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Outline of the course

Objectives and content

Objectives:

Provide a discussion of General Relativity as an initial value problem.

Provide an introduction to applied methods of Differential Geometry and
partial differential equations.

Give an overview of main ideas and methods of mathematical General
Relativity;

Topics to be covered

1 A review of Differential Geometry

2 A survey of General Relativity

3 The Einstein equation as a wave equation

4 The 3 + 1 decomposition of General Relativity

5 The constraint equations of General Relativity

6 The ADM evolution equations

7 Time independent solutions

8 Energy and momentum in General Relativity (if time permits)
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Outline of the course

Resources and further material

Notes:

Available at: www.maths.qmul.ac.uk/∼jav/LTCC

These include notes of the lectures, slides and an extended overview of
Differential Geometry —all comments abut these welcome!

Problems:

4 problem sheets will be provided.

Mainly to elaborate one calculations briefly discussed in the lectures.

Assessment

The course contains a light assessment consisting of a problem sheet to take home
and to be handed back two weeks after.
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Outline of the course

About me

About me:

(Bsc Physics/Maths)

(PhD in General Relativity)

(1st postdoc)(2nd postdoc)

(Reader)
(Advanced Research Fellow)

Thursday, 14 February 2013
Juan A. Valiente Kroon (QMUL) Mathematical GR 5 / 57



A review of Differential Geometry

Outline

1 Outline of the course

2 A review of Differential Geometry
Basic notions
Manifolds with metric

3 A brief survey of General Relativity
Basic notions
Exact solutions

4 The Einstein equation as a wave equation
The scalar wave equation
The Maxwell equations as wave equations
The Einstein equations in wave coordinates

Juan A. Valiente Kroon (QMUL) Mathematical GR 6 / 57



A review of Differential Geometry Basic notions

Outline

1 Outline of the course

2 A review of Differential Geometry
Basic notions
Manifolds with metric

3 A brief survey of General Relativity
Basic notions
Exact solutions

4 The Einstein equation as a wave equation
The scalar wave equation
The Maxwell equations as wave equations
The Einstein equations in wave coordinates

Juan A. Valiente Kroon (QMUL) Mathematical GR 7 / 57



A review of Differential Geometry Basic notions

Manifolds (I)

Definition:

The basic concept in Differential Geometry is that of a differentiable
manifold (or manifold for short).

A manifold M is essentially a (topological) space that can be covered by a
collection of charts (U , φ) where U ⊂M is an open subset and φ : U → Rn
for some n is a smooth injective (one-to-one) mapping.

The notion of a manifold requires certain compatibility between overlapping
charts.

In what follows, for simplicity and unless otherwise stated, it is assumed that
all structures are smooth.

Attention will be restricted to manifolds of dimensions 4 and 3.
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A review of Differential Geometry Basic notions

Manifolds (II)

Local coordinates:

Given p ∈ U one writes
φ(p) = (x1, . . . , xn).

The (xµ) = (x1, . . . , xn) are called the local coordinates on U .

Orientability:

A manifold M is said to be orientable if the Jacobian of the transformation
between overlapping charts is positive.

Scalar fields over a manifold:

A scalar field over M is a smooth function f :M→ R. The set of scalar fields
over M will be denoted by X(M).
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A review of Differential Geometry Basic notions

Curves on manifold

Definition:

A curve is a smooth map γ : I →M with I ⊂ R.

In terms of coordinates (xµ) defined over a chart of M one writes the curve
as

xµ(λ) = (x1(λ), . . . , xn(λ)),

where λ ∈ I is the parameter of the curve.
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A review of Differential Geometry Basic notions

Vectors on a manifold (I)

Tangent vector:

The concept of tangent vector formalises the physical notion of velocity.

In local coordinates, the tangent vector to the curve xµ(λ) is given by

vµ =
dxµ

dλ
.

In modern Differential Geometry one identifies vectors with homogeneous
first order differential operators acting on scalar fields over M.

