}\left(\partial_{\sigma} g_{\rho \tau}+\partial_{\rho} g_{\sigma \tau}-\partial_{\tau} g_{\sigma \rho}\right)\left(\partial_{\nu} g_{\mu \lambda}+\partial_{\mu} g_{\lambda \nu}-\partial_{\lambda} g_{\mu \nu}\right)\right. \\
& \left.\quad-g^{\rho \sigma} g^{\lambda \tau}\left(\partial_{\nu} g_{\lambda \sigma}+\partial_{\lambda} g_{\nu \sigma}-\partial_{\sigma} g_{\nu \lambda}\right)\left(\partial_{\sigma} g_{\mu \tau}+\partial_{\mu} g_{\sigma \tau}-\partial_{\tau} g_{\sigma \mu}\right)\right)
\end{aligned}
$$

where $g^{\lambda \rho}=(\operatorname{det} g)^{-1} p^{\lambda \rho}$ with $p^{\lambda \rho}$ polynomials of degree 3 in $g_{\mu \nu}$.

- The vacuum Einstein field equation implies a second order quasilinear partial differential equations for the components of the metric tensor.

The Einstein equations (II)

A more useful form of the equations:

- By recalling the formula for the Christoffels symbols in terms of partial derivatives of the metric tensor

$$
\Gamma^{\nu}{ }_{\mu \lambda}=\frac{1}{2} g^{\nu \rho}\left(\partial_{\mu} g_{\rho \lambda}+\partial_{\lambda} g_{\mu \rho}-\partial_{\rho} g_{\mu \lambda}\right),
$$

and by defining

$$
\Gamma^{\nu} \equiv g^{\mu \lambda} \Gamma^{\nu}{ }_{\mu \lambda},
$$

one can rewrite $R_{\mu \nu}$ more concisely as

$$
R_{\mu \nu}=-\frac{1}{2} g^{\lambda \rho} \partial_{\lambda} \partial_{\rho} g_{\mu \nu}+\nabla_{(\mu} \Gamma_{\nu)}+g_{\lambda \rho} g^{\sigma \tau} \Gamma^{\lambda}{ }_{\sigma \mu} \Gamma^{\rho}{ }_{\tau \nu}+2 \Gamma^{\sigma}{ }_{\lambda \rho} g^{\lambda \tau} g_{\sigma(\mu} \Gamma^{\rho}{ }_{\nu) \tau} .
$$

The principal part of the Einstein equations:

- The principal part of the vacuum Einstein field equation can be readily be identified to be

$$
-\frac{1}{2} g^{\lambda \rho} \partial_{\lambda} \partial_{\rho} g_{\mu \nu}+\nabla_{(\mu} \Gamma_{\nu)} .
$$

The Einstein equations (II)

The principal part of the Einstein equations:

- The principal part of the vacuum Einstein field equation can be readily be identified to be

$$
-\frac{1}{2} g^{\lambda \rho} \partial_{\lambda} \partial_{\rho} g_{\mu \nu}+\nabla_{(\mu} \Gamma_{\nu)} .
$$

Wave coordinates:

- Require the coordinates $\left(x^{\mu}\right)$ to satisfy the equation

$$
\nabla^{\nu} \nabla_{\nu} x^{\mu}=0,
$$

where the coordinates x^{μ} are treated as a scalar field over \mathcal{M}.

- A direct computation shows that

$$
\begin{aligned}
& \nabla_{\nu} x^{\mu}=\partial_{\nu} x^{\mu}=\delta_{\nu}{ }^{\mu}, \\
& \nabla_{\lambda} \nabla_{\nu} x^{\mu}=\partial_{\lambda} \delta_{\nu}{ }^{\mu}-\Gamma^{\rho}{ }_{\lambda \nu} \delta_{\rho}{ }^{\mu}=-\Gamma^{\mu}{ }_{\nu \lambda},
\end{aligned}
$$

so that

$$
\nabla^{\nu} \nabla_{\nu} x^{\mu}=g^{\nu \lambda} \Gamma^{\mu}{ }_{\nu \lambda}=-\Gamma^{\mu} .
$$

The Einstein equations (III)

Hyperbolic reduction of the equations:

- If suitable initial data is provided for the wave equation $\nabla^{\nu} \nabla_{\nu} x^{\mu}=0$-the coordinate differentials $\mathrm{d} x^{a}$ have to be chosen initially to be point-wise independent - then general theory of hyperbolic differential equations ensures the existence of a solution.
- It follows then that

$$
\Gamma^{\mu}=0
$$

- The reduced Einstein field equation takes the form

$$
g^{\lambda \rho} \partial_{\lambda} \partial_{\rho} g_{\mu \nu}-2 g_{\lambda \rho} g^{\sigma \tau} \Gamma_{\sigma \mu}^{\lambda} \Gamma_{\tau \nu}^{\rho}-4 \Gamma_{\lambda \rho}^{\sigma} g^{\lambda \tau} g_{\sigma(\mu} \Gamma_{\nu) \tau}^{\rho}=0
$$

- One obtains a system of quasilinear wave equations for the components of the metric tensor $g_{\mu \nu}$.
- The local Cauchy problem with appropriate data is well-posed -one can show the existence and uniqueness of solutions and their stable dependence

Some remarks:

- The system of equations is called the reduced Einstein field equations and the procedure a hyperbolic reduction.
- For the reduced equation one readily has a developed theory of existence and uniqueness available.
- The introduction of a specific system of coordinates breaks the tensorial character of the Einstein field equations.
- Given a solution to the reduced Einstein field equations, the latter will also imply a solution to the actual EFE as long as (x^{μ}) satisfy the equation $\nabla^{\nu} \nabla_{\nu} x^{\mu}=0$. This requires some delicate analysis -to be seen later.
- The domain on which the coordinates $\left(x^{\mu}\right)$ form a good coordinate system depends on the initial data prescribed and the solution $g_{\mu \nu}$ itself. There is little that can be said a priori about the domain of existence of the coordinates.
- The data for the reduced equation consists of a prescription of $g_{\mu \nu}$ and $\partial_{\lambda} g_{\mu \nu}$ at some initial time $t=0$. The next step in our discussion is to understand the meaning of this data.

