
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 5

5 Weak convergence of measures and the invariance principle

5.1 Maximum of the Brownian motion on interval

For ξ1, ξ2, . . . i.i.d. random variables with E ξj = 0,Var ξj = 1, consider the random walk Sn =
ξ1 + · · ·+ ξn, n ≥ 0, and let

Xn(t) =
S⌊nt⌋√
n
, t ≥ 0

be the scaled version of the random walk. Applying Central Limit Theorem, we concluded in the
previous lecture that for any 0 ≤ t1 < · · · < tk the finite-dimensional distributions converge, that is

(Xn(t1), . . . , Xn(tk))
d→ (B(t1), . . . , B(tk)),

where B = (B(t), t ≥ 0) is the Brownian motion. Now, we iterate the question: is it true that also

max
t∈[0,1]

Xn(t)
d→ max

t∈[0,1]
B(t) (1)

holds? Convergence of the finite-dimensional distributions alone is not sufficient to address the ques-
tion, since the location of the maximum is not determined by values of the process at any fixed finite
set of times. But (1) will follow from the convergence in distribution of the Brownian path ‘seen as a
whole’, that is as a random element of some space of functions.

There is an elegant way to find the distribution of the Brownian maximum in the right-hand side
of (1). To start with, recall that for constant c > 0

B̂(t) := B(t+ c)−B(c), t ≥ 0,

is a BM, independent of Fc. In turns that the identity still holds if constant c is replaced by any finite
stopping time τ adapted to the natural filtration. So suppose τ ≥ 0 satisfies {τ ≤ t} ∈