This approach allow to encode in a simple manner the classical
transformation properties of vectors between charts.

Following this perspective, in local coordinates a vector field will be written as

vµ∂µ.
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A review of Differential Geometry Basic notions

Vectors on a manifold (II)

Abstract index notation:

In what follows we will mostly make use of the abstract index notation to
denote vectors and tensors.

A generic vector will in this formalism denoted as va.

The role of the superindex in this notation is to indicate the character of the
object in question.

For the components in some coordinate system (xµ) write vµ.

Tangent space and tangent bundle:

The set of vectors at a point p of M is the tangent space at p, TpM.

A (smooth) prescription of a vector at every point of M is called a vector
field.

The collection of all tangent spaces onM is called the tangent bundle TM.
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A review of Differential Geometry Basic notions

Covectors

Definition:

A covector (or 1-form) is real valued function of a vector.

In abstract index notation denoted by ωa.

The action of ωa on va will be denoted by ωav
a ∈ X(M).

Cotangent space

The set of covectors at a point p ∈M is the cotangent space T ∗
pM.

The set of all cotangent spaces on M is the cotangent bundle T ∗M.
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A review of Differential Geometry Basic notions

Higher rank tensors

Definition:

Higher rank objects (tensors) can be constructed by analogy.

A tensor of type (m,n) is a real-valued functions of m covectors and n
vectors that are linear in all their arguments.

For example, the tensor T abc is of type (2, 1).

Traditionally, superindices in a tensor are called contravariant while
subindices ones are called covariant.

Symmetric and antisymmetric tensors:

A tensor is symmetric if it remains unchanged under the interchange of two
of its arguments Tab = Tba.

A tensor is antisymmetric if it changes sign with an interchange of a pair of
arguments as in Sabc = −Sacb.
The symmetric and antisymmetric parts of a tensor can be constructed by
adding together all possible permutations with the appropriate signs. For
example

T(ab) = 1
2 (Tab + Tba), T[ab] = 1

2 (Tab − Tba).
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A review of Differential Geometry Manifolds with metric

Metric tensors (I)

Definition:

A metric on M is a non-degenerate symmetric (0, 2) tensor field gab.

Non-degenerate: if gabu
avb = 0 for all ua if and only if va = 0.

The metric encodes the geometric notions of orthogonality and norm of a
vector.

The norm of a vector is given by |v|2 = gabv
avb

If gabv
aua = 0, then va and ua are said to be orthogonal.

Riemannian and Lorentzian metrics

In terms of a coordinate system (xµ) the components of gab, gµν , are a n× n
matrix. Because of symmetry, this matrix has n real eigenvalues.

The signature of gab is the difference between the number of positive and
negative eigenvalues.

If the signature is ±n then one has a Riemannian metric.

If the signature is ±(n− 2) then the metric is said to be Lorentzian.
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A review of Differential Geometry Manifolds with metric

Metric tensors (II)

Index gymnastics:

A metric gab can be used to define a one-to-one correspondence between
vectors and covectors.

In local coordinates denote by gµν the inverse of gµν . This defines a (2, 0)
tensor which we denote by gab.

By construction gabg
bc = δa

c where δa
c is the Kroneker delta.

Given a vector va one defines va ≡ gabva.

Similarly, given a covector ωa one can define ωa ≡ gabωb.
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A review of Differential Geometry Manifolds with metric

Remarks for Lorentzian metrics

Classifying vectors according to their causal nature:

In these lectures all Lorentzian metrics will be defined on a 4-dimensional
manifold and will be assumed to have signature 2 —that is, one has one
negative eigenvalue and 3 positive ones.

A Lorentzian metric can be used to classify vectors according to the sign of
their norm.

va is said to be timelike if gabv
avb < 0;

va is said to be null if gabv
avb = 0;

va is said to be spacelike if gabv
avb > 0.
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A review of Differential Geometry Manifolds with metric

The Levi-Civita connection (I)

Covariant derivatives

A covariant derivative is a notion of derivative with tensorial properties.

