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1 Introduction

General Relativity is described as the flagship of Mathematical Physics. The study of the math-
ematical properties of the solutions to the equations of General Relativity —the Einstein field
equations— has experienced a great development in recent years. Work in this area has been
based on a systematic use of the so-called initial value problem for the Einstein field equa-
tions. As such, it requires the use of ideas and techniques from various branches of Mathematics
—especially Differential Geometry and Partial Differential Equations (elliptic and hyperbolic).
Current mathematical challenges in the area include the analysis of the global existence of so-
lutions to the Einstein field equations, the uniqueness of stationary black holes, the non-linear
stability of the Kerr spacetime, and the construction of initial data sets of geometrical or physical
interest.

The main objective of these notes is to present a discussion of General Relativity as an initial
value problem.

2 An review of Differential Geometry

The natural language of General Relativity is that of Differential Geometry. These notes start
with a general overview of its key ideas.

2.1 Manifolds

The basic concept in Differential Geometry is that of a differentiable manifold (or manifold for
short). A rigorous definition will not be presented here —the interested reader is referred to e.g.
[4]. In broad terms, a manifold M is a topological space that can be covered by a collection
of charts (U , φ) where U ⊂ M is an open subset and φ : U → Rn for some n is a smooth
injective mapping. In what follows, for simplicity and unless otherwise stated, it is assumed
that all structures are smooth. The notion of a manifold requires certain compatibility between
overlapping charts. Given p ∈ U one writes

φ(p) = (x1, . . . , xn)
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and the (xµ) = (x1, . . . , xn) are called the local coordinates on U . An important property for a
manifold to possess is orientability. A manifold M is said to be orientable if the Jacobian of the
transformation between overlapping charts is positive. In these notes, attention will be restricted
to manifolds of dimensions 4 and 3.

A scalar field over M is a smooth function f :M→ R. The set of scalar fields over M will
be denoted by X(M).

2.2 Curves and vector fields

A curve is a smooth map γ : I →M with I ⊂ R an interval. In terms of coordinates (xµ) defined
over a chart of M one writes the curve as

xµ(λ) = (x1(λ), . . . , xn(λ)),

where λ ∈ I is the parameter of the curve.
Closely related to the notion of a curve is the concept of a tangent vector. It formalises the

physical notion of velocity. In local coordinates, the tangent vector to the curve xµ(λ) is given by

vµ =
dxµ

dλ
.

In modern Differential Geometry one identifies vectors with homogeneous first order differential
operators acting of scalar fields over M. This approach allows to encode in a simple manner the
“classical” transformation properties of vectors. Following this perspective, in local coordinates
a vector field will be written as vµ∂µ.

In what follows, we will make use of the abstract index notation to denote vectors and tensors.
A generic vector will in this formalism denoted as va. The role of the superindex in this notation
is to indicate the character of the object in question. When we refer to the components of va in
some coordinate system (xµ) we will write vµ —i.e. greek indices will be used.

The set of vectors at a point p ofM is called the tangent space TpM. A smooth prescription
of a vector at every point ofM is called a vector field. The collection of all tangent spaces onM
is called the tangent bundle and will be denoted by TM.

2.3 Covectors and higher rank tensors

When woking with vectors it is natural to consider functions of vectors. A real-valued linear
function of a vector is called a covector (or 1-form). Using abstract index notation a covector
will be denoted by ωa. The action of ωa on va will be denoted by ωav

a. Notice that if ωa and va

are, respectively, covector and vector fields over M, then ωav
a ∈ X(M). The set of covectors at

a point p ∈ M is called the cotangent space T ∗M. The set of all cotangent spaces on M is the
cotangent bundle T ∗M.

Given the notions of vectors and covectors, higher rank objects (tensors) can be constructed by
analogy. A vector can be thought as a real-valued function of a covector —that is, the definitions
of vectors and covectors are dual. This idea can be generalised so as to consider real-valued
functions of m covectors and n vectors that are linear in all their arguments. This object will be
known as a tensor of type (m,n). For example, using abstract index notation, a tensor T abc is of
type (2, 1). Traditionally, “upper” indices in a tensor are called contravariant while “down” ones
are called covariant.

A tensor is symmetric if it remains unchanged under the interchange of two of its arguments
—i.e. Tab = Tba. Similarly, a tensor is antisymmetric if it changes sign with an interchange of a
pair of arguments as in Sabc = −Sacb. The symmetric and antisymmetric parts of a tensor can
be constructed by adding together all possible permutations with the appropriate signs: positive
for the symmetric part and positive or negative for the antisymmetric part depending on whether
the permutation is even or odd. For example

T(ab) ≡
1

2
(Tab + Tba), T[ab] ≡

1

2
(Tab − Tba).
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2.4 Manifolds with metrics

A metric on M is a symmetric (0, 2) tensor field gab. The metric is said to be non-degenerate if
gabu

avb = 0 for all ua if and only if va = 0. In what follows, we will only consider non-degenerate
metrics. The metric allows to encode the geometric notions of orthogonality and norm of a vector.
The norm of a vector is given by |v|2 ≡ gabvavb. Moreover, if gabv

aua = 0, then va and ua are said
to be orthogonal. In terms of a coordinate system (xµ) the components of gab —to be denoted
by gµν can be regarded as a n × n matrix. Because this matrix is symmetric one has n real
eigenvalues. The signature of gab is the difference between the number of positive and negative
eigenvalues. If the signature is ±n then one has a Riemannian metric. If the signature is ±(n−2)
then the metric is said to be Lorentzian.

A metric gab can be used to define a one-to-one correspondence between vectors and covectors.
In local coordinates denote by gµν the inverse of gµν . This defines a (2, 0) tensor which we denote
by gab. By construction gabg

bc = δa
c where δa

c is the Kroneker delta. Given a vector va one
defines va ≡ gabva. Similarly, given a covector ωa one can define ωa ≡ gabωb.

2.4.1 Remarks involving Lorentzian metric

In these notes all Lorentzian metrics will live on a 4-dimensional manifold and will be assumed
to have signature 2 —that is, one has on negative eigenvalue and 3 positive ones. A Lorentzian
metric can be used to classify vectors according to the sign of their norm. A vector va is said to
be timelike, null or spacelike according to whether gabv

avb is negative, zero or positive.

2.5 Covariant derivatives

A covariant derivative is a notion of differentiation with tensorial properties. A precise definition
will not be discussed here. A metric gab allows to define a canonical covariant derivative ∇a over
M —the so-called Levi-Civita connection. The covariant derivative of a vector va is denoted by
∇avb. Similarly, for a covector ωb one writes ∇aωb. Explicit formulae in terms of local coordinates
involve the so-called Christoffel symbols

Γµνλ =
1

2
gµρ(∂νgρλ + ∂λgνρ − ∂ρgνλ).

Notice that Γµνλ = Γµλν . The Christoffel symbols do not define a tensor. In a neighbourhood
of any p ∈M there is a coordinate system (normal coordinates) in which the components of the
Christoffel symbols vanish at p. In terms of the Christoffel one defines the components of ∇avb
as

∇µvν ≡ ∂µvν + Γνλµv
λ.

From this expression the covariant derivative of a covector ωa can be deduced:

∇µων = ∂µων − Γλνµωλ.

More generally, one has, for example, that

∇µT νλρ = ∂µT
ν
λρ + ΓνσµT

σ
λρ − ΓσλµT

ν
σρ − ΓσρµT

ν
λσ.

The Levi-Civita connection is defined in such a way that ∇agbc = 0 —as it can be verified by an
explicit computation.

An important class of curves is given by geodesics. If va denotes the tangent vector to a curve
γ : I →M, then the curve is a (metric) geodesic if and only if

va∇avb = fvb,

with f some function of the parameter of the curve λ. In the case f = 0, the parameter is called
affine. More generally, a vector field ua defined along a curve γ with tangent va is said to be
parallely transported along γ if va∇aub = 0. Thus, an affinely parametrised geodesic is precisely
one whose tangent vector is parallely transported along itself. An affine parameter is unique up
to an affine transformation λ 7→ aλ+ b for constants a and b.
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2.6 Curvature

In this section it is assumed that ∇a is the Levi-Civita connection of a metric gab. The notion of
curvature arises in a natural way from the commutator of covariant derivatives acting on a vector
va. More precisely, one has that

∇a∇bvc −∇b∇avc = Rcdabv
d, (1)

where Rcdab is the Riemann curvature tensor. From equation (1) one can deduce the correspond-
ing commutator of covariant derivatives for a covector. Namely, one finds that

∇a∇bωc −∇b∇aωc = −Rdcabωd.

These expressions can be generalised in a natural way to higher rank tensors.
In terms of local coordinates (xµ) the components of the Riemann tensors can be written as

Rµνλρ = ∂λΓµνρ − ∂ρΓµνλ + ΓµλσΓσνρ − ΓµρσΓσνλ.

Taking traces of Rabcd one defines the Ricci tensor Rbd ≡ Rabad and Ricci scalar R ≡ gabRab.
It is also customary to define the Einstein tensor

Gab = Rab −
1

2
Rgab.

The Riemann tensor satisfies the following symmetries:

Rabcd = −Rbacd = −Rabdc = Rbadc,

Rabcd = Rcdab,

Rabcd +Racdb +Radbc = 0.

The last of these identities is known as the first Bianchi identity. In addition, the Riemann tensor
satisfies a differential identity, the second Bianchi identity :

∇aRbcde +∇bRcade +∇cRabde = 0.

Contracting twice this identity with the metric shows that ∇aGab = 0.

