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• 2 star model and Strauss model
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Phase transitions in  

Maximum Entropy Ensembles



2-star model
A wedge is a triple of nodes connected by two links


The 2 star model is  

the maximum entropy canonical network model  

in which we fix  

• the expected total number of links 


• the expected number of wedges

aijaiℓ = 1i

j

ℓ



The soft constraints 
of the 2 star model

2 star model 

In this case we impose the  expected total number of links 
as a soft constraint


and the expected total number of wedges as a soft 
constraint


∑
G⊂ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

N

∑
i

∑
j≠ℓ|j,ℓ≠i

aijaiℓ P(G) = C̄



Phase transition in the  
2-star model

By solving the 2 star model in the mean-field approximation  

a first order phase transition is found  

between a low density phase and  

a high density phase  

including a region of the phase-space  

with coexistence of the two phases. 



Probability of a network in 
the 2 star model

According to the general theory of canonical network ensemble 
the probability of a network can be expressed as 


with Hamiltonian given by 


where 𝜆 and 𝜸 are Lagrangian multipliers enforcing the 
constraints

P(G) =
1
Z ∑

a

exp λ∑
i<j

aij + γ
N

∑
i=1

∑
j≠ℓ,ℓ≠j

aijaiℓ =
e−H(G)

Z

H(G) = − λ∑
i<j

aij − γ∑
i

∑
j≠ℓ

aijaiℓ



Mean-field approximation 
In the mean field approximation we neglect correlations and we put


which gives


Where we assume that the marginal of each link is the same and  equal to p, 
i.e.


aijajℓ ≃ aij⟨ajℓ⟩ + ⟨aij⟩ajℓ − ⟨aij⟩⟨ajℓ⟩

⟨aijajℓ⟩ ≃ ⟨aij⟩⟨ajℓ⟩

⟨aij⟩ = p ∀i, j

v



Mean-field approximation 
By inserting the mean-field approximation


In the expression for the Hamiltonian 


We get 


aijajℓ ≃ aij p + ajℓ p − p2

H(G) = − β∑
i<j

aij − γ∑
i

∑
j≠ℓ

aijaiℓ

HMF(G) = − β∑
i<j

aij − γ∑
i

∑
ℓ≠j,ℓ≠i

[aij p + ajℓ p − p2]

= − β∑
i<j

aij − γ ∑
i, j

aij ∑
ℓ≠j,ℓ≠i

p + ∑
jℓ

ajℓ ∑
i≠j,i≠ℓ

p + C

≃ − β∑
i<j

aij − 4γpN∑
i<j

aij + C = − ∑
i<j

aij(β + 4Nγp) + C



Self-consistent equation
Assuming that p is known and that the Hamiltonian of the 
network ensemble is given by its mean-field approximation


We can calculate the marginal which leads to 


the self-consistent equation for p given by 


HMF(G) ≃ − ∑
i<j

aij(β + 4Nγp) − C

p = f(p) =
eβ+4Nγp

1 + eβ+4Nγp

v



Phase transition in the  
2-star model

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

p

f(p
)

p = f(p) =
eβ+4Nγp

1 + eβ+4Nγp

For some values of the Lagrangian multipliers  

there are two stable solutions at  

high density (high value of p) and low density (low values of p) 


and one unstable solution

v



By putting 


the phase diagram of p as a function of B is given by 


 

Phase transition in the  
2-star model

Phase transition in the  
2-star model

Phase transition in the  
2-star model

B =
β
2

J = γN

Park and Newman (2004)

v



Strauss model
A triangle is a triple of nodes connected by three links


The Strauss model is  

the maximum entropy canonical network model  

in which we fix  

• the expected total number of links 


• the expected number of triangles

aijajℓaℓi = 1i

j

ℓ



The soft constraints 
of the Strauss model

Strauss model 

In this case we impose the  expected total number of links 
as a soft constraint


and the expected total number of triangles as a soft 
constraint


∑
G⊂ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

∑
i<j<ℓ

aijaiℓajℓ P(G) = C̄



Phase transition in the 
Strauss model

By solving the Strauss model in the mean-field approximation  

a first order phase transition is found  

between a low density phase and  

a high density phase  

including a region of the phase-space with coexistence of the two phases. 