A metric gab allows to define a covariant derivative ∇a over M —the
so-called Levi-Civita connection.

The covariant derivative of a vector va is denoted by ∇avb. For a covector
ωb one writes ∇aωb.

The Christoffel symbols

Explicit formulae in terms of local coordinates involve the so-called
Christoffel symbols

Γµνλ = 1
2g
µρ(∂νgρλ + ∂λgνρ − ∂ρgνλ).

Notice that Γµνλ = Γµλν .

The Christoffel symbols do not define a tensor. In a neighbourhood of a any
p ∈M there is a coordinate system (normal coordinates) in which the
components of the Christoffel symbols vanish at the point.
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A review of Differential Geometry Manifolds with metric

The Levi-Civita connection (II)

Explicit coordinate expressions:

In terms of the Christoffel one defines the components of ∇avb as

∇µvν ≡ ∂µvν + Γνλµv
λ.

For a covector ωa one can deduce:

∇µων = ∂µων − Γλνµωλ.

These expressions generalise in an obvious way to higher valence tensors. For
example:

∇µT νλρ = ∂µT
ν
λρ + ΓνσµT

σ
λρ − ΓσλµT

ν
σρ − ΓσρµT

ν
λσ.

The Levi-Civita connection is defined in such a way that ∇agbc = 0.
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A review of Differential Geometry Manifolds with metric

Geodesics

Definition:

Let va denote the tangent vector to a curve γ : I →M, then the curve is a
geodesic if and only if

va∇avb = fvb,

with f some function of the curve parameter λ.

In the case f = 0, the parameter is called affine. An affine parameter is
unique up to an affine transformation λ 7→ aλ+ b for constants a and b.

A vector field ua defined a long a curve γ with tangent va is said to be
parallelly transported along γ if va∇aub = 0.
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A review of Differential Geometry Manifolds with metric

Lie derivatives

Explicit expressions:

The Lie derivative is another type of derivative defined on a manifold.

It is independent of the metric tensor.

The Lie derivative measures the change of a tensor as it is transported along
the direction prescribed by a vector field va and it is denoted by Lv.

The Lie derivative of a tensor T abc is given in local coordinates by

LvTµλρ = vσ∂σT
µ
λρ − ∂σvµTσλρ + ∂λv

σTµσρ + ∂ρv
σTµλσ,

and can be verified to be a tensor.

Lie derivatives of other tensors can be defined in an analogous way.
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A review of Differential Geometry Manifolds with metric

Curvature

Remark:

In what follows assume that ∇a is the Levi-Civita connection of a metric gab

Curvature tensors

The notion of curvature arises in a natural way by considering the
commutator of covariant derivatives acting on a vector va:

∇a∇bvc −∇b∇avc = Rcdabv
d,

where Rcdab is the Riemann curvature tensor.

The corresponding commutator of covariant derivatives for a covector can be
found to be

∇a∇bωc −∇b∇aωc = −Rdcabωd.

Extensions to higher rank tensors are direct.

In local coordinates (xµ) one can write

Rµνλρ = ∂λΓµνρ − ∂ρΓµνλ + ΓµλσΓσνρ − ΓµρσΓσνλ.
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A review of Differential Geometry Manifolds with metric

Contractions and symmetries of the Riemann tensor

The Ricci and Einstein tensors

Taking traces of Rabcd one defines the Ricci tensor Rbd ≡ Rabad and Ricci
scalar R ≡ gabRab.
It is also customary to define the Einstein tensor

Gab ≡ Rab − 1
2Rgab.

Symmetries

The Riemann tensor satisfies the following symmetries:

Rabcd = −Rbacd,
Rabcd = Rcdab,

Rabcd +Racdb +Radbc = 0.