2.7 Lie derivatives

Another type of derivative on a manifold which is defined in an invariant way is the so-called Lie
derivative. This derivative measures the change of a tensor as it is transported along the direction
prescribed by a vector field va and it is denoted by Lv. The Lie derivative of a tensor T abc is
given in coordinates by

LvTµλρ = vσ∂σT
µ
λρ − ∂σvµTσλρ + ∂λv

σTµσρ + ∂ρv
σTµλσ,

and can be verified to be a tensor. Lie derivatives of other tensors can be defined in an analogous
way.

3 Survey of General Relativity

General Relativity is a relativistic theory of gravity. It describes the gravitational interaction
as a manifestation of the curvature of spacetime. One of the key tenets of General Relativity is
that both matter and energy produce curvature of the spacetime. The way matter and energy
produce curvature in spacetime is described by means of the Einstein field equations. One of the
main properties of the gravitational field as described by General Relativity is that it can be a
source of itself —this is a manifestation of the non-linearity of the Einstein field equations. This
property gives rise to a variety of phenomena that can be analysed by means of the so-called
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vacuum Einstein field equations without having to resort to any further considerations about
matter sources.

As it is the case of many other physical theories, General Relativity admits a formulation
in terms of an initial value problem (Cauchy problem) whereby one prescribes the geometry of
spacetime at some instant of time and then one purports to reconstruct it from the initial data.
Part of the the task in the construction of the initial problem in General Relativity is to make
sense of what it means to prescribe the geometry of spacetime at at instant of time. A second
part of the task is to show how the spacetime is to be reconstructed from the data. The initial
value problem is the core of the area of research broadly known as mathematical Relativity —an
area of active research with a number of interesting and challenging open problems.

Before turning the attention to the initial value problem in General Relativity, it is convenient
to provide a survey of the key ideas in General Relativity to see why a discussion of the Cauchy
problem is necessary/helpful.

3.1 The Einstein field equations

General Relativity postulates the existence of a 4-dimensional manifold M, the spacetime man-
ifold which contains events as points. This spacetime manifold is endowed with a Lorentzian
metric gab which in these lectures is assumed to have signature +2 —i.e. (− + ++). By a
spacetime it will understood the a pair (M, gab) where the metric gab satisfies the Einstein field
equations

Rab −
1

2
Rgab + λgab = Tab. (2)

In the previous equation λ denotes the so-called Cosmological constant while Tab is the energy-
momentum tensor of the matter model under consideration and it encodes the information about
the matter. The main goal of mathematical General Relativity is to obtain a qualitative under-
standing of the solutions to the Einstein field equations.

The conservation of energy-momentum is encoded in the condition

∇aTab = 0. (3)

The conservation equation (3) is consistent with the Einstein field equations as a consequence of
the second Bianchi identity. More precisely, one has that

∇a
Å
Rab −

1

2
Rgab + λgab

ã
= 0.

In these notes the focus will be on systems describing isolated bodies so that henceforth we
assume that λ = 0. Moreover, attention is restricted to the vacuum case for which Tab = 0. The
vacuum equations apply in the exterior region to an astrophysical source, but they usefulness is
not restricted to this. There exist “stand alone” vacuum configurations —like for example, black
holes. A direct calculation in the vacuum case with vanishing Cosmological constant allows to
rewrite the Einstein field equations (2) as

Rab = 0. (4)

The field equations prescribe the geometry of spacetime locally. However, they do not prescribe
the topology of the spacetime manifold.

The geometry of the spacetime can be probed by means of the movement of test particles:
General Relativity postulates that massive test particles move along timelike geodesics while rays
of light follow null geodesics.

3.2 Exact solutions to the Einstein field equations

Given the vacuum field equations (4), a natural question to ask is whether there are any solutions.
What should one understand for a solution to equation (4)? In first instance, a solution is given
by a metric gab expressed in a specific coordinate system (xµ) —in what follows we will write this
as gµν . Exact solutions are our main way of acquiring intuition about the behaviour of generic
solutions to the Einstein field equations.
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3.2.1 The Minkowski spacetime

The simplest example of a solution is given by the metric encoded in the line element

g = ηµνdxµdxν , ηµν = diag(−1, 1, 1, 1). (5)

One clearly verifies that for this metric Rµνλρ = 0 so that Rµν = 0. As Rµν are the components
of a tensor in a specific coordinate system one concludes then Rab = 0. Thus, any metric related
to (5) by a coordinate transformation is a solution to the vacuum field equation (4). Accordingly,
one has obtained a tensor field gab satisfying the equation (4).

The previous example shows that as a consequence of the tensorial character of the Einstein
field equations a solution to the equations is, in fact, an equivalence class of solutions related to
each other by means of coordinate transformations.

3.2.2 Symmetry assumptions

In order to find further explicit solutions to equation (4) one needs to make some sort of assump-
tions about the spacetime. A standard assumption is that the spacetime has continuous symme-
tries. The notion of a continuous symmetry is formalised by the concept of a diffeomorphism.
A diffeomorphism is a smooth map φ of M onto itself. One can think of the diffeomorphism in
terms of displacements of points in the manifold along curves in the manifold —these curves are
called the orbits of the symmetry. In what follows, let ξa denote the tangent vector to the orbits.
The mapping φ is called an isometry if Lξgab = 0 —that is, if the symmetry leaves the metric
invariant. One can verify that this condition implies the equation

∇aξb +∇bξa = 0. (6)

This equation is called the Killing equation. An important observation about this equation is
that it is overdetermined —this means that it does not admit a solution for a general spacetime.
In other words, the existence of a solution imposes restrictions on the manifold. This can be best
understood by considering integrability conditions for equation (6). Given the commutator

∇a∇bξc −∇b∇aξc = −Rdcabξd,

using equation (6) one obtains that

∇a∇bξc +∇b∇cξa = −Rdcabξd.

Shuffling the indices in a cyclic way one obtains the further equations

∇c∇aξb +∇a∇bξc = −Rdbcaξd, ∇b∇cξa +∇c∇aξb = −Rdabcξd.

Adding the first two equations and subtracting the third one one gets

2∇a∇bξc = (Rdabc −Rdcab −Rdbca)ξd.

Finally, using the first Bianchi identity one has that −Rdcab = Rdabc +Rdbca so that

∇a∇bξc = Rdabcξd. (7)

This is an integrability condition for a solution to the Killing equation —i.e. a necessary condition
that needs to be satisfied by a solution to (6). It shows that if one has a solution to the Killing
equation, then the curvature of the spacetime is restricted.

An important type of symmetry is the so-called spherical symmetry. In broad terms, this
means that there exists a 3-dimensional group of symmetries with 2-dimensional spacelike orbits.
Each orbit is an homogeneous and isotropic manifold. The orbits are required to be compact and
to have constant positive curvature.
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3.2.3 The Schwarzschild solution

Arguably, the most important solution to the vacuum Einstein field equations is the Schwarzschild
spacetime, given in standard coordinates (t, r, θ, ϕ) by the line element

g = −
Å

1− 2m

r

ã
dt2 +

Å
1− 2m

r

ã−1
dr2 + r2(dθ2 + sin2 θdϕ2). (8)

This solution is spherically symmetric and static —i.e. time independent, as it can be seen by
direct inspection of the metric. In a later section we will further elaborate on the notion of static
solutions. For a discussion of the interpretation and basic properties of this solution, the reader
is referred to Wald’s book [?]. Here we make some remarks which will motivate subsequent topics
of this notes. The first one is that staticity can be obtained as a consequence of the assumption
of spherical symmetry —this is usually called the Birkhoff theorem: any spherically symmetric
solution to the vacuum field equations is locally isometric to the Schwarzschild solution (8). The
second observation is that the Schwarzschild solution can be characterised as the only solution
of the vacuum equations (4) satisfying a certain (reasonable) behaviour at infinity —asymptotic
flatness: the requirement that asymptotically, the metric behaves like the Minkowski metric. This
result is known as the no-hair theorem. The Birkhoff and no-hair theorems constitute examples
of a type of results for solutions to the Einstein field equations known as rigidity theorems —
these show that under assuming certain properties about solutions to the Einstein field equations
immediately imply other properties.

The Schwarzschild solution is of particular interest as it gives the simplest example of a black
hole. The spacetime manifold can be explicitly verified to be singular at r = 0. This singularity
is hidden behind a horizon.

3.2.4 Other solutions to the Einstein field equations

A natural question is: are there other further exact solutions? The simple direct answer is in the
affirmative. To obtain more solutions the natural strategy is to reduce the number of symmetries
—accordingly the task of finding solutions becomes harder. A natural assumption is to look for
axially symmetric and stationary solutions —stationarity is a form of time independence which is
compatible with the notion of rotation. This assumption leads to the Kerr spacetime describing
a time independent rotating black hole. The notion of stationarity will be elaborated in a later
section.

At this point, the construction of solutions by means of symmetries reaches an impasse.
Although there are a huge number of explicit solutions to the Einstein field equation —see e.g.
the monograph [11]— the number of solutions with a physical/geometric relevance is much more
restricted —for a discussion of some of the physically/geometrically important solutions see e.g.
[6].

3.2.5 Abstract analysis of the Einstein field equations

An alternative to the analysis of solutions to Einstein field equations by means of the construction
of exact solutions is to us the general features and structure of the equations to assert existence
in an “abstract sense”. This approach can be further employed to establish uniqueness and other
properties of the solutions. This approach to Relativity has been strongly advocated in e.g. [8].
After this type of analysis has been carried out one can proceed to construct solutions numerically.

4 A first look at the Cauchy problem in General Relativity

A strategy to pursue the programme described in the previous paragraph is to formulate an initial
value problem (Cauchy problem) for the Einstein field equations. To see what sort of issues are
involved in this, it is convenient to look at a similar discussion in simpler equations.

