LTCC, Measure-Theoretic Probability: Examination 2019-20, solutions

You may refer without proof to results from the course (theorems, examples, etc.).

Q1 This question is concerned with a set C' = N, C,,, where C', Cy, . .. are constructed recursively
as followsV. Start with the closed unit interval C; = [0,1]. For eachn = 1,2,... the set C,, is a
union of 2"~! disjoint closed intervals, called components. The set C,,; is obtained by removing
from each component [a, b] of C,, a middle open interval of size (b — a)/(n + 1)?, so that

b+a b—a b+a b—a
[a,0] N Chyr = |a, 5 _2(n+1)2}U{ 2 +2(n+1)2’

For instance, Co = [0, 2] U [2,1]. Let for z € R

AC N[0, 2))

Fla) = "y

where A is the Lebesgue measure.
(1) Is C' a Borel set? What is the cardinality of C'? Is there an open interval contained in C'?
(ii) Determine \(C),) forn = 1,2, ... [Hint: find first the quotient \(C,11)/\(C,,).]
(iii) Prove that A\(C') = lim,,_,o, A(C,,) and calculate A(C') explicitly.

(ii1)) Show that F' and F;, are continuous distribution functions of some probability measures x and
4, respectively, and that p,, weakly converge to p as n — oo.

(iv) Calculate the density f,(z) = F!(x) for all x where the derivative exists.

(v) Find the limit f(x) := lim,,_,, f(x) for all z such that F/ (x) exists for every n.

Q1 solution (i) Each (), is a finite union of closed intervals, hence Borel, and C'is Borel as a countable
intersection of Borel sets. Like for the standard Cantor set, points of C' can be encoded by infinite
binary sequences, hence the cardinality of C' is continuum. Each component of ), has length at not
bigger than 2~ ("~ and since this number approaches 0 as n — 0o, the set C' contains no intervals.
(i1) By the construction we have recursion
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(iii) Since C; D Cy D - -+, we have A(C') = lim,,_,, A(C},) by the monotonicity property of measure.
Using the result in (i), sending n — oo yields A\(C) = 3.

(iii) For every measurable A, the function x +— A(A N [0, z]) is continuous because A({z}) = 0.
Thus F,,, F' are continuous distribution functions on R, with F,,(z) = F(z) = 0 for z < 0 and
F,(x) = F(x) = 1 for x > 1. By continuity of F, the weak convergence 1, = p means convergence
F,(z) — F(x) for every x € R; and the latter is a consequence of A\(C,, N [0,z]) — A(C N[0, x]),
which holds as in part (i1).

(iv) Measure yi,, is the uniform distribution on C,,, with density f,(z) = 0 for x ¢ C,, and f,(z) =

(DCompare with the construction of the standard Cantor set.



1/XNCy) = f—fl in the interior points of C,,. The derivative F (x) does not exist if = is an endpoint of
a component of C),.

(v) If z is an internal point of every C,,, then f,(z) — f(z) = 1/A(C) = 2,if x € R\ C we have
fn(z) = 0 = f(z) for all sufficiently large n. If x is a boundary point of one of C,,’s (endpoint of
a component), f/(x) does not exist for large enough n. [In fact, f(x) = F’(x) everywhere with the

exception of the latter countable set.]

Q2 Let &1, &5, ... be a sequence of independent, identically distributed random variables with mean
E¢; = 0 and variance Var(§;) = 02 < oo. Let Sy = 0,and S,, = & + -+ + &0, Fr = 0(&, ., &)
forn € N.

(i) For positive function ¢)(n),n € N, what are possible values for probability of the event A =
{|Sn] > ¥(n) i.0.} (where i.0. means infinitely often)? Give examples of all possibilities.

(i) Let M, = > &¢&;. Show that (M, n € N) is a martingale.
1<i<j<n
(iii) Let 7 be a stopping time adapted to the filtration (F,,, n € N), with E7 < oo. For martingale
from part (ii), give definition of the random variable M, and show that E M, = 0. [Hint: use
Wald’s identities].

(iv) Let
max ’SZ - Sj’
_ 0<igy<n

R =
" o\v/n
Show that the random variables R,, converge in distribution as n — oo. You are not asked to
find the limit distribution explicitly.

Q2 solution (i) Event A belongs to 0(&,,, 11, - - - ) for every n, hence is a tail event, with probability
0 or 1, according to Kolmogorov’s 0 — 1 law. Let A, = {|S,| > #(n)}, then by Chebyshev’s
inequality

Var(S,)  o’n
nd y2(n)’
so choosing ¢)(n) = n/? we have Y P(A,) < oo hence P(A) = 0 by the Borel-Cantelli lemma.
To illustrate the second possibility, let (.5,,) be a simple symmetric random walk and ¢(n) = 1;

then P(A) = 1, because the random walk is recurrent and |S,,| > 1 holds infinitely often.
(i1) Write M,y = M,, + £,.1S,, and observe that by measurability and independence

P(A,) <

E{Mn + €n+15n‘]:n] = Mn + SnE[€n+1’fn] = Mn + SnE[gnJrl] = Mn'

(iii) M, = > 07 M, 1(7 = n) (where 1(- - - ) is indicator variable. Squaring yields,

S2=Y & +2M,
=1

SO
r

S2=) & +2M..