In the high density phase one observes a 


condensation phenomena 


where the network is decomposed in a high density phase including all the 
triangles and into several disconnected nodes and clusters.



Feature of the nodes  
And  

Hidden variables



SOCIAL NETWORKS     COMMUNICATION NETWORKS   BIOLOGICAL NETWORKS 
Metadata about agents               Locations                                      Metadata about nodes  
    

Often network data  
includes MetaData



COMMUNITY DETECTION                             COMMUNITY DETECTION    

Some time we aim at 
inferring metadata

T. Peixoto PRX (2014)



                          INFERRING NETWORK EMBEDDINGS 
                            THE 150 YEARS NATURE COVER    

Network visualisation



Hidden variables 
The direct problem

• In order to have a well defined model for inferring hidden 
variables we need to approach and solve the direct 
problem.


• The direct problem is the problem of modelling networks 
under the assumption that the hidden variable are known


• Here we will describe this approach within the theory of 
the canonical network ensembles.



Local constraints dependent on structural 
properties and  hidden variables



Spatial networks
Consider a simple network of N nodes


Let us assume that each node     is assigned a set of position of 
nodes in space


This position can be  

an actual geographical position of nodes in space  

or a position of nodes in a generalised space  

(social distance in social networks or any suitable hidden 
embedding space)

xi

i



Spatial networks
We bin the set of all possible distances d  in a vector such that 


We consider  the set of two different types of soft constraints enforcing respectively the 
degree of each nodes and the expected number of links at distance n


k̄i = ∑
G∈ΩG

P(G |x)
N

∑
j=1

aij L̄(d) = ∑
G∈ΩG

P(G |x)
N

∑
i<j

aij (d(xi, xj), d)

Fμ(G) =
N

∑
i<j

aij (d(xi, xj), d)Fi(G) =
N

∑
j=1

aij

Expected degree of each node           Expected total number of links at distance d

𝟙

𝟙

(d(xi, xj), d) = {1 if d(xi, xj) ∈ [d, d + Δd]
0 otherwise

𝟙



Probability of a spatial 
network

According to the general theory of canonical network ensembles (lesson 2)  

the probability of a spatial network  

in which we enforce  

the expected degree sequence  

and the expected number of links at distance d  

reads 

 P(G |x) =
1
Z

exp −
N

∑
i=1

λi

N

∑
j=1

aij − ∑
d

ωd ∑
i<j

aij δ(d(xi, xj), d)𝟙



The marginal probability of 
the spatial network ensemble
The marginal probability a link is given by 


Where                are the Lagrangian multipliers enforcing the 
constraints 


 


pij =
e−λi−λj−ωdij

1 + e−λi−λj−ωdij

k̄i =
N

∑
j=1

pij =
N

∑
j=1

e−λi−λj−ωdij

1 + e−λi−λj−ωdij

λi and ωd

L̄(d) = ∑
i<j

e−λi−λj−ωd

1 + e−λi−λj−ωd
(d(xi, xj), d)𝟙

(left as an exercise)



Marginal of the  
spatial network ensemble

Given the marginal


by putting 


we have 


pij =
e−λi−λj−ωdij

1 + e−λi−λj−ωdij

pij =
e−λi−λj−ωdij

1 + e−λi−λj−ωdij
=

θiθjW(dij)
1 + θiθjW(dij)

W(dij) = e−ωdij θi = e−λi





Indian train and airport 
network

Halu et. al. PRE (2014)



Block model 



Block assignment
Consider a simple network of N nodes


Let us assume that each node     is assigned a set of node classification or 
“block ”


This classification of nodes can come  

from metadata  about the nodes or  

can be an hidden property of nodes reflected in the network structure  

(for instance the network model might enforce the tendency of nodes 
of the same block to be more  likely to link to each other or less likely 

to link to each other )

bi ∈ {1,2,…, B}
i



Examples
Girvan-Newman benchmark 

Regular network with 4 communities


 where  nodes are  more likely to be connected 


within their community than across communities 


Bipartite network 

Network formed by two blocks with links


allowed only between nodes of different blocks



Canonical ensemble
We consider the canonical network ensemble with soft constraints of the type


Where the soft constraints enforce a given expected total number of links and given 
expected total cost of the link