All throughout one assumes one has a spacetime (M, gab).
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4.1 The initial value problem for the scalar wave equation

In first instance consider the wave equation �φ ≡ ∇a∇aφ = 0 with respect to the metric gab. In
local coordinates it can be shown that

�φ =
1√
− det g

∂µ
Ä√
− det g gµν∂νφ

ä
. (9)

The principal part of the equation �φ = 0 corresponds to the terms in (9) containing the highest
derivatives of the scalar field φ —namely

gµν∂µ∂νφ.

The structure in this expression is particular of a class of partial differential equations known as
hyperbolic equations. The prototypical hyperbolic equation is the wave equation on the Minkowski
spacetime. In standard Cartesian coordinates one has that

�φ = ηµν∂µ∂νφ = ∂2xφ+ ∂2y + ∂2zφ− ∂2t φ = 0.

The Cauchy problem for the wave equations and more general hyperbolic equations is well
understood in a local setting. Roughly speaking this means that if one prescribes the field φ and
its derivative ∂µφ at some fiduciary instant of time t = 0, then the equation �φ = 0 has a solution
for suitably small times (local existence). Moreover, this solution is unique in its existence interval
and it has continuous dependence on the initial data. The question of global existence is much
more challenging and, in fact, an open issue for general spacetimes (M, gab).

4.2 The Maxwell equations as wave equations

A useful model to discuss certain issues arising in the Einstein field equations are the source-free
Maxwell equations:

∇aFab = 0, ∇[aFbc] = 0, (10)

where Fab = −Fab is the Faraday tensor. A solution to the second Maxwell equation is given by

Fab = ∇aAb −∇bAa, (11)

where Aa is the so-called gauge potential. This statement can be verified by means of a direct
computation. The gauge potential does not determine the the Faraday tensor in a unique way
as Aa +∇aφ with φ as scalar field gives the same Fab. Substituting equation (11) into the first
Maxwell equation one has that

0 = ∇a (∇aAb −∇bAa)

= ∇a∇aAb −∇a∇bAa.

Now, using the commutator∇a∇bAc−∇b∇aAc = −RdcabAd it follows that∇a∇bAa = ∇b∇aAa+
RdbAd so that one concludes that Ab satisfies the equation

∇a∇aAb −∇b∇aAa −RabAa = 0. (12)

The question is now: under what circumstances one can assert the existence of solutions to
equation (12) on a smooth spacetime (M, gab). The principal part of equation of equation (12)
is given by

∂µ∂µAν − ∂ν∂µAµ.

The key observation is that if one could remove the second term in the principal part, one would
have the same principal part as for a wave equation for the components of Aa. The gauge freedom
of the Maxwell equations can be exploited to this end. Making the replacement Aν → Aν +∇νφ,
with φ chosen such that

∇µ∇µφ = −∇µAµ (13)
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one obtains that
∇µAµ → ∇µAµ +∇µ∇µφ = 0.

Equation (13) is to be interpreted as a wave equation for φ with source term given by −∇µAµ.
One says that the gauge potential is in the Lorenz gauge and it satisfies the wave equation

∇µ∇µAν = RµνAµ. (14)

In order to assert existence to the Maxwell equations one then considers the system of wave
equations (13)-(14). These equations are manifestly hyperbolic so that local existence is obtained
provided that suitable initial data is provided. This initial data consists of the values of φ, ∇µφ,
Aν and ∇µAν at some initial time.

4.3 The Einstein field equations in wave coordinates

In order to provide a first discussion of the Cauchy problem for the Einstein field equations, we
start by observing that given general coordinates (xµ), the Ricci tensor Rab can be explicitly
written in terms of the components of the metric tensor gµν and its first and second partial
derivatives as

Rµν =
1

2

3∑
λ,ρ=0

(
∂λ
(
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν)

)
− ∂ν

(
gλρ∂µgλρ

))
+

1

4

3∑
λ,ρ,σ,τ=0

Å
gστgλρ (∂σgρτ + ∂ρgστ − ∂τgσρ) (∂νgµλ + ∂µgλν − ∂λgµν)

−gρσgλτ (∂νgλσ + ∂λgνσ − ∂σgνλ) (∂σgµτ + ∂µgστ − ∂τgσµ)

ã
, (15)

where gλρ = (det g)−1pλρ with pλρ polynomials of degree 3 in gµν . The summation symbols have
been included in the above expression for the sake of clarity. Thus, the vacuum Einstein field
equation implies a second order quasilinear partial differential equations for the components of
the metric tensor. As (15) is a second order differential equation for gµν one may hope it is
possible to recast it in the form of some type of wave equation. As it will be seen, this involves a
coordinate specification.

By recalling the formula for the Christoffels symbols in terms of partial derivatives of the
metric tensor

Γνµλ =
1

2
gνρ(∂µgρλ + ∂λgµρ − ∂ρgµλ),

and by defining
Γν ≡ gµλΓνµλ,

one can rewrite the formula (15) more concisely as

Rµν = −1

2
gλρ∂λ∂ρgµν +∇(µΓν) + gλρg

στΓλσµΓρτν + 2Γσλρg
λτgσ(µΓρν)τ . (16)

In this form, the principal part of the vacuum Einstein field equation (4) can be readily be
identified to be given by the terms

−1

2
gλρ∂λ∂ρgµν +∇(µΓν).

An approach to the construction of systems of coordinates (xµ) which, in turn, leads to
a suitable hyperbolic equation for the components of the metric tensor gab is to require the
coordinates to satisfy the equation

∇ν∇νxµ = 0, (17)
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where the coordinates xµ are treated as a scalar field over M. A direct computation then shows
that

∇νxµ = ∂νx
µ = δν

µ,

∇λ∇νxµ = ∂λδν
µ − Γρλνδρ

µ = −Γµνλ,

so that
∇ν∇νxµ = gνλΓµνλ = −Γµ. (18)

If suitable initial data is provided for equation (18) —the coordinate differentials dxa have to
be chosen initially to be point-wise independent— then general theory of hyperbolic differential
equations ensures the existence of a solution to equation (17), and as a result of equation (18)
then

Γµ = 0.

Thus, by a suitable choice of coordinates, the contracted Christoffel symbols Γµ can be locally
made to vanish. This construction determines the coordinates uniquely.

Using the wave coordinates described in the previous section, equation (16) takes the form

gλρ∂λ∂ρgµν − 2gλρg
στΓλσµΓρτν − 4Γσλρg

λτgσ(µΓρν)τ = 0 (19)

that is, one obtains a system of quasilinear wave equations for the components of the metric
tensor gµν . For this system, the local Cauchy problem with appropriate data is well-posed —one
can show the existence and uniqueness of solutions and their stable dependence on the data —see
e.g. [5]. This system of equations is called the reduced Einstein field equations. Similarly, the
procedure leading to it is called a hyperbolic reduction of the Einstein vacuum equations. It is
worth stressing the the relevance of obtaining a reduced version of the Einstein field equations
in a manifestly hyperbolic form is that for these equations one readily has a developed theory of
existence and uniqueness available. The introduction of a specific system of coordinates via the
use of wave coordinates breaks the tensorial character of the Einstein field equations (4). Given
a solution to the reduced Einstein field equations, the latter will also imply a solution to the
actual equations as long as the coordinates xµ satisfy equation (18) for the chosen coordinate
source function appearing in the reduced equation. Thus, the standard procedure to prove local
existence of solutions to the Einstein field equation with prescribed initial data is to show first
the existence for a particular reduction of the equations and then prove, afterwards, that the
coordinates that have been used satisfy the coordinate condition (18). This argument will be
detailed in a subsequent section once other issues have been addressed.

The domain on which the coordinates (xµ) form a good coordinate system depends on the
initial data prescribed and the solution gµν itself. Since the information on gµν is only obtained
by solving equation (18), there is little that can be said a priori about the domain of existence
of the coordinates.

The data for the reduced equation (19) consists of a prescription of gµν and ∂λgµν at some
initial time t = 0.

4.4 The propagation of the wave coordinates condition

To conclude the discussion it is now shown that under suitable conditions the reduced Einstein
equations imply a solution of the actual Einstein field equations. This in fact, is equivalent to
showing that if the contracted Christoffel symbols Γµ ≡ gνλΓµνλ vanish initially, then they also
vanish at any later time.

The starting point of this discussion is the observation that the reduced Einstein field equations
can be written as

Rµν = ∇(µΓν).

Now, using the contracted Bianchi identity

∇µ(Rµν −
1

2
Rgµ) = 0,

10



it follows that
�Γµ +RνµQµ = 0.

This is a wave equation for the contracted Christoffel symbol. In view of its homogeneity, if

Γµ = 0, ∇νΓµ = 0, at t = 0, (20)

then Γµ = 0 at later times and accordingly Rµν = 0. That is, one has a solution to the Einstein
field equations.

5 The 3 + 1 decomposition in General Relativity

In order to understand the structure of the initial value problem in General Relativity one has to
do break the covariance of the theory and introduce a privileged time direction which, in turn, is
used to decompose the equations of the theory.

5.1 Submanifolds of spacetime

Intuitively, a submanifold of M, is a set N ⊂ M which inherits a manifold structure from
M. The precise definition of a submanifold requires the concept of embedding —essentially
a map ϕ : N → M which is injective and structure preserving; in particular the restriction
ϕ : N → ϕ(N ) is a diffeomorphism. In terms of the above concepts, a submanifold N is the
image ϕ(N ) ⊂M of a k-dimensional manifold (k < n). Very often it is convenient to identify N
with ϕ(N ).

In what follows we will mostly be concerned with 3-dimensional manifolds. It is customary to
call these hypersurfaces. A generic hypersurfaces will be denoted by S.