The last of these identities is known as the first Bianchi identity.
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A review of Differential Geometry Manifolds with metric

Contractions and symmetries (II)

The second Bianchi identity

In addition the Riemann tensor satisfies a differential identity, the second
Bianchi identity:

∇aRbcde +∇bRcade +∇cRabde = 0.

Contracting twice this identity with the metric shows that ∇aGab = 0.
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A brief survey of General Relativity Basic notions
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A brief survey of General Relativity Basic notions

Introduction

Conceptual framework

General Relativity is a relativistic theory of gravity. It describes the
gravitational interaction as a manifestation of the curvature of spacetime.

As it is the case of many other physical theories, General Relativity admits a
formulation in terms of an initial value problem (Cauchy problem)
whereby one prescribes the geometry of spacetime at some instant of time
and then one purports to reconstruct it from the initial data.

One has to make sense of what it means to prescribe the geometry of
spacetime at an instant of time.

Also how to reconstruct the spacetime from the data.

The initial value problem is the core of mathematical Relativity —an area
of active research with a number of interesting and challenging open
problems.
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A brief survey of General Relativity Basic notions

The Einstein field equations (I)

Basic objects:

General Relativity postulates the existence of a 4-dimensional manifold M,
the spacetime manifold.

Point on M are called events.

M is endowed with a Lorentzian metric gab which in these lectures is
assumed to have signature +2 —i.e. (−+ ++).

Spacetimes:

By a spacetime it will understood the a pair (M, gµν) where the metric gµν
satisfies the Einstein field equations

Rab − 1
2Rgab + λgab = Tab.

These equations show how matter and energy produce curvature of the
spacetime.

λ denotes the so-called Cosmological constant.

Tab is the energy-momentum tensor of the matter model.
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A brief survey of General Relativity Basic notions

The Einstein field equations (II)

Conservation equations:

The conservation of energy-momentum is encoded in the condition

∇aTab = 0.

The conservation equation is consistent with the Einstein field equations as a
consequence of the second Bianchi identity:

∇a
(
Rab − 1

2Rgab + λgab
)

= 0.

Test particles:

The geometry of the spacetime can be probed by means of the movement of test
particles:

massive test particles move along timelike geodesics;

rays of light move along null geodesics.
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A brief survey of General Relativity Basic notions

Isolated systems and the vacuum field equations

Some simplifying assumptions:

Attention will be restricted to the gravitational field of systems describing
isolated bodies. Henceforth we assume that λ = 0.

Moreover, attention is restricted to the vacuum case for which Tab = 0. The
vacuum equations apply in the region external to an astrophysical source, but
they usefulness is not restricted to this.

One of the main properties of the gravitational field as described by General
Relativity is that it can be a source of itself —this is a manifestation of the
non-linearity of the Einstein field equations.

This property gives rise to a variety of phenomena that can be analysed by
means of the so-called vacuum Einstein field equations without having to
resort to any further considerations about matter sources:

Rab = 0.

The field equations prescribe the geometry of spacetime locally. However,
they do not prescribe the topology of the spacetime manifold.
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A brief survey of General Relativity Exact solutions

Solutions to the Einstein field equations

Some conceptual questions:

Given the vacuum field equations a natural question is whether there are any
solutions.

What should one understand for a solution to the Einstein field equations?

Some first answers:

In first instance a solution is given by a metric gab expressed in a specific
coordinate system (xµ) —i.e. gµν . We call this an exact solution.

Exact solutions are our main way of acquiring intuition about the behaviour
of generic solutions to the Einstein field equations.
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A brief survey of General Relativity Exact solutions

The Minkowski spacetime

In a nutshell:

The solution is encoded in the line element

g = ηµνdxµdxν , ηµν = diag(−1, 1, 1, 1).

One clearly verifies that for this metric in these coordinates Rµνλρ = 0 so
that Rµν = 0.

As Rµν are the components of a tensor in a specific coordinate system one
concludes then Rab = 0.

Any metric related to by a coordinate transformation is a solution to the
vacuum field equations.