ē(b, b′ ) = ∑
G∈ΩG

P(G |b)
N

∑
i,j

aijδ(bi, b)δ(bj, b′ ) for b ≤ b′ 

Fb,b′ (G) =
N

∑
i,j

aijδ(bi, b)δ(bj, b′ )

C̄μ = ∑
G∈ΩG

[P(G |b)Fμ(G)]

  Expected total number of links between nodes  
of block b and nodes of block b’



Probability of a network 
given the block assignment

According to the general treatment of canonical network 
ensembles the probability of the network reads


where         are the Lagragian multipliers enforcing the soft 
constraint

P(G |b) =
1
Z

exp − ∑
b≤b′ 

λb,b′ ∑
i, j

aijδ(bi, b)δ(bj, b′ )

{λb,b′ }

ē(b, b′ ) = ∑
G∈ΩG

P(G |b)
N

∑
i,j

aijδ(bi, b)δ(bj, b′ ) for b ≤ b′ 



Marginal
The marginal probability of a link is given by 


Where the Lagrangian multipliers are given  by 


with 

pij =
e−λbi,bj[1 + δ(bi, bj)]

1 + e−λbi,bj[1 + δ(bi, bj)]

e−λb,b′ =
πb,b′ 

1 − πb,b′ 
for b ≠ b′ 

πb,b′ =
ēb,b′ 

nb,b′ 

e−2λb,b =
πb,b

1 − πb,b
for  b = b′ 

nb,b′ = { nbnb′ if b ≠ b′ 

nb(nb − 1) if b = b′ 



Proof
The Gibbs measure for the block model is given by 


with Hamiltonian 

H(G) = ∑

b≤b′ 

λb,b′ ∑
i, j

aijδ(bi, b)δ(bj, b′ ) = ∑
ij

aij ∑
b≤b′ 

λb,b′ δ(bi, b)δ(bj, b′ )

= ∑
i<j

aij ∑
b≤b′ 

λb,b′ δ(bi, b)δ(bj, b′ ) + ∑
j>i

aij ∑
b≤b′ 

λb,b′ δ(bi, b)δ(bj, b′ )

= ∑
i<j

aij ∑
b≤b′ 

λb,b′ [δ(bi, b)δ(bj, b′ ) + δ(bi, b′ )δ(bj, b)]
= ∑

i<j

aijλbij,bij [1 + δ(bi, bj)] = ∑
i<j

aij [1 + δ(bi, bj)] λbi,bj

λb,b′ = λb′ ,b

P(G |b) =
1
Z ∑

a

exp − ∑
b≤b′ 

λb,b′ ∑
i, j

aijδ(bi, b)δ(bj, b′ ) =
e−H(G)

Z

Where we are introducing the notation



Proof
Given the expression of the probability of the graph given 
the block assignment


the partition function can be calculated to be


and the marginal distributions are given by 

Z = ∑
a

exp −∑
i<j

aijλbi,bj [1 + δ(bi, bj)] = ∏
i<j

(1 + e−λbi,bj[1 + δ(bi, bj)])

pij =
1
Z ∑

a

aij exp [−∑
r<s

arsλbr,bs [1 + δ(br, bs)]] =
e−λbi,bj[1 + δ(bi, bj)]

1 + e−λbi,bj[1 + δ(bi, bj)]

P(G |b) =
e−H(G)

Z
=

1
Z ∑

a

exp −∑
i<j

aijλbi,bj [1 + δ(bi, bj)]



Proof (continuation)
The constraints on the degree correlations for            can be written alternatively as 


                                                                 or as                                                                      


Considering the expression of the marginal probability


The constraint reads


Or equivalently 


 

Therefore the Lagrangian multipliers are given by 

∑
G∈ΩG

P(G |b) ∑
i, j

aijδ(bi, b)δ(bj, b′ ) = ēb,b′ ∑
i, j

pijδ(bi, b)δ(bj, b′ ) = ēb,b′ 

e−λb,b′ 

1 + e−λb,b′ 
nb,b′ = ēb,b′ 

e−λb,b′ 

1 + e−λb,b′ 
= πb,b′ =

ēb,b′ 

nb,b′ 

e−λb,b′ =
πb,b′ 

1 − πb,b′ 

pij =
e−λb,b′ 

1 + e−λb,b′ 
δ(bi, b)δ(bj, b′ )

nb,b′ = { nbnb′ if b ≠ b′ 

nb(nb − 1) if b = b′ 
with

b ≠ b′ 



Proof (continuation)
The constraints on the degree correlations for            can be written alternatively as 