5.2 Foliations of spacetime

The presentation in this section follows very closely that of [2] Section 2.3. In what follows, we
assume that the spacetime (M, gab) is globally hyperbolic. That is, we assume that its topology is
that of R×S, where S is an orientable 3-dimensional manifold. A slightly different way of saying
this is that the spacetime is assumed to be foliated by 3-manifolds (hypersurfaces) St, t ∈ R such
that

M =
⋃
t∈R
St,

where we identify the leaves St with {t} × S. It is assumed that the hypersurfaces St do not
intersect each other. It is customary to think of the hypersurface S0 as an initial hypersurface on
which the initial information giving rise to the spacetime is to be prescribed. Globally hyperbolic
spacetimes constitute the natural class of spacetime on which to pose an initial value problem for
General Relativity.

In what follows it will be convenient to assume that the hypersurfaces St arise as the level
surfaces of of a scalar function t which will be interpreted as a global time function. From t one
can define the the covector

ωa = ∇at.

By construction ωa denotes the normal to the leaves St of the foliation. The covector ωa is closed
—that is,

∇[aωb] = ∇[a∇b]t = 0.

From ωa one defines a scalar α called the lapse function via

gab∇at∇bt = ∇at∇at ≡ −
1

α2
.

The lapse measures how much proper time elapses between neighbouring time slices along the
direction given by the normal vector ωa ≡ gabωb. In what follows, it is assumed that α > 0.
Notice that ωa is assumed to be timelike so that the hypersurfaces St are spacelike.

11



In what follows we define the unit normal na via

na ≡ −αωa.

The minus sign in the last definition is chosen so that na points in the direction of increasing t.
One can readily verify that nana = −1. One thinks of na as the 4-velocity of a normal observer
whose worldline is always orthogonal to the hypersurfaces St.

The spacetime metric gab induces a 3-dimensional Riemannian metric hij on St —the indices

ij are being used here to indicate that the induced metric is an intrinsically 3-dimensional object.
The tensors gab and hij are related to each other via

hab ≡ gab + nanb.

Note that although hij is a 3-dimensional object, in the previous formula spacetime indices ab

are used —i.e. we regard the 3-metric as an object living on spacetime. One can also use hab to
measure distances within St. In order to see that hab is purely spatial —i.e. it has no component
along na— one contracts with the normal:

nahab = nagab + nan
anb = nb − nb = 0.

Intuition suggests that hab calculates the same distance as gab and then kills off the timelike
contribution —i.e. the components along nanb. The inverse 3-metric hab is obtained by raising
indices with

hab = gab + nanb

The 3-metric hab can be used as a projector tensor which projects all geometric objects
lying along na. Effectively, hab decomposes tensors into a purely spatial part which lies on the
hypersurfaces St and a timelike part normal to the hypersurface. In actual computations it is
convenient to consider

ha
b = δa

b + nan
b.

Given a tensor Tab its spatial part, to be denoted by T⊥ab, is defined to be

T⊥ab ≡ hachbdTcd.

One can also define a normal projector Na
b as

Na
b ≡ −nanb = δa

b − hab.

In terms of these operators an arbitrary projector can be decomposed as

va = δabv
b = (hb

a +Nb
a)vb = v⊥a − nanbvb.

The 3-metric hij defines in a unique manner a covariant derivative Di —the Levi-Civita
connection of hij . As in the previous paragraphs it is convenient to make use of a 4-dimensional
(spacetime) perspective so that we write Da. Following this point of view one requires Da to be
torsion-free and compatible with the metric hab. Taking this into account one defines for a scalar
φ

Daφ ≡ hab∇bφ,
and, say, for a (1, 1)-tensor

DaT
b
c ≡ hadhebhcf∇dT ef ,

with an obvious extension to other tensors. In coordinates, the covariant derivative Da is associ-
ated to the spatial Christoffel symbols

γµνλ =
1

2
hµρ(∂νhρλ + ∂λhνρ − ∂ρhνλ).

Being a covariant derivative, one can naturally associate a curvature tensor rabcd to Da by con-
sidering its commutator:

DaDbv
c −DbDav

c = rcdabv
d

One can verify that rcdabn
d = 0. Similarly, one can define the Ricci tensors and scalar as

rdb ≡ rcdcb, r ≡ gabrab.
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5.3 Extrinsic curvature

The Einstein field equation Rab = 0 imposes some conditions on the 4-dimensional Riemann
tensor Rabcd. Thus, in order to understand the implications of the Einstein equations one needs
to decompose Rabcd into spatial parts. This decomposition naturally involves rabcd, but there is
more to it as this last object is purely spatial and is computed directly from hab. Hence, rabcd
measures the intrinsic curvature of the hypersurface St. This tensor provides no information
about how St fits in (M, gab). The missing piece of information is contained in the so-called
extrinsic curvature.

The extrinsic curvature is defined as the following projection of the spacetime covariant deriva-
tive of the normal to St:

Kab ≡ −hachbd∇(cnd) = −hachbd∇cnd.

The second equality follows from the fact that na is rotation free —see the exercise sheet 2. By
construction, the extrinsic curvature is symmetric and purely spatial. It measures how the normal
to the hypersurface changes from point to point. As a consequence, the extrinsic curvature also
measures the rate at which the hypersurface deforms as it is carried along the normal.

A related concept to extrinsic curvature is that of the acceleration of a foliation

aa ≡ nb∇bna.

Using nd∇cnd = 0, one can compute

Kab = −hachbd∇cnd = −(δa
c + nan

c)(δb
d + nbn

d)

= −(δa
c + nan

c)δb
d∇cnd = −∇anb − naab.

An alternative expression of the extrinsic curvature is given in terms of the Lie derivative. To
obtain this one computes

Lnhab = Ln(gab + nanb) = 2∇(anb) + naLnnb + nbLnna
= 2(∇(anb) + n(aab)) = −2Kab.

A related object is the so-called mean curvature:

K ≡ gabKab = habKab.

One can compute (exercise):
K = −Ln(ln deth).

Thus the mean curvature measures the fractional change in 3-dimensional volume along the
normal na.

5.4 The Gauss-Codazzi and Codazzi-Mainardi equations

Given the extrinsic curvature of an hypersurface St, we now look how this relates to the curvature
of spacetime. A computation using the definitions of the previous section shows that

DaDbv
c = ha

phb
qhr

c∇p∇qvr −Kabhr
cnp∇pvr −Ka

cKbpv
p.

Combining with the commutator

DaDbv
c −DbDav

c = rcdabv
d,

after some manipulations one obtains

rabcd +KacKbd −KadKcb = ha
phb

qhc
rhd

sRpqrs. (21)

This equation is called the Gauss-Codazzi equation. It relates the spatial projection of the space-
time curvature tensor to the 3-dimensional curvature.
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A further important identity arises from considering projections of Rabcd along the normal
direction. This involves a spatial derivative of the extrinsic curvature. Namely,

DaKbc = ha
phb

qhc
r∇pKqr.

From this expression after some manipulations one can deduce

DbKac −DaKbc = ha
phb

qhc
rnsRpqrs. (22)

This equation is called the Codazzi-Mainardi equation.
In the sequel, we explore the consequences of equations (21) and (22) for the initial value

problem in General Relativity.

5.5 The constraint equations of General Relativity

The 3 + 1 decomposition of the Einstein field equations allows to identify the intrinsic metric and
the extrinsic curvature of an initial hypersurface S0 as the initial data to be prescribed for the
evolution equations of General Relativity.

In what follows we will make use of the Gauss-Codazzi and the Codazzi-Mainardi equations
to extract the consequences of the vacuum Einstein field equations Rab = 0 on a hypersurface S.

Contracting the Gauss-Codazzi equation (21) one one find that

hprhb
qhd

sRpqrs = rbd +KKbd −Kc
dKcb,

where K ≡ habKab denotes the trace of the extrinsic curvature. A further contraction yields

hprhqsRpqrs = r +K2 −KabK
ab.

Now, the left-hand side can be expanded into

hprhqsRpqrs = (gpr + npns)(gqs + nqns)

= R+ 2npnrRpr + npnrnqnsRpqrs = 0.

The last term vanishes because of the symmetries of the Riemann tensor. Combining the equations
from the previous calculations one obtains the so-called Hamiltonian constraint :

r +K2 −KabK
ab = 0. (23)

One can proceed in a similar way with the Codazzi-Mainardi equation (22). Contracting once
one has that

DbKab −DaK = ha
phqrnsRpqrs.

The right hand side of this equation can be, in turn, expanded as

ha
phqrnsRpqrs = −hap(gqr + npnr)nsRqprs

= −hapnsRps − hapnqnrnsRpqrs = 0,

where in the last equality one makes use, again of the vacuum Equations and the symmetries of
the Riemann tensor. Combining the previous expressions one obtains the so-called momentum
constraint

DbKab −DaK = 0. (24)

The Hamiltonian and momentum constraint equations (23) and (24) involve only the 3-
dimensional intrinsic metric, the extrinsic curvature and their spatial derivatives. They are the
conditions that allow a 3-dimensional slice with data (hab,Kab) to be embedded in a 4-dimensional
spacetime (M, gab). The existence of the constraint equations implies that the data for the Ein-
stein field equations cannot be prescribed freely. The nature of the constraint equations and
possible procedures to solve them will be analysed later in these notes.

An important point still to be clarified is whether the fields hij and Kij indeed correspond
to data for the Einstein field equations. To see this, one has to analyse the evolution equations
implied by the Einstein field equations.
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5.5.1 The constraints for the Maxwell equations

The equations of other physical theories also imply constraint equations. The classical example
in this respect is given by the Maxwell equations. To analyse these constraint equations it is
convenient to introduce the electric and magnetic parts of the Faraday tensor Fab:

Ea ≡ Fabnb, Ba ≡
1

2
εab

cdFcdn
b = F ∗abn

b.

A calculation then shows that the Maxwell equations imply the constraint equations

DaEa = 0, DaBa = 0.