Observation:

The example in the previous paragraph shows that as a consequence of the
tensorial character of the Einstein field equations a solution to the equations is, in
fact, an equivalence class of solutions related to each other by means of
coordinate transformations.
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A brief survey of General Relativity Exact solutions

Symmetry assumptions

Motivation:

In order to find further explicit solutions to the field equations one needs to
make some sort of assumptions about the spacetime.

A standard assumption is that the spacetime has continuous symmetries.

Continuous symmetries and Killing vectors

The notion of a continuous symmetry is formalised by the notion of a
diffeomorphism.

A diffeomorphism is a smooth map φ of M onto itself.

Intuitively the diffeomorphism moves the points in the manifold along curves
in the manifold —the orbits of the symmetry.

Let ξa denote the tangent vector to the orbits. The mapping φ is called an
isometry if Lξgab = 0. It can be checked that

∇aξb +∇bξa = 0.

This equation is called the Killing equation.
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A brief survey of General Relativity Exact solutions

Properties of the Killing equation:

Restrictions on the spacetime

The Killing equation is overdetermined —i.e. it does not admit a solution
for a general spacetime.

Thus a solution, if exists, imposes restrictions on the spacetime.

Using the commutator

∇a∇bξc −∇b∇aξc = −Rdcabξd,

together with the Killing equation one obtains

∇a∇bξc = Rdabcξd.

This is an integrability condition for the Killing equation —i.e. a necessary
condition that needs to be satisfied by any solution.
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A brief survey of General Relativity Exact solutions

Spherical symmetry

Spherical symmetry in a nutshell:

An important type of symmetry is given by the so-called spherical
symmetry.

There exists a 3-dimensional group of symmetries with 2-dimensional
spacelike orbits.

Each orbit is an homogeneous and isotropic manifold.

The orbits are required to be compact and to have constant positive
curvature.
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A brief survey of General Relativity Exact solutions

The Schwarzschild spacetime

The metric in standard coordinates:

In standard coordinates (t, r, θ, ϕ) by the expression

g = −
Å

1− 2m

r

ã
dt2 +

Å
1− 2m

r

ã−1

dr2 + r2(dθ2 + sin2 θdϕ2).

This solution is spherically symmetric and static —i.e. time independent.

The Schwarzschild solution is of particular interest as it gives the simplest
example of a black hole. The spacetime manifold can be explicitly verified to
be singular at r = 0. This singularity is hidden behind a horizon.
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A brief survey of General Relativity Exact solutions

Properties of the Schwarzschild spacetime

Rigidity results:

The Schwarzschild spacetime satisfies a number of rigidity properties —i.e.
certain properties about solutions to the Einstein field equations immediately
imply other properties.

Staticity can be obtained from the assumption of spherical symmetry —the
Birkhoff theorem: any spherically symmetric solution to the vacuum field
equations is locally isometric to the Schwarzschild solution

The Schwarzschild solution can be characterised as the only static solution of
the vacuum field equations satisfying a certain (reasonable) behaviour at
infinity —asymptotic flatness: the requirement that asymptotically, the
metric behaves like the Minkowski metric. This result is known as the
no-hair theorem.
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A brief survey of General Relativity Exact solutions

Other exact solutions (I)

The Kerr spacetime:

In order to obtain more exact solutions reduce the number of symmetries
—accordingly the task of finding solutions becomes harder.

A natural assumption is to look for axially symmetric and stationary
solutions.

stationarity is a form of time independence which is compatible with the
notion of rotation —to be seen in more detail.

The above assumptions lead to the Kerr spacetime describing a time
independent rotating black hole.
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A brief survey of General Relativity Exact solutions

Other exact solutions (II)

Surveys of exact solutions:

Although there are a huge number of explicit solutions to the Einstein field
equation —see e.g. [Stephani et al], the number of solutions with a
physical/geometric relevance is much more restricted.

For a discussion of some of the physically/geometrically important solutions
see e.g. [Griffiths & Podolski].

