
LTCC, Measure-Theoretic Probability: Examination 2019-20, solutions

You may refer without proof to results from the course (theorems, examples, etc.).

Q1 This question is concerned with a set C = ∩∞n=1Cn, where C1, C2, . . . are constructed recursively
as follows(1). Start with the closed unit interval C1 = [0, 1]. For each n = 1, 2, . . . the set Cn is a
union of 2n−1 disjoint closed intervals, called components. The set Cn+1 is obtained by removing
from each component [a, b] of Cn a middle open interval of size (b− a)/(n+ 1)2, so that

[a, b] ∩ Cn+1 =

[
a ,

b+ a

2
− b− a

2(n+ 1)2

]⋃[
b+ a

2
+

b− a
2(n+ 1)2

, b

]
.

For instance, C2 = [0, 3
8
] ∪ [5

8
, 1]. Let for x ∈ R

F (x) =
λ(C ∩ [0, x])

λ(C)
, F (x) =

λ(Cn ∩ [0, x])

λ(Cn)
, n ∈ N,

where λ is the Lebesgue measure.

(i) Is C a Borel set? What is the cardinality of C? Is there an open interval contained in C?

(ii) Determine λ(Cn) for n = 1, 2, . . . [Hint: find first the quotient λ(Cn+1)/λ(Cn).]

(iii) Prove that λ(C) = limn→∞ λ(Cn) and calculate λ(C) explicitly.

(iii) Show that F and Fn are continuous distribution functions of some probability measures µ and
µn, respectively, and that µn weakly converge to µ as n→∞.

(iv) Calculate the density fn(x) = F ′n(x) for all x where the derivative exists.

(v) Find the limit f(x) := limn→∞ fn(x) for all x such that F ′n(x) exists for every n.

Q1 solution (i) EachCn is a finite union of closed intervals, hence Borel, andC is Borel as a countable
intersection of Borel sets. Like for the standard Cantor set, points of C can be encoded by infinite
binary sequences, hence the cardinality of C is continuum. Each component of Cn has length at not
bigger than 2−(n−1), and since this number approaches 0 as n→∞, the set C contains no intervals.
(ii) By the construction we have recursion

λ(Cn+1) =

(
1− 1

(n+ 1)2

)
λ(Cn), λ(C1) = 1,

whence

λ(Cn) =
n−1∏
k=1

(
1− 1

(k + 1)2

)
=

n−1∏
k=1

k(k + 2)

(k + 1)2
=

1

2

(
1 +

1

n

)
.

(iii) Since C1 ⊃ C2 ⊃ · · · , we have λ(C) = limn→∞ λ(Cn) by the monotonicity property of measure.
Using the result in (ii), sending n→∞ yields λ(C) = 1

2
.

(iii) For every measurable A, the function x 7→ λ(A ∩ [0, x]) is continuous because λ({x}) = 0.
Thus Fn, F are continuous distribution functions on R, with Fn(x) = F (x) = 0 for x ≤ 0 and
Fn(x) = F (x) = 1 for x ≥ 1. By continuity of F , the weak convergence µn ⇒ µ means convergence
Fn(x) → F (x) for every x ∈ R; and the latter is a consequence of λ(Cn ∩ [0, x]) → λ(C ∩ [0, x]),
which holds as in part (ii).
(iv) Measure µn is the uniform distribution on Cn, with density fn(x) = 0 for x /∈ Cn and fn(x) =

(1)Compare with the construction of the standard Cantor set.
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1/λ(Cn) = 2n
n+1

in the interior points of Cn. The derivative F ′n(x) does not exist if x is an endpoint of
a component of Cn.
(v) If x is an internal point of every Cn, then fn(x) → f(x) = 1/λ(C) = 2, if x ∈ R \ C we have
fn(x) = 0 = f(x) for all sufficiently large n. If x is a boundary point of one of Cn’s (endpoint of
a component), f ′n(x) does not exist for large enough n. [In fact, f(x) = F ′(x) everywhere with the
exception of the latter countable set.]

Q2 Let ξ1, ξ2, . . . be a sequence of independent, identically distributed random variables with mean
Eξi = 0 and variance Var(ξi) = σ2 < ∞. Let S0 = 0, and Sn = ξ1 + · · · + ξn,Fn = σ(ξ1, . . . , ξn)
for n ∈ N.

(i) For positive function ψ(n), n ∈ N, what are possible values for probability of the event A =
{|Sn| > ψ(n) i.o.} (where i.o. means infinitely often)? Give examples of all possibilities.

(ii) Let Mn =
∑

1≤i<j≤n
ξiξj . Show that (Mn, n ∈ N) is a martingale.

(iii) Let τ be a stopping time adapted to the filtration (Fn, n ∈ N), with E τ < ∞. For martingale
from part (ii), give definition of the random variable Mτ and show that EMτ = 0. [Hint: use
Wald’s identities].

(iv) Let

Rn =
max

0≤i≤j≤n
|Si − Sj|

σ
√
n

.

Show that the random variables Rn converge in distribution as n → ∞. You are not asked to
find the limit distribution explicitly.