These constraints correspond to the well-known Gauss laws for the electric and magnetic fields.
Thus, it follows that data for the Maxwell equations cannot be prescribed freely. The initial value
of the electric and magnetic parts of the Faraday tensor must be divergence free.

Remark. Notice, by contrast that the wave equation for a scalar field φ implies no constraint
equations. Thus, the data for this equation can be prescribed freely.

5.6 The evolution equations of General Relativity

To discuss the evolution equations of General Relativity one needs a further geometric identity
—the so-called Ricci equation. To obtain this, one computes

LnKab = nc∇cKab + 2Kc(a∇b)nc

= −nc∇c∇anb − nc∇c(naab)− 2Kc(aKb)
c − 2Kc(anb)a

c.

Now, making use of the commutator

∇c∇anb −∇a∇cnb = Rdbacn
d,

one obtains

LnKab = −ndncRdbac − nc∇a∇cnb − ncab∇cna − ncna∇cab − 2Kc
(aKb)c − 2Kc(anb)a

c.

Furthermore, using ab = nc∇cnb and

nc∇a∇cnb = ∇aab − (∇anc)(∇cnb) = ∇aab −Ka
cKcb − naacKcb,

after some cancellations one gets

LnKab = −ndncRdbac −∇aab − ncna∇cab − aaab −Kc
bKac −Kcanba

c. (25)

It is observed that LnKab is a spatial object in the sense that naLnKab = 0 (exercise!). This
means that in equation (25) one can project the free indices to obtain

LnKab = −ndnchaqhbrRdrqc − haqhbr∇qar − aaab −Kb
cKac.

Finally, using the identity (exercise!)

Daab = −aaab +
1

α
DaDbα,

some simplifications yield the desired Ricci equation:

LaKab = ndncha
qhb

rRdrcq −
1

α
DaDbα−Kb

cKac. (26)

Geometrically, this equation relates the derivative of the extrinsic curvature in the normal direc-
tion to an hypersurface S to a time projection of the the Riemann tensor.
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The discussion from the previous paragraphs suggests that the Einstein field equations will
imply an evolution of the data (hab,Kab). Previously, it has been assumed that the spacetime
(M, gab) is foliated by a time function t whose level surfaces correspond to the leaves of the
foliation. Recalling that ωa = ∇at, we consider now a vector ta (the time vector) such that

ta = αna + βa, βan
a = 0. (27)

The vector βa is called the shift vector. The time vector ta will be used to propagate coordinates
from one time slice to another. In other words, ta connects points with the same spatial coordinate
—hence, the shift vector measures the amount by which the spatial coordinates are shifted within
a slice with respect to the normal vector. Together, the lapse and shift determine how coordinates
evolve in time. The choice of these functions is fairly arbitrary and, hence, they are known as
gauge functions. The lapse function reflects the freedom to choose the sequence of time slices,
pushing them forward by different amounts of proper time at different spatial points on a slice
—this idea is usually known as the many-fingered nature of time. The shift vector reflects the
freedom to relabel spatial coordinates on each slices in an arbitrary way. Observers at rest relative
to the slices follow the normal congruence na and are called Eulerian observers, while observers
following the congruence ta are called coordinate observers.

It is observed that as a consequence of expression (27) one has ta∇at = 1 so that the integral
curves of ta are naturally parametrised by t.

Recalling that Kab = − 1
2Lnhab and using equation (27) one concludes that

Lthab = −2αKab + Lβhab, (28)

where it has been used that

Lthab = Lαn+βhab = αLnhab + Lβhab.

Equation (28) will be interpreted as an evolution equation for the intrinsic metric hab. To con-
struct a similar equation for the extrinsic curvature one makes use of the Ricci equation (26). It
is observed that

ndncha
qhb

rRdrcq = hcdha
qhb

rRdrcq − haqhbrRrq
= hcdha

qhb
rRdrcq,

where to obtain the second equality the vacuum Einstein field equations Rab = 0 have been used.
The remaining term, hcdha

qhb
rRdrcq, is dealt with the Gauss-Codazzi equation (21). Finally,

using that
LtKab = Lαn+βKab = αLnKab + LβKab,

one concludes that

LtKab = −DaDbα+ α(rab − 2KacK
c
b +KKab) + LβKab. (29)

This is the desired evolution equation for Kab. Equations (28) and (29) are called the ADM
evolution equations. They determine the evolution of the data (hab,Kab). Together with the
constraint equations (23) and (24) they are completely equivalent to the vacuum Einstein field
equations.

Remark. The evolution equations (28) and (29) first order equations —compare with the wave
equation for the components of the metric gab discussed in Section 5.3. However, the equations
are not hyperbolic! Thus, one cannot apply directly the standard PDE theory to assert existence
of solutions. Nevertheless, there are some more complicated versions of them which do have the
property of hyperbolicity.

5.6.1 The Maxwell evolution equations

As in the case of the constraint equations, it is instructive to look at the Maxwell equations to
obtain some insight into the structure of the ADM evolution equations. Making use of the electric
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and magnetic part of the Faraday tensor, a computation of LtEa and LtBa together with the
Maxwell equations allows to show that

LtEa = εabcD
bEc + LβEa,

LtBa = −εabcDbBc + LβBa.

Observe the similarity with the ADM equations!

5.7 The 3 + 1 form of the spacetime metric

The discussion of the evolution equations given in the previous section has been completely
general. By this we mean that the only assumption that has been made about the spacetime is that
it is globally hyperbolic so that a foliation and a corresponding time vector exist. The discussion
of the 3 + 1 decomposition can be further particularised by introducing adapted coordinates. In
this section we briefly discuss how this can be done.

Firstly, it is recalled that the hypersurfaces of the foliation of a spacetime (M, gab) can be
given as the level surfaces of a time function t. Now, we already have seen that ∇ata = 1. The
latter combined with ∇at = (1, 0, 0, 0) readily imply that

tµ = (1, 0, 0, 0).

The latter implies, that the Lie derivative along the direction of ta is simply a partial derivative
—that is,

Lt = ∂t.

Clearly, from the previous discussion it also follows that the spatial components of the unit normal
must vanish —i.e. one has that ni = 0. Since the contraction of spatial vectors with the normal
must vanish, it follows that all components of spatial tensors with a contravariant index equal to
zero must vanish. For the shift vector one has that naβ

a = n0β
0 = 0 so that

βµ = (0, βγ).

Since one has that ta = αna + βa, it follows then that

nµ = (α−1,−α−1βγ).

Moreover, from the normalisation condition nan
a = −1 one finds

nµ = (−α, 0, 0, 0).

Now, recalling that hab = gab + nanb one concludes that

hαβ = gαβ .

In these adapted coordinates the 3-metric of the hypersurfaces of the foliation are simply the spatial
part of the spacetime metric gab. Moreover, since the time components of spatial contravariant
tensors have to vanish, one also has that hµ0 = 0. One concludes that one can write

gµν = hµν − nµnν =

Å
−α−2 α−2βγ

α−2βδ hγδ − α−2βγβδ
ã
.

This last expression can be inverted to yield

gµν =

Å
−α2 + βγβ

γ βγ
βδ hγδ

ã
,

where βγ ≡ hγδβδ. Alternatively, one has that

g = −α2dt2 + hγδ(β
γdt+ dxγ)(βδdt+ dxδ).

The latter is known as the 3 + 1 form of the spacetime metric.
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5.7.1 Summary of the 3 + 1 decomposition of the Einstein vacuum equations

The adapted coordinates used in the previous paragraphs can be used to simplify the presentation
of the constraint and evolution equations. It readily follows that these equations can be written
as

r +K2 −KijK
ij = 0,

DjKij −DjK = 0,

∂thij = −2αKij +Diβj +Djβi,

∂tKij = −DiDjα+ α(rij − 2KikK
k
j +KKij) + βkDkKij +KikDjβ

k +KkjDiβ
k.

5.7.2 An example: the Schwarzschild spacetime

As we have already discussed, the metric Schwarzschild spacetime can be expressed in standard
coordinates in terms of the line element

g = −
Å

1− 2m

r

ã
dt2 +

Å
1− 2m

r

ã−1
dr2 + r2dθ2 + r2 sin2 θdϕ2.

This form of the metric is not the best one for a 3 + 1 decomposition of the spacetime. Instead,
it is better to introduce an isotropic radial coordinate r̄ via

r = r̄
(

1 +
m

2r̄

)2
.

In terms of the later one obtains the line element of the Schwarzschild spacetime in isotropic
coordinates:

g = −

Ñ
1− m

2r̄

1 +
m

2r̄

é2

dt2 +
(

1 +
m

2r̄

)4
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ).

The normal ωa = ∇at is then readily given by

ωµ = (1, 0, 0, 0).

Thus, one readily reads the lapse function to be

α =
1− m

2r̄

1 +
m

2r̄

,

while the unit normal is

nµ =
1 +

m

2r̄

1− m

2r̄

(1, 0, 0, 0).

The spatial metric is then

h =
(

1 +
m

2r̄

)4
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ).

One also notices that the shift vanishes —i.e. one has that

βi = 0.

Since βα = 0 and hαβ is independent of time, one can readily finds that the extrinsic curvature
vanishes

Kαβ = 0.

The isotropic form of the Schwarzschild metric yields a foliation of spacetime that follows the
static symmetry of the spacetime. In this foliation, the intrinsic 3-metric of the leaves does not
seems to evolve. Any other foliation not aligned with the static Killing vector will give rise to a
non-trivial evolution for both hαβ and Kαβ .
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6 A closer look at the constraint equations

The purpose of this section is to explore some aspects of the constraint equations, and in partic-
ular, the manner one could expect to solve them.