For exact solutions describing isolated systems which are time dependent,
there are no known solutions without some sort of pathology.
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A brief survey of General Relativity Exact solutions

Abstract analysis of the Einstein field equations

An alternative to exact solutions:

Use the general features and structure of the equations to assert existence in
an abstract sense.

Proceed in the same way to establish uniqueness and other properties of the
solutions.

In this way can explore more systematically the space of solutions to the
theory.

After this of analysis has been carried out one can proceed to construct
solutions numerically.
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The Einstein equation as a wave equation

Introduction:

A strategy:

A strategy to study generic solutions to the Einstein field equations is to
formulate an initial value problem (Cauchy problem) for the Einstein field
equations.

In order to do so, one needs to bring the equations to some standard form in
which the methods of the theory of partial differential equations can be
applied.

One expects the Einstein equations to imply some evolution process.

Suitable equations describing evolutive processess are wave equations.
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The Einstein equation as a wave equation The scalar wave equation
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The Einstein equation as a wave equation The scalar wave equation

The scalar wave equation (I)

The problem:

On a spacetime (M, gab) consider the wave equation with respect to the
metric gab —i.e.

�φ ≡ ∇a∇aφ = 0.

In local coordinates it can be shown that

�φ =
1√
− det g

∂µ
Ä√
− det g gµν∂νφ

ä
.

Principal part:

The principal part of the equation corresponds to the terms containing the
highest order derivatives of the scalar field φ:

gµν∂µ∂νφ.

The structure in this expression is particular of a class of partial differential
equations known as hyperbolic equations.
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The Einstein equation as a wave equation The scalar wave equation

The scalar wave equation (II)

The scalar wave in Minkowski spacetime

The most well known hyperbolic equation is the wave equation on the
Minkowski spacetime.

In standard Cartesian coordinates one has that

�φ = ηµν∂µ∂νφ = ∂2xφ+ ∂2y + ∂2zφ− ∂2t φ = 0.

Cauchy problem for the wave equation

The Cauchy problem for the wave equations and more generally hyperbolic
equations is well understood at least in a local setting.

If one prescribes the field φ and its derivative ∂µφ at some fiduciary instant
of time t = 0, then the equation �φ = 0 has a solution for suitably small
times (local existence).

This solution is unique in its existence interval and it has continuous
dependence on the initial data.

The solution exhibits finite speed propagation.
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The Maxwell equations (I)

The source free equations:

A useful model to discuss certain issues arising in the Einstein field equations
are the source-free Maxwell equations:

∇aFab = 0, ∇[aFbc] = 0,

where Fab = −Fab is the Faraday tensor.

A solution to the second Maxwell equation is given by

Fab = ∇aAb −∇bAa,

where Aa is the so-called gauge potential.

Gauge freedom:

The gauge potential does not determine the the Faraday tensor in a unique
way as Aa +∇aφ with φ as scalar field gives the same Fab.
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The Maxwell equations (II)

An evolution equation for the gauge potential:

Substituting into the first Maxwell equation one has that

0 = ∇a (∇aAb −∇bAa)

= ∇a∇aAb −∇a∇bAa.

Using the commutator

∇a∇bAc −∇b∇aAc = −RdcabAd

one concludes that

∇a∇aAb −∇b∇aAa −RabAa = 0.

Under what circumstances one can assert the existence of solutions to the
last equation on a smooth spacetime (M, gab)? Note that the principal part
is given by:

∂µ∂µAν − ∂ν∂µAµ.
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The Maxwell equations (III)

Exploiting the gauge freedom:

Making the replacement Aν → Aν +∇νφ, with φ chosen such that

∇µ∇µφ = −∇µAµ (1)

one obtains that
∇µAµ → ∇µAµ +∇µ∇µφ = 0.