Q2 solution (i) Event A belongs to σ(ξn, ξn+1, . . . ) for every n, hence is a tail event, with probability
0 or 1, according to Kolmogorov’s 0 − 1 law. Let An = {|Sn| > ψ(n)}, then by Chebyshev’s
inequality

P(An) <
Var(Sn)

n3
=

σ2n

ψ2(n)
,

so choosing ψ(n) = n3/2 we have
∑

n P(An) <∞ hence P(A) = 0 by the Borel-Cantelli lemma.
To illustrate the second possibility, let (Sn) be a simple symmetric random walk and ψ(n) ≡ 1;

then P(A) = 1, because the random walk is recurrent and |Sn| > 1 holds infinitely often.
(ii) Write Mn+1 = Mn + ξn+1Sn, and observe that by measurability and independence

E[Mn + ξn+1Sn|Fn] = Mn + Sn E[ξn+1|Fn] = Mn + Sn E[ξn+1] = Mn.

(iii) Mτ =
∑∞

n=1Mn1(τ = n) (where 1(· · · ) is indicator variable. Squaring yields,

S2
n =

n∑
j=1

ξ2j + 2Mn

so

S2
τ =

τ∑
j=1

ξ2j + 2Mτ .

By the first Wald identity applied to i.i.d. ξ2j

E
τ∑
j=1

ξ2j = σ2 E τ
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and by the second ES2
τ = σ2 E τ, hence EMτ = 0. [Under additional assumptions on τ or ξj’s the

result can be concluded straight from Doob’s Optional Sampling theorem.]
(iv) For continuous function x : [0, 1] → R let ρx := sup0≤s≤t≤1 |x(t) − x(s)|, the functional called
the range of function. Check that |ρx − ρy| ≤ 2 supt∈[0,1] |x(t) − y(t)|, which implies that the range
x 7→ ρx is a continuous functional on the metric space C[0, 1] of continuous functions. Let

Xn(t) =
1

σ
√
n

bntc∑
j=1

ξj + (nt− bntc)ξbntc+1

 , t ∈ [0, 1]

be a (random) continuous function, whose graph is a broken line obtained by connecting the points(
k

n
,
Sk
σ
√
n

)
, k = 0, . . . , n.

The random variable Rn in question is the range of Xn(·). By Donsker’s Invariance Principle Rn
d→

ρB, where ρB is the range of the Brownian motion on [0, 1].

Q3 Let (B(t), t ≥ 0) be a standard Brownian motion with natural filtration (Ft, t ≥ 0). Consider
A(t) = |B(t)|, the absolute value of the Brownian motion. The process (A(t), t ≥ 0) is called the
reflected Brownian motion.

(i) Determine the probability density function fA(t)(x) of the random variable A(t).

(ii) Determine the conditional probability density function ofA(t) given thatA(s) = x, for x, s > 0.

(iii) Justify that (A(t), t ≥ 0) is a Markov process by showing that for 0 ≤ s < t

E[g(A(t)) |Fs] = E[g(A(t))| A(s)].

for every bounded measurable function g : R+ → R.

(iv) Is the reflected Brownian motion a martingale, a submartingale, a supermartingale or none of
these?

(v) For x > 0, let τx = inf{t ≥ 0 : A(t) = x}. Show that τx < ∞ a.s.. [Hint: you may use that
{τx ≤ t} ⊃ {A(t) ≥ x}.]

Q3 solution (i) The function x→ |x| is smooth and 2-to-1 everywhere (with the exception of 0), with
derivative ±1. Since A(t) = |B(t)|, the density of A(t) is

fA(t)(x) =
2√
2πt

exp(−x2/(2t)), x > 0,

corresponding to the ‘folded normal distribution’.
(ii) Using notation p(t − s, x, y) for the transition density of the Brownian motion (for moving from
B(s) = x to B(t) = y) we have for s < t, x ∈ R, y > 0 by symmetry of the centred normal
distribution

fA(t)|B(s)=x(y) = p(t−s, x, y)+p(t−s, x,−y) = p(t−s,−x, y)+p(t−s,−x,−y) = fA(t)|B(s)=−x(y).

Hence by the total probability formula for x ≥ 0

fA(t)|A(s)=x(y) = fA(t)|B(s)=x(y) = fA(t)|B(s)=−x(y) = p(t− s, x, y) + p(t− s, x,−y).
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(iii) The Brownian motion itself is a Markov process, therefore

E[g(A(t)) |Fs] = E[g(A(t))|B(s)].

But for x ≥ 0 from part (ii)

E[g(A(t))|B(s) = x] =

∫ ∞
0

g(y)fA(t)|B(s)=x(y)dy =

∫ ∞
0

g(y)fA(t)|A(s)=x(y)dy = E[g(A(t))|A(s) = x]

and because x ≥ 0 is arbitrary

E[g(A(t)) |Fs] = E[g(A(t))|A(s)]

as wanted.
(iv) Since the function x 7→ |x| is convex, we may apply Jenssen’s inequality to the conditional
expectation to obtain for s < t

E[A(t)|Fs] = E[|B(t)||Fs] ≥ |E[B(t)|Fs]| = |B(s)| = A(s),

where E[B(t)|Fs] = B(s) holds because the Brownian motion is a martingale. Thus (A(t), t ≥ 0) is
a submartingale.
(v) Using B(t)

d
=
√
tB(1) ∼ N (0, 1)

P(τx ≤ t) ≥ P(A(t) ≥ x) = P(|B(t)| ≥ x) = P(|B(1)| ≥ x/
√
t) = 2(1− Φ(x/

√
t)),

where Φ is the cumulative distribution function of the N (0, 1)-distribution. Letting t → ∞ we have
Φ(x/

√
t)→ 1/2, so 2(1− Φ(x/

√
t))→ 1 and P(τx ≤ t)→ 1. Now from

1− P(τx <∞) = P(τx =∞) ≤ P(τx > t) = 1− P(τx ≤ t)

we obtain
P(τx =∞) = 0, P(τx <∞) = 1.
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