As shown in Section 6.5, the Einstein field equations imply the following constraint equations
on a (spatial) hypersurface S:

r +K2 −KijK
ij = 0, Hamiltonian constraint

DiKij −DjK = 0. Momentum constraint

As already discussed, these equations constrain the possible choices of pairs (hij ,Kij) correspond-
ing to initial data to the Einstein field equations. The constraint equations are intrinsic equations,
that is, they only involve objects which are defined on the hypersurface S without any further
reference to the “bulk” of the spacetime (M, gab).

The Einstein constraint constitute a highly coupled, highly non-linear system of equations for
(hij ,Kij). However, the main difficulty in constructing an solution to the equations lies in the
fact that the equations are an underdetermined system: one has 4 equations for 12 unknowns
—the independent components of two symmetric spatial tensors. Even exploiting the coordinate
freedom to “kill off” three components of the tensors, one is still left with 9 unknowns. This
feature indicates that there should be some freedom in the specification of data for the equations.
The task is to identify what this free data is.

To render the problem manageable, we make a standard simplifying assumption and consider
initial data sets for which Kij = 0 everywhere on S. This class of initial data are called time
symmetric. The reason for this name is that if Kij = 0 at S then the evolution equations imply
that

∂thij = 0, on S.

This equation is invariant under the replacement t 7→ −t. It follows that the resulting spacetime
has a reflection symmetry with respect to the hypersurface S which can be regarded as a moment
of time symmetry.

If Kij = 0 everywhere on S then the momentum constraint is automatically solved, and the
Hamiltonian constraint reduces to

r = 0.

That is, the initial 3-metric has to be such that its Ricci scalar vanishes —notice that this does not
mean that the hypersurface is flat! Still, the time symmetric Hamiltonian constraint, regarded as
an equation for hij , is highly non-linear. Moreover, one still has six unknowns and one equation
—even choosing coordinates, one still is left with three unknowns . Now, clearly for an arbitrary
metric h̄ij one has that r̄ 6= 0. An idea to solve the constraint is then to introduce a factor
that compensates this. This idea leads naturally to the notion of conformal transformations.
Two metrics hij , h̄ij are said to be conformally related if there exists a positive scalar ϑ (the
conformal factor) such that

hij = ϑ4h̄ij . (30)

The power of ϑ used in the above equation is conventional and leads to simple equations in
3-dimensions. When discussing conformal transformations on dimensions n ≥ 4, other powers
may be more useful. In what follows, the metric h̄ will be called the background metric. Loosely
speaking, the conformal factor absorbs the overall scale of the metric. In the way presented,
the conformal transformation introduced above is a mathematical trick to solve equations. At a
deeper level, the conformal transformation defines an equivalence class of manifolds and metrics.

Given the conformal transformation (30), it is important to analyse its effects on other geo-
metrical objects. In particular, recall that the 3-dimensional Christoffel symbols are given by

Γαβγ =
1

2
hαδ(∂βhγδ + ∂γhβδ − ∂δhβγ).

Substituting (30) into the previous equation one finds after some calculations that

Γαβγ = Γ̄αβγ + 2(δβ
α∂γ lnϑ+ δγ

α∂β lnϑ− h̄βγ h̄αδ∂δ lnϑ),
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where Γ̄αβγ denote the Christoffel symbols for the metric coefficients h̄αβ and it has been used
that hij = ϑ−4h̄ij (exercise). A lengthier computation yields the following transformation law for
the 3-dimensional Ricci tensor:

rij = r̄ij − 2(D̄iD̄j lnϑ+ h̄ij h̄
lmD̄lD̄m lnϑ) + 4(D̄i lnϑD̄j lnϑ− h̄ij h̄lmD̄l lnϑD̄m lnϑ).

Furthermore (and more importantly for our purposes) one has that

r = ϑ−4r̄ − 8θ̄−5D̄kD̄
kϑ.

In the above expressions D̄ denotes the covariant derivative of the background metric h̄ij .

Using r = 0 in the transformation law for the Ricci scalar given above, one readily finds that

D̄kD̄
kϑ− 1

8 r̄ϑ = 0. (31)

In Differential Geometry, this equation is sometimes called the Yamabe equation. Given a fixed
background metric h̄ij , equation (31) can be read as a differential condition for the conformal
factor ϑ. Given a solution ϑ, one has by construction that hij = ϑ4h̄j is such that r = 0 and one
has constructed a solution to the time symmetric Einstein constraints. The Yamabe equation is
elliptic: the operator D̄kD̄

k is the Laplacian operator associated to the metric h̄ij —if h̄ij = δij
the flat metric in Cartesian coordinates, then

D̄kD̄
k = δαβ∂α∂β = ∂2x + ∂2y + ∂2z .

Given a linear second order elliptic equation like (31), appropriate boundary conditions ensure
the existence of a unique solution on S.

Following the discussion of the previous paragraph, choose the flat metric as background
metric. That is, let

h̄αβ = δαβ .

In this case, the metric hαβ = ϑ4δαβ is said to be conformally flat. Conformal flatness is an inter-
esting property that Riemannian manifolds can possess. An important result is that conformal
flatness is characterised locally by the vanishing of the Cotton tensor

bijk ≡ D[jrk]i − 1
4hi[jDk]r.

For example, any spherically symmetric metric can be shown to be conformally flat. The purpose
of assuming conformal flatness in our discussion is to provide a simplified setting to carry out
calculations. In particular, one has that r̄ = 0 so that the Yamabe equation reduces to the flat
Laplace equation

D̄kD̄
kϑ = 0.

In the discussion of isolated systems (i.e. astrophysical sources) one is interested in solutions
which are asymptotically flat. That is,

ϑ = 1 +O(r−1), for r →∞,

where r2 = x2 +y2 +z2 is the standard radial coordinate. Solutions to the Laplace equation with
the above asymptotic behaviour are well known. In particular, a spherically symmetric solution
is given by

ϑ = 1 +
m

2r
,

where m is a constant. This solution to the time symmetric constraints is the 3-metric of the
Schwarzschild spacetime in isotropic coordinates:

h =
(

1 +
m

2r

)4
(dr2 + r2dθ2 + r2 sin2 θdϕ2).
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The above 3-metric is singular at r = 0. This singularity, is a coordinate singularity. By consid-
ering the coordinate inversion

r =
m2

4

1

r̄
,

it can be seen that the metric transforms into

h =
(

1 +
m

2r̄

)4
(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2).

The inversion transforms the metric into itself —that is, it is a discrete isometry. In particular,
one has that the point r = 0 is can be mapped to infinity. Thus, the metric is perfectly regular
everywhere and r = 0 is, in fact, the infinity of an asymptotically flat region. The hypersurface
S has a non-trivial topology —it corresponds to a wormhole, see Figure 1. The radius given by
r = m/2 corresponds to the minimum areal radius —this is called the throat of the black hole.
Observe that r = m/2 = m̄/2. The throat corresponds to the intersection of the black hole
horizon with the hypersurface S. The inversion reflects points with respect to the throat.

Figure 1: Embedding diagram of time-symmetric Schwarzschild data

The construction described in the previous paragraphs can be extended to include an arbitrary
number of black holes. This is made possible by the linearity of the flat Laplace equation. Indeed,
the conformal factor

ϑ = 1 +
m1

2r1
+
m2

2r2
(32)

with
r1 = |xi − xi1|, r2 = |xi − xi2|,

and where xi1 and xi2 denote the (fixed) location of two black holes with bare masses m1 and
m2. The solution to the constraint equations given by the conformal factor (32) is called the
Brill-Lindquist solution [3]. It describes a pair of black holes instantaneously at rest at a moment
of time symmetry. This solution is used as initial data to simulate the head-on collision of two
black holes. In this case what one finds is that each throat connects to is own asymptotically flat
region. The drawing of the corresponding 3-dimensional manifold gives 3 different sheets, each
corresponding to a different asymptotically flat region —see Figure 2.

Figure 2: Embedding diagram of time-symmetric Brill-Lindquist data.

The flat Laplace equation can also be solved using the so-called method of images to obtain
a solution with two holes and two asymptotic regions as depicted in the figure. This solution is
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known as Misner data [7]. This solution has a reflection symmetry through the throats, and has
only two (as opposed to three of the Brill-Lindquist solution) asymptotically flat regions —see
Figure 3. The solution is much more complicated than the Brill-Lindquist one, but still can be
written explicitly.

Figure 3: Embedding diagram of time-symmetric Misner data.

More complicated solutions to the constraint equations can be obtained by including a non-
vanishing extrinsic curvature. In this way one can provide data for a rotating black hole or even a
pair of rotating black holes spiralling around each other. The constraint equations in these cases
have to be solved numerically.

7 Time independent solutions to the Einstein field equa-
tions

A systematic analysis of solutions to the vacuum Einstein field equations starts by considering
time independent solutions. These solutions are interpreted as describing the gravitational field
in the exterior of isolated bodies at rest or in uniform rotation in an otherwise empty Universe.
The simplest case of a time independent solution is the Minkowski metric. More sophisticated
examples are the Schwarzschild and Kerr spacetimes. The relevance of these two solutions is that
they are thought to describe the end state of black hole evolution.

7.1 The time independent wave equation

Before analysing the Einstein field equations, it is useful to look at simpler toy models. To this
end, consider a scalar field on the Minkowski spacetime satisfying the wave equation

(∆− ∂2t )φ = 0,

where ∆ denote the flat Laplacian. Now, consider time independent solutions —i.e. ∂tφ = 0. It
follows that

∆φ = 0.

The obvious observation is that an equation which is originally hyperbolic becomes elliptic under
the assumption of time independence. This is a generic feature that can be observed in other
theories —like the Maxwell equations and the Einstein field equations.

The energy of the scalar field at some time t is given by

E(t) =

∫
St

(
(∂tφ)2 + |∇φ|2

)
d3x.

In order to have finiteness of the energy one needs the boundary conditions

φ(t, xi), ∂tφ(t, xi)→∞, as |x| → ∞.