                                                                 or as                                                                      


Considering the expression of the marginal probability


The constraint reads


Or equivalently 


 

Therefore the Lagrangian multipliers are given by 

∑
G∈ΩG

P(G |b) ∑
i, j

aijδ(bi, b)δ(bj, b′ ) = ēb,b′ ∑
i, j

pijδ(bi, b)δ(bj, b′ ) = ēb,b′ 

e−2λb,b

1 + e−2λb,b
nb,b′ = ēb,b

e−2λb,b

1 + e−2λb,b
= πb,b =

ēb,b

nb,b

e−2λb,b =
πb,b

1 − πb,b

pij =
e−2λb,b

1 + e−2λb,b
δ(bi, b)δ(bj, b)

nb,b′ = { nbnb′ if b ≠ b′ 

nb(nb − 1) if b = b′ 
with

b = b′ 



Microcanonical ensemble
We consider the microcanonical network ensemble


Where the soft constraints enforce a given expected total number of links and given 
expected total cost of the link


eb,b′ =
N

∑
i,j

aijδ(bi, b)δ(bj, b′ ) for b ≤ b′ 

C̄μ = ∑
G∈ΩG

[P(G |b)Fμ(G)]

 Total number of links between nodes  
of block b and nodes of block b’

v



Microcanonical block model
According to the theory of micro canonical network ensembles (lesson 2) the 
probability of a network in the microcanonical block modes is given by


where the normalisation constant is given by the total number of network in the 
ensembles, i.e.


The entropy of the micro canonical block model is given by 


P(G |b) =
1

ZM ∏
b≤b′ 

δ eb,b′ , ∑
ij

aijδ(bi, b)δ(bj, b′ )

ZM = ∏
b<b′ 

(nbnb′ 
eb,b′ )∏

b (
nb(nb − 1)/2

eb,b /2 )

Σ = ln ∏
b<b′ 

(nbnb′ 
eb,b′ )∏

b (
nb(nb − 1)/2

eb,b /2 )v

v



Equivalence of the microcanonical 
and canonical block models

As long as the number of constraints is not extensive, 

i.e the number of communities satisfies 

                                   

the microcanonical and canonical block models  

are equivalent

B ≪ N



Block model with constrained 
degree of the nodes

We consider the canonical network ensemble with two soft constraints of the type


Where the soft constraints enforce a given expected total number of links and given 
expected total cost of the link


k̄i = ∑
G∈ΩG

P(G |b)
N

∑
j=1

aij ē(q, q′ ) = ∑
G∈ΩG

P(G |b)
N

∑
i,j

aijδ(qi, q)δ(qj, q′ )

Fμ(G) =
N

∑
i,j

aijδ(qi, q)δ(qj, q′ )Fi(G) =
N

∑
j=1

aij

Cμ = ∑
G∈ΩG

[P(G |b)Fμ(G)]

Expected degree of each node           Expected total number of links at distance d



Block model with constrained 
degree of the nodes

According to the general treatment of canonical network 
ensembles the probability of the network reads


where         are the Lagragian multipliers enforcing the soft 
constraint on the block structure and  where          are the 
Lagrangian multipliers enforcing the constraints on the node 
degrees

P(G |b) =
1
Z

exp −
N

∑
i=1

λi

N

∑
j=1

aij − ∑
b≤b′ 

λb,b′ ∑
i, j

aijδ(bi, b)δ(bj, b′ )

{λb,b′ }
{λi}

v



Marginal
The marginal probability of a link is given by 


Where the Lagrangian multipliers satisfying the constraints


 

pij =
e−λi−λj−λbi,bj

1 + e−λi−λj−λbi,bj

(left as an exercise)

k̄i =
N

∑
j=1

pij
ēb,b′ =

N

∑
ij

pijδ(bi, b)δ(bj, b′ )



Inference of block structure



describe 

 the mesoscale organization of  

 Social, Biological  and Technological systems

                                     Communities



The Zackary-Karate Club Network



Zackary Karate Club Club Trophy
The first scientist at any conference  
on networks who uses Zackary’s karate  
Club as an example is inducted into the 
Zackary Karate Club Club and awarded 
a prize. 
  