Equation (1) is to be interpreted as a wave equation for φ with source term
given by −∇µAµ. One says that the gauge potential is in the Lorenz gauge
and it satisfies the wave equation

∇µ∇µAν = RµνAµ. (2)

Equations (1)-(2) are manifestly hyperbolic so that local existence is obtained
provided that suitable initial data is provided.

The initial data consists of φ, ∇µφ, Aν and ∇µAν at some initial time.
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The Einstein equations (I)

The EFE in general coordinates:

Given general coordinates (xµ), the Ricci tensor Rab can be explicitly written
in terms of the components of the metric tensor gµν and its first and second
partial derivatives as

Rµν = 1
2

3∑
λ,ρ=0

(
∂λ
(
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν)

)
− ∂ν

(
gλρ∂µgλρ

))
+ 1

4

3∑
λ,ρ,σ,τ=0

Å
gστgλρ (∂σgρτ + ∂ρgστ − ∂τgσρ) (∂νgµλ + ∂µgλν − ∂λgµν)

−gρσgλτ (∂νgλσ + ∂λgνσ − ∂σgνλ) (∂σgµτ + ∂µgστ − ∂τgσµ)

ã
,

where gλρ = (det g)−1pλρ with pλρ polynomials of degree 3 in gµν .

The vacuum Einstein field equation implies a second order quasilinear
partial differential equations for the components of the metric tensor.
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The Einstein equations (II)

A more useful form of the equations:

By recalling the formula for the Christoffels symbols in terms of partial
derivatives of the metric tensor

Γνµλ = 1
2g
νρ(∂µgρλ + ∂λgµρ − ∂ρgµλ),

and by defining
Γν ≡ gµλΓνµλ,

one can rewrite Rµν more concisely as

Rµν = − 1
2g
λρ∂λ∂ρgµν +∇(µΓν) + gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ .
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The Einstein equations (II)

The principal part of the Einstein equations:

The principal part of the vacuum Einstein field equation can be readily be
identified to be

− 1
2g
λρ∂λ∂ρgµν +∇(µΓν).

Wave coordinates:

Require the coordinates (xµ) to satisfy the equation

∇ν∇νxµ = 0,

where the coordinates xµ are treated as a scalar field over M.

A direct computation shows that

∇νxµ = ∂νx
µ = δν

µ,

∇λ∇νxµ = ∂λδν
µ − Γρλνδρ

µ = −Γµνλ,

so that
∇ν∇νxµ = gνλΓµνλ = −Γµ.
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The Einstein equations (III)

Hyperbolic reduction of the equations:

If suitable initial data is provided for the wave equation ∇ν∇νxµ = 0 —the
coordinate differentials dxa have to be chosen initially to be point-wise
independent— then general theory of hyperbolic differential equations
ensures the existence of a solution.

It follows then that
Γµ = 0.

The reduced Einstein field equation takes the form

gλρ∂λ∂ρgµν − 2gλρg
στΓλσµΓρτν − 4Γσλρg

λτgσ(µΓρν)τ = 0

One obtains a system of quasilinear wave equations for the components of
the metric tensor gµν .

The local Cauchy problem with appropriate data is well-posed —one can
show the existence and uniqueness of solutions and their stable dependence
on the data.
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The Einstein equations (IV)

Some remarks:

The system of equations is called the reduced Einstein field equations and
the procedure a hyperbolic reduction.

For the reduced equation one readily has a developed theory of existence and
uniqueness available.

The introduction of a specific system of coordinates breaks the tensorial
character of the Einstein field equations.

Given a solution to the reduced Einstein field equations, the latter will also
imply a solution to the actual EFE as long as (xµ) satisfy the equation
∇ν∇νxµ = 0. This requires some delicate analysis —to be seen later.

The domain on which the coordinates (xµ) form a good coordinate system
depends on the initial data prescribed and the solution gµν itself. There is
little that can be said a priori about the domain of existence of the
coordinates.

The data for the reduced equation consists of a prescription of gµν and ∂λgµν
at some initial time t = 0. The next step in our discussion is to
understand the meaning of this data.
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