An important difference between hyperbolic equations and elliptic ones is that while in the former,
properties of solutions can be localised and perturbations have finite propagation speed, for the
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latter the properties of solutions are global. For example, if φ = O(1/r) as r →∞ and ∆φ = 0,
then it follows that φ = 0. This follows from the integral

0 =

∫
R3

φ∆φdx3 =

∫
R3

|∇φ|2dx3,

where the Green’s identity has been used. It follows that |∇φ|2 = 0 everywhere on R3 so that φ
is constant. Due to the decay conditions, φ must necessarily vanish. This type of argument will
be used repeatedly for the Einstein equations. In order to avoid the vanishing of φ in this case,
one needs to consider the inhomogeneous problem —that is, one needs to consider sources.

7.2 Time independence: stationarity and staticity

Mathematically speaking, time independence is imposed by requiring on the spacetime (M, gab)
the existence of a timelike Killing vector ξa —the spacetime is then said to be stationary. If,
in addition, the Killing vector is hypersurface orthogonal —i.e. it is the gradient of some scalar
function— then one says that ξa is a static Killing vector. The Schwarzschild and Kerr solutions
are, respectively, static and stationary. Stationary solutions to the Einstein field equations allow
for the possibility of rotating gravitational fields.

Let na denote the unit normal of an hypersurface S. Now, if ξana = 0, i.e. the Killing vector
if orthogonal to S, then a calculation shows that (exercise!) that

ξ[a∇bξc] = 0. (33)

The latter condition characterises hypersurface orthogonality —that is, a Killing vector is hyper-
surface orthogonal if and only if (33) holds. The proof of this result is classical and can be found
in various textbooks —e.g. [12].

In a static spacetime, it is natural to choose adapted coordinates such that ξµ∂µ = ∂t —that
is, the time coordinate is adapted to the flow lines of the Killing vector. Now, using the Killing
vector condition Lξgab = 0 and the definitions of hαβ and Kαβ one can show that (exercise)

∂thαβ = ∂tKαβ = 0.

Now, recall the 3 + 1 decomposition of the spacetime metric:

g = −α2dt2 + hαβ(βαdt+ dxα)(ββdt+ dxβ).

In what follows we will analyse the simplifications introduced in the above line element by the
assumption of staticity and the use of an adapted time coordinate. If the Killing vector is
hypersurface orthogonal then the Killing vector has to be proportional to the normal to the
hypersurface S. That is, one has that

ξµ = α∇µt.

However, the Killing vector can be decomposed in a lapse and a shift part:

ξa = Nna + βa.

Comparing both expressions finds that
βα = 0.

Thus, one has that
g = −α2dt2 + hαβdxαdxβ ,

with hαβ time independent. The time evolution equation for hαβ then takes the form

∂thαβ = −2αKαβ = 0.

Now, as the lapse cannot vanish one has that

Kαβ = 0.
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That is, the hypersurfaces of the foliation adapted to the static Killing vector have no extrinsic
curvature —this property is preserved as, already seen, ∂tKαβ = 0.

It follows from the discussion in the previous paragraphs that vacuum static solutions to the
Einstein equations are characterised solely in terms of the lapse α and the 3-metric hij . In order
to obtain equations for these quantities one considers the Hamiltonian constraint, equation (23),
and the evolution equation for Kij , equation (29). Setting Kαβ = ∂tKαβ = 0 readily yields

DiDjα = rij , (34a)

r = 0, (34b)

where, as before, r denotes the Ricci tensor of the 3-metric hij . These equations are known as
the static vacuum Einstein equations.

7.3 Exploring the static equations

As a first example of the content and implications of the static equations (34a)-(34b), let S ≈ R3

—i.e. the hypersurface S has the topology of Euclidean space. Suppose that the fields α and hij
decay at infinity in such a way that

α→ 1, hαβ − δαβ → 0, as |x| → ∞.

The first condition essentially means that it is assumed that the Killing vector behaves asymptot-
ically like the static Killing vector of Minkowski spacetime. The second condition means that the
3-metic is assumed to be asymptotically flat (Euclidean) at infinity. Taking the trace of equation
(34a) and using equation (34b) it follows that

∆α = DkD
kα = 0.

Now, consider

0 =

∫
S
α∆αd3x =

∫
S
|Dα|2d3x,

again, as a consequence of the Gauss theorem. Thus

|Dα|2 = hijDiαDjα = 0.

Hence α is a constant. Using the asymptotic condition α→ 1 it follows α = 1 everywhere. Using
equation (34a) one concludes that

rij = 0.

Now, in 3-dimensions the Ricci tensor determines fully the curvature of the manifold. Thus one
concludes

rijkl = 0,

so that is, hαβ = δαβ —the Euclidean flat metric. The line element we have obtained is then

g = −dt2 + δαβdxαdxβ .

This solution is the Minkowski spacetime! This result is known as Licnerowicz’s theorem:

Theorem 1. The only globally regular static solution to the Einstein equations with S having
trivial topology (i.e. S ≈ R3) and such that

α→ 1, hαβ − δαβ → 0, as |x| → ∞

is the Minkowski spacetime.

The above theorem demonstrates the rigidity of the Einstein field equations. In order to
obtain more interesting regular solutions, one requires either some matter sources or a non-trivial
topology for S as in the case of the Schwarzschild spacetime —recall the Einstein-Rosen bridge!
The result can be interpreted as a first, very basic uniqueness black hole result. If one wants to
have a black hole solution one needs non-trivial topology!
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7.4 Further results concerning static spacetimes

An important question in the analysis of static spacetimes is to characterise their asymptotic be-
haviour beyond the prescribed boundary conditions. Can one say more? The answer is contained
in the following:

Theorem 2 (Beig, 1980). Every static vacuum solution to the Einstein equations satisfying

α→ 1, hαβ − δαβ → 0, as |x| → ∞

is Schwarzschildean to leading order in 1/r. That is,

α2 = 1− 2m

r
+O(1/r2), hαβ − δαβ =

2m

r
δαβ +O(1/r2).

The proof of this result is already quite involved and, hence, it will not be discussed. Observe
that in the previous result the regularity of S is not required. Also, there could be bounded
sources somewhere in the interior. The lapse α can be interpreted as relativistic generalisation of
a Newtonian potential. The theorem can be improved to include higher order multipoles. These
lead to a multipolar expansion of the gravitational field. These multipoles characterise in a unique
manner static solutions:

Theorem 3 (Beig & Simon, 1981; Friedrich 2006). Given an asymptotically flat static solution to
the Einstein vacuum equations, one obtains a unique sequence of multipole moments. Conversely,
given a sequence of multipole moments, if the lapse constructed from this sequence is well defined,
there exists a unique static spacetime associated to these multipoles.

8 Energy and momentum in General Relativity

It is a well known feature of General Relativity that energy and momentum of the gravitational
field cannot be localised. This is a direct consequence of the equivalence principle. Thus, one
cannot define, for example, a density of energy for the gravitational field. However, it is still
possible to define some global conserved quantities which, in turn, can be interpreted as the
total energy of a gravitating system. These quantities behave in a similar way to electromagnetic
charges —that is, they take the form of volume integrals which are transformed, in turn, into
surface integrals.

In what follows let (S, hij ,Kij) denote an initial data set for the vacuum Einstein field equa-
tions —i.e. they satisfy the constraints. Let xα denote asymptotically Cartesian coordinates —i.e.
a system of coordinate for which hαβ agrees with δαβ to first order. One defines the ADM energy
as the surface integral

E =
1

16π

∫
S∞

(∂βhαβ − ∂αh)nαdS, h ≡ hαβδαβ .

where S∞ denotes the sphere at infinity, and nα is the outward pointing normal to the sphere.
Similarly, the ADM momentum is given by

pα =
1

8π

∫
S∞

(Kα
β −Kδαβ)nαdS.

Although it is not directly evident, these expressions can be shown to be coordinate independent
quantities [1]. In particular, a change to another asymptotically Cartesian system gives the same
ADM mass and momentum. The energy E and the momentum pα are the components of a
4-dimensional vector (4-vector) —the ADM 4-momentum vector :

pµ = (E, pα).

Another non-trivial observation is that if one has an initial data set (S, hij ,Kij) satisfying

hαβ − δαβ = O(1/r), Kij = O(1/r2),
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then one can readily verify that
E <∞, pα <∞.

The verification of the above statement for pα makes use of the constraint equations.
To obtain intuition into the content of the ADM energy and momentum, it is convenient to

evaluate them on the Schwarzschild spacetime. As before, we make use of the time symmetric
hypersurface given in standard coordinates by a constant value of t. As already seen, for this
hypersurface it has been seen that Kij = 0. Moreover, one has that

hαβ =
(

1 +
m

2r

)4
δαβ .

A calculation then shows that
E = m, pα = 0.

That is, the ADM energy of the time symmetric slice of the Schwarzschild spacetime coincides
with its mass parameter.

8.1 Conservation of the ADM 4-momentum

As pα provides a measure of the total energy of a gravitating system, it is natural to expect that
its components satisfy some sort of conservation behaviour. Moreover, it is also to be expected
that the components of pµ transform as a 4-vector under Lorentz transformations.

For the first point mentioned in the previous paragraph, consider an evolution off the hyper-
surface S such that

α = 1 +O(1/r), βα = O(1/r).

The latter corresponds to an evolution into nearby hypersurfaces S which are essentially a time
translation at infinity. From the above assumptions it follows that

Lβgµν = O(1/r4).

One then computes ∂tE to obtain

∂tE =

∫
S∞

(∂t∂
βhαβ − ∂t∂αh)nαdS.

Using the ADM evolution equations one can readily verify by inspection that

∂t∂
βhαβ − ∂t∂αh = O(1/r3).