The Zackary-Karate Club Club



Inference
Until now we have assumed to know the block assignment and we have modelled the network 

using the probability  


If we want to infer the block assignment given the network G


 we need to consider the posterior distribution  


 


of a given block assignment 


given our  priors beliefs encoded in the prior distribution 

indicating our assumptions on the distribution of the block assignment and the statistical 
network model from which we believe the model is sampled.

P(b |G)

P(b)

P(G |b)



Posterior distribution
Using Bayes rule 


we can express the posterior distribution as 


where 


P(b |G) =
P(G |b)P(b)

P(G)

P(G) = ∑
b

P(G |b)P(b)v



Maximum a posteriori (MAP)  
estimator

The maximum a posterior (MAP)


Estimator of  the block assignment 


infers the block assignment 


  by maximising the prior distribution


b⋆ = arg max
b

P(b |G)v



Minimum description length
The description length is defined as 


and indicates the number of bits needed to communicate the data 
within the chosen model


The prior can be written as 


Since the probability P(G) does not depend on the block assignment 
optimising the prior distribution is equivalent to minimise the 

description length

P(b |G) =
P(G |b)P(b)

P(G)
=

2−L(G,b)

P(G)

L(G, b) = − log2 [P(G |b)P(b)]



Priors
The choice of priors might depend on the particular problem to 
study. 


However in general is better to consider unbiased priors as the 
one described below.


The prior probability on block assignment can be factored in 
terms 


Where B is the total number of non-empty blocks and N is the 
distribution of number of nodes for each block b

P(b) = P(b |N)P(N |B)P(B)



Priors
For instance one can choose

Peixoto “Stochatic block modelling”

probability of having B blocksP(B) =
1
N

P(N |B) = [(N − 1
B − 1)]

−1

P(b |N) = [ N!
∏b Nb! ]

−1

uniform probability over distributions Nb

of nodes per block forbidding empty blocks

probability of each block assignementb
constaining Nb nodes per block b



The importance of the prior

The prior distribution is important 

In fact maximising only the likelihood could result in an 
overfitting where the “best” model is the model with a 

number of blocks equal to the number of nodes


The prior presence in the minimum description length 
however typically prevents from overfitting because models 
dependent on more parameters are associated to a longer 

description length.



Bayesian inference of the SBM for a 
network of American college football team

L(
G

,b
)

Minimizing the description lengths gives 10 communities

Peixoto “Stochastic block modelling”



Inference using Markov-
Chain MonteCarlo (MCMC)

• The maximum a posteriori estimator (MAP) can lead often 
to NP-hard problems.


• An alternative way to estimate the block assignment is to 
sample from the posterior distribution performing a 
MCMC algorithm


• Where we consider a move proposal 


• And we accept it with probability 

b → b′ 

Π(b → b′ ) = min (1,
P(b′ |G)P(b |b′ )
P(b |G)P(b′ |b) )



Global constraints only 
dependent on hidden variables



Hidden variables
• Consider a simple network of N nodes


• Let us assume that each node     is assigned a set of 
hidden variables 


These hidden variables can indicate any kind of 
metadata  

i.e. position in space, classification,  

proxy for the degree of the node

xi

i



“Payoff”  of a link
Let us consider a given function 

  

indicating the “payoff”  

(“cost” or “benefit”) 

of a link between a node with hidden variable   

and a node with hidden variable 

f(x, y)

x

y



Canonical ensemble
We consider the canonical network ensemble with two soft constraints of the type


Where the soft constraints enforce a given expected total number of links and given expected total cost of the link. 