Jj=1

By the first Wald identity applied to i.i.d. §J2»
E Z @2 =’ET
j=1
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and by the second E S? = o?E, hence E M, = 0. [Under additional assumptions on 7 or ;s the
result can be concluded straight from Doob’s Optional Sampling theorem. ]
(iv) For continuous function z : [0, 1] — R let p, := supy<,<;<; |2(t) — 2(s)|, the functional called

the range of function. Check that [p, — p,| < 2sup,¢o ) |2(t) — y(t)|, which implies that the range
x +— p, is a continuous functional on the metric space C0, 1] of continuous functions. Let

[nt)

1 ng + (nt — [nt])E|ntj1 |, t €10,1]

=7\ 2

be a (random) continuous function, whose graph is a broken line obtained by connecting the points

k
<—, Sk ), k=20,...,n.
n’ o\/n

The random variable R,, in question is the range of X,,(-). By Donsker’s Invariance Principle R, A
pB, Where pp is the range of the Brownian motion on [0, 1].

Q3 Let (B(t), t > 0) be a standard Brownian motion with natural filtration (F;, ¢ > 0). Consider
A(t) = |B(t)], the absolute value of the Brownian motion. The process (A(t), ¢t > 0) is called the
reflected Brownian motion.

(i) Determine the probability density function f4«)(x) of the random variable A(t).
(ii) Determine the conditional probability density function of A(t) given that A(s) = z, forz, s > 0.

(iii) Justify that (A(t), t > 0) is a Markov process by showing that for 0 < s < ¢
Elg(A(6)) [Fs] = Elg(A@))] As)]-
for every bounded measurable function g : R, — R.

(iv) Is the reflected Brownian motion a martingale, a submartingale, a supermartingale or none of
these?

(v) Forz > 0, let 7, = inf{t > 0 : A(t) = x}. Show that 7, < oo a.s.. [Hint: you may use that
{m <t} D{A(t) > z}]

Q3 solution (i) The function 2z — |x| is smooth and 2-to-1 everywhere (with the exception of 0), with
derivative £1. Since A(t) = |B(t)|, the density of A(t) is

2
\ 27t

corresponding to the ‘folded normal distribution’.

(i) Using notation p(t — s, x,y) for the transition density of the Brownian motion (for moving from
B(s) = z to B(t) = y) we have for s < t,x € R,y > 0 by symmetry of the centred normal
distribution

faw(x) = exp(—x%/(2t)), x>0,

faw)B(s)==(y) = p(t—s,2,y)+p(t—s,2,—y) = p(t—s, —x,y)+p(t—s, =2, =Y) = faw)|B(s)=—z(Y)-

Hence by the total probability formula for x > 0
Jaw) a)==Y) = faw)Bs)==(Y) = faw)Bs)=—a(y) = p(t — 5, 2,y) + p(t — 5,2, —y).
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(ii1) The Brownian motion itself is a Markov process, therefore

Elg(A@)) | Fs] = Elg(A(®))|B(s)].

But for z > 0 from part (ii)

Elg(A(t)|B(s) = 2] = / " 00 Fao e () dy = / " 9 faia—s (9)dy = Elg(AWM)|As) =

and because > 0 is arbitrary
Elg(A(1)) |75l = E[g(A(t))|A(s)]

as wanted.
(iv) Since the function = — |z| is convex, we may apply Jenssen’s inequality to the conditional
expectation to obtain for s < ¢

E[A@)|F] = E[[B®)||F] = [E[B)|F]| = |B(s)] = A(s),

where E[B(t)|F;] = B(s) holds because the Brownian motion is a martingale. Thus (A(¢),¢ > 0) is
a submartingale.

(v) Using B(t) £ vB(1) ~ N(0,1)
P(r, <) > P(A(t) > 2) = P(|B(t)| > z) = P(|B(1)| > /V1) = 2(1 - ®(z/V)),

where ® is the cumulative distribution function of the N'(0, 1)-distribution. Letting ¢ — oo we have
d(z/vt) = 1/2,502(1 — ®(x/+/t)) — 1 and P(7, < t) — 1. Now from

1 =P, <o0)=P(r, =00) <P(1, >t) =1—-P(7, <)

we obtain
P(r, =00) =0, P(r, <o0)=1