It follows then that
∂tE = 0.

A similar argument shows that ∂tp
α = 0. Thus, indeed, the components of pµ are conserved, at

least for evolutions which behave as a time translation at infinity.

8.2 Positivity of the energy

On intuitive grounds one would expect the ADM 4-momentum to satisfy some positivity proper-
ties. That this is the case is not at all obvious from the definitions in terms of surface integrals
of the ADM energy and momentum given in the previous paragraphs.

In order to gain intuition into this question it is convenient to analyse a model problem. In
this case we consider Newtonian gravity. Accordingly, let φ denote the gravitational potential and
let ρ denote the density of matter. In physically realistic situations one expects ρ to be a function
of bounded support —that is, it vanishes outside a compact set. This requirement fits naturally
with the notion of an isolated system. The gravitational potential is related to the density via
the Poisson equation

∆φ = 4πGρ.
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The total mass of the system is just the integral of the density over the whole space:

m =

∫
R3

ρd3x.

This integral is finite as ρ is assumed to be of compact support. Now, the total energy of the
system is then given (using special relativistic arguments) by

Etotal = mc2 + Egrav

= c2
∫
R3

ρd3x+
1

2

∫
R3

ρφd3x

= c2
∫
R3

ρd3x+
1

8πG

∫
R3

φ∆φd3x

= c2
∫
R3

ρd3x− 1

8πG

∫
R3

|∇φ|2d3x.

The key observation is that the second term in the last equation is negative. As a consequence,
the energy is not bounded from below. This is a problem, as it means one could extract an
infinite amount of energy out a gravitating system. General Relativity deals with this problem
by postulating the Universality of Gravity —that is, the fact that gravity can act as source of
itself. To understand how this mechanism could correct things, consider a modified theory of
gravity which contains a non-linear term:

∆φ = 4πGρ̄, ρ̄ = ρ− 1

8πGc2
|∇φ|2.

One has that ρ̄ is an effective density with the non-linear term |∇φ|2 being the gravitational
contribution to the mass density. To analyse the implications of this new theory assume

φ = −m
r

+O(1/r2).

It follows that

4πm =

∫
S∞
∇φ · ~ndS.

In what follows it is convenient to consider the auxiliary quantity

ψ = eφ/2c
2

, ∇ψ =
1

2c2
ψ∇φ.

Moreover,

∆ψ =
1

4c4
|∇φ|2eφ/2c

2

+
1

2c2
eφ/2c

2

∆φ

=
2πG

c2
ρψ.

The key observation is that ψ satisfies an equation similar to the Yamabe equation. It can then
be verified that

4πm =

∫
S∞
∇ψ · ~ndS =

1

2c2

∫
S∞

ψ∇φ · ~ndS

=
1

2c2

∫
S
∇ · (ψ∇φ)d3x =

∫
S
∇ · (∇ψ)d3x

=

∫
R3

∆ψd3x =
2πG

c2

∫
R3

ρψd3x > 0.

A similar mechanism in General Relativity ensures the positivity of the energy. As a conclusion
of these lectures we provide an overview of the proof of a particular case of the mass positivity
theorem —[9, 10].
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Theorem 4. Consider a time symmetric initial data set for the vacuum Einstein field equations
—i.e. Kij = 0. Assume that S ≈ R3 with

hαβ − δαβ = O(1/r),

and that rijλ
iλj ≥ 0 for λi 6= 0. Then

E > 0.

Remarkably, the proof of this theorem makes use of harmonic coordinates yα(x):

∆yα = DiD
iyα = 0, yα = xα +O(1).

The existence of these coordinates is a further assumption which needs to be justified —this,
however, will not concern us here. It is noticed that

|Dy|2 ≡ hijDiy
αDjy

α, ∆|Dy|2 = 2(DiDjy
α)(DiDjyα) + 2(Diyα)(∆Diy

α).

Crucially, one notices that ∆ and D do not commute. Indeed, one has that

∆Diy
α = DkDkDiy

α = DkDiDky
α = ri

kDky
α +Di∆y

α.

Thus,
∆|Dy|2 = 2|DDy|2 + 2rijD

iyαDjyα ≥ 0

by assumption. It is recalled that for harmonic coordinates one has that ∆yα = 0. This implies
that

0 = hβγ(∂β∂γy
α − Γδβγ∂δy

α) = −hβγΓδβγ∂δy
α.

Hence,
Γα = hβγΓαβγ = 0.

The above expression can be reexpressed to show that

hβγ(2∂βhαγ − ∂αhβγ) = 0.

The above expressions are substituted in the expression of the ADM energy

E =
1

16πG

∫
S∞

(∂βhαβ − ∂αhββnα)dS

=
1

32πG

∫
S∞

∂αhβ
βnαdS, (35)

where it has been used that

hαβ = δαβ + fαβ , fαβ = O(1/r)

so that
hαβ = δαβ − fαβ .

From equation (35) one can apply the Gauss theorem to get

E =
1

32πG

∫
S∞

∂αhβ
βnαdS =

1

32πG

∫
S

∆hβ
βd3y.

Moreover, it can be shown that in the coordinates being used one has

hββ = |Dy|2.

Thus, one concludes

E =
1

32πG

∫
S

∆|Dy|2d3y ≥ 0.

Which is what one wanted to show.

The positivity of mass theorem has also a rigidity part which will not be proved here.

Theorem 5. For a time symmetric initial data set for the vacuum Einstein field equations with
hαβ − δαβ = O(1/r) if m = 0, then

hαβ = δαβ .

Put in other words, if the mass vanishes and the initial data is regular, then one necessarily
has initial data for the Minkowski spacetime.

28



9 Symmetries and the initial value problem

An issue which often arises in the analysis of the Cauchy problem for the Einstein field equations
is that of encoding in the initial data the fact that the resulting spacetime will have a certain
symmetry —i.e. a Killing vector. This naturally leads to the notion of Killing initial data (KID).

To analyse the question raised in the previous paragraph, it is necessary to first consider some
consequences of the Killing equation

∇aξb +∇bξa = 0.

Applying ∇a to the above equation and commuting covariant derivatives one finds that

0 = ∇a∇aξb +∇a∇bξa
= �ξb +∇b∇aξa +Rca

a
bξc

= �ξb −Rcbξc,

where it has been used that ∇aξa = 0. Accordingly, in vacuum one has that a Killing vector
satisfies the wave equation

�ξa = 0. (36)

This equation is an integrability condition for the Killing equation. Notice however, that not every
vector solution to the wave equation (36) is a Killing vector. A vector ξa satisfying equation (36)
will be called a Killing vector candidate.

Now, in what follows let
Sab ≡ ∇aξb +∇bξa,

and compute �Sab. Observe that commuting covariant derivatives and using that by assumption
Rab = 0 and ∇eRf bea = 0 one has that

�∇aξb = ∇e∇e∇aξb
= ∇e∇a∇eξb +∇e(Rf beaξf )

= ∇e∇a∇eξb +Rf bea∇eξf ,
= ∇a∇e∇eξb +Rf e

e
a∇fξb +Rf b

e
a∇eξf

= ∇a�ξb +Rf b
e
a∇eξf .

So that

�Sab = Rea
f
b∇fξe +Rea

f
b∇eξf +∇a�ξb +∇b�ξa

= Rea
f
bSef +∇a�ξb +∇b�ξa.

Now, assume that one has a vector ξa satisfying the wave equation (36). One has then that

�Sab −Reaf bSef = 0. (37)

If initial data on an hypersurface S can be chosen such that

Sab = 0, ∇cSab = 0, on S (38)

then, as a consequence of the homogeneity of equation (37), it follows that necessarily Sab = 0 in
the development of S so that ξa is, in fact, a Killing vector.

The conditions (38) are called the Killing initial Data (KID) conditions. They are conditions
not only on ξa but also on the initia data (S, hij ,Kij). In order to see this better, one can perform
a 3 + 1 split of the conditions. As a first step one writes

ξa = Nna +Na, naN
a = 0,

where N and Na denote the lapse and shift of the Killing vector. A computation then shows that
the space-space components of the equation ∇aξb +∇bξa = 0 imply

NKij +D(iYj) = 0.
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Moreover, taking a time derivative of the above equation and using the ADM evolution equations
one finds that

NkDkKij +DiN
kKkj +DjN

kKik +DiDjN = N(rij +KKij − 2KikK
k
j).

From the above expressions one can prove the following theorem:

Theorem 6. Let (S, hij ,Kij) denote an initial data set for the vacuum Einstein field equations.
If there exists a pair (N,N i) such that

NKij +D(iYj) = 0,

NkDkKij +DiN
kKkj +DjN

kKik +DiDjN = N(rij +KKij − 2KikK
k
j),

then the development of the initial data has a Killing vector.

The KID conditions are overdetermined. This is natural as not every spacetime admits a
symmetry.

Remark. The KID conditions are closely related to the constraint equations and the ADM
evolution equations —[?].
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vanced Mathematics. European Mathematical Society, 2008.

– A.D. Rendall. Partial differential equations in General Relativity. Oxford University Presss,
2008.

– H. Ringström. The Cauchy Problem in General Relativity. European Mathematical Society,
2009.

References

[1] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. , 661
(1986).

[2] T. W. Baumgarte & S. L. Shapiro, Numerical Relativity: solving Einstein’s equations on the
computer, Cambridge University Press, 2010.

[3] D. R. Brill & R. W. Lindquist, Interaction energy in geometrostatics, Phys. Rev. 131, 471
(1963).

[4] Y. Choquet-Bruhat, General Relativity and the Einstein equations, Oxford University Press,
2008.

[5] H. Friedrich & A. D. Rendall, The Cauchy problem for the Einstein equations, Lect. Notes.
Phys. 540, 127 (2000).

30
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