Note that for such global constraints  

the canonical and micro canonical ensembles are equivalent 

L̄ = ∑
G∈ΩG

P(G)
N

∑
i<j

aij C̄ = ∑
G∈ΩG

P(G)
N

∑
i<j

aij f(xi, xj)

F2(G) =
N

∑
i<j

aij f(xi, xj)
F1(G) =

N

∑
i<j

aij

Cμ = ∑
G∈ΩG

[P(G)Fμ(G)]

Expected total number of links                        Expected total payoff of the links



Gibbs measure
Applying the general theory of canonical network ensemble it is immediate to 
derive the Gibbs measure of this ensemble given by


Where𝜇 and 𝛽 are Lagrangian multipliers fixed by the constraints


L̄ = ∑
G∈ΩG

P(G)
N

∑
i<j

aij C̄ = ∑
G∈ΩG

P(G)
N

∑
i<j

aij f(xi, xj)

P(G) =
1
Z

exp −β∑
i<j

aij f(xi, xj) − μ∑
i<j

aij

Expected total number of links                        Expected total cost of the links

L̄ =
N

∑
i<j

pij C̄ =
N

∑
i<j

pij f(xi, xj)

v



Marginal probability
The marginal probability that two nodes 


and 


are linked 


is only a function of the hidden variables 


and is given by  


pij = p(xi, xj) =
e−βf(xi,xj)−μ

1 + e−βf(xi,xj)−μ

i with hidden variables xi

j with hidden variables xj

(left as an exercise)



Scalar hidden variable
If the hidden variable is a scalar the marginal probability reads


All the nodes with hidden variable           have the same 
expected degree given by 


where        is the density distribution function of the nodes with 
hidden variables  


Therefore the hidden variable is a proxy for the degree

k̄i = N∫ dxρ(x)p(xi, x)

pij = p(xi, xj) =
e−βf(xi,xj)−μ

1 + e−βf(xi,xj)−μ

xi = x

ρ(x)

xi = x

v



Scalar hidden variable
The marginal probability for scalar hidden variables is given by


If we take 


We have 


Where 𝜇 or equivalently z fix the expected total number of links

p(xi, xj) =
e−βf(xi,xj)−μ

1 + e−βf(xi,xj)−μ

βf(xi, xj) = λxi
+ λxj

p(xi, xj) =
e−(λxi+λxj)−μ

1 + e−(λxi+λxj)−μ =
θxi

θxj
/z

1 + θxi
θxj

/z

θxi
= e−λxi z = eμ



The scalar hidden variables

The scalar hidden variables can be:


• The GDP of a country in the World Trade Networks


• Assets and liabilities of a bank in financial networks


• Any variable that can be considered as a good proxy for 
the degree of a node



Spatial networks
The marginal probability for scalar hidden variables is given by


If we take a constraints depending on the distance between 
the hidden variables 


we have 


where

p(xi, xj) =
e−βf(xi,xj)−μ

1 + e−βf(xi,xj)−μ

βf(xi, xj) = λxi
+ λxj

+ βω(d(xi, xj))

p(xi, xj) =
e−(λxi+λxj)−μW(dij)

1 + e−(λxi+λxj)−μW(dij)
=

θxi
θxj

W(dij)/z

1 + θxi
θxj

W(dij)/z

W(dij) = e−βω(dij) θxi
= e−λxi z = eμ



Spatial networks
With the choice 


The payoff of a link can depend on the distance in different ways .For instance 


The marginal reads 


with 


βf(xi, xj) = λxi
+ λxj

+ βω(d(xi, xj))

If ω(dij) = ln dij W(dij) = d−β
ij power-law decay with distance

If ω(dij) = dij W(dij) = e−βdij exponential decay with distance

p(xi, xj) =
e−(λxi+λxj)−μ−βω(d(xi,xj))

1 + e−(λxi+λxj)−μ−βω(d(xi,xj))
=

θxi
θxj

W(dij)/z

1 + θxi
θxj

W(dij)/z

If ω(dij) = ln dij payoff is linear with the order of magnitude of the distance
If ω(dij) = dij payoff is linear with the distance



The observed power-law decay of W(d)  

for the American airport network and the Indian train and 
airport network  

can be interpreted as the outcome  

of an effective “payoff” of the connection  

growing proportionally  

to the order of magnitude of distance between the nodes



Soft random geometric 
networks

If we take a “payoff” function of the form


The marginal takes the Fermi-Dirac form


which has functional form


f(xi, xj) = d(xi, xj) − r0

pij =
e−β(dij−r0)−μ

1 + e−β(dij−r0)−μ
=

1
eβ(dij−r0)+μ + 1

0.0 0.5 1.0 1.5
0.0

0.5

1.0

d

p

Here 𝜇=0  
and 𝛽=20,10,5 
The larger is 𝛽 
the steepest  

is the function

For 𝜇=0 and 
Two nodes 

 at distance d 
are connected 
 if and only if  

β → ∞

d ≤ r0



Random geometric hyperbolic networks

Consider the  hyperbolic plane       with curvature 


where two nodes of polar coordinates                   


have distance d satisfying  


which can be approximated as 
cosh ζd = cosh ζr cosh ζr′ − sinh ζr sinh ζr′ cos Δθ

d ≃ r + r′ +
2
ζ

ln sin
Δθ
2

≃ r + r′ +
1
ζ

ln Δθ

ℍ2 R = − ζ2

(r, θ) and (r′ , θ′ )



Random geometric hyperbolic networks

Using the  expression for the hyperbolic distances 


The hyperbolic network are geometric random graph with payoff of each link


 given by 


where r0 is a suitable parameter that can tune the number of the links


By setting 


the marginal probability reads

d ≃ r + r′ +
2
ζ

ln sin
Δθ
2

≃ r + r′ +
1
ζ

ln Δθ

pij =
e−ζβ(dij−r0)

1 + e−βζ(dij−r0) =
1

eβζ(dij−r0) + 1

f(xi, xj) = ζ(dij − r0) = ζri + ζrj + ln Δθij − r0

μ = 0

v



Random geometric hyperbolic networks

Considering the marginal


with the hyperbolic network choice


By putting  


We obtain the marginal


Therefore the random geometric hyperbolic network model reduces  

to a maximum entropy model in which we fix the degrees  

and we have a cost of the link proportional to the  

order of magnitude of the angular distance between the nodes 

ζ(dij − r0) = ζri + ζrj + ln Δθij − ζr0

pij =
θiθjW(Δθij)

1 + θiθjW(Δθij)
=

θiθj(Δθij)−β

1 + θiθj(Δθij)−β

θxi
= e−βζ(ri−r0/2)

W(Δθi) = e−β ln Δθij = (Δθij)−β = (Δθij)−β

pij =
e−βζ(dij−r0)

1 + e−βζ(dij−r0)



Degree of the nodes
The only difference between the random geometric hyperbolic 
network and the maximum entropy ensemble is that the 
degrees are fixed by the embedding of the nodes in space, i.e.


and 


Therefore the degree distribution is fixed by the distribution of 
nodes in space.

θxi
= e−βζ(ri−r0/2)

k̄i =
N

∑
j=1

pij =
N

∑
j=1

θiθj(Δθij)−β

1 + θiθj(Δθij)−βv



Degree of the nodes 
In random geometric hyperbolic network

The only difference between the random geometric hyperbolic 
network and the maximum entropy ensemble is that the 

degrees are fixed by the embedding of the nodes in space, i.e.


and 


Therefore the degree distribution is fixed by the 
distribution of nodes in space

θxi
= e−βζ(ri−r0/2)

k̄i =
N

∑
j=1

pij =
N

∑
j=1

θiθj(Δθij)−β

1 + θiθj(Δθij)−β



Power-law random 
geometric hyperbolic model
Considering the constraints 


we can assume in the sparse regime that 


Therefore the radial distribution with that enforces a power-law degree distribution  with 
exponent                 is exponential 


In fact using the transformation due to the change of variables


we get ρ(r) = P(k)
dk
dr

k=Ae−βζr

= ACβζk−γe−βζr
k=Ae−βζr

= ACβζeβζ(γ−1)r

k ∝ θ ∝ e−βζr

ρ(r)dr = P(k)dk

k̄i =
N

∑
j=1

pij =
N

∑
j=1

θiθj(Δθij)−β

1 + θiθj(Δθij)−β

ρ(r) ∝ eβζ(γ−1)rp(k) ≃ Ck−γ
γ ≥ 2

v

v



Final remarks

In this lesson we have covered maximum entropy network  
ensembles that


1. -go beyond enforcing exclusively the degree sequence


2. -describe network ensembles with hidden variables


Moreover we have described the 


3.  -basic principles of inference from block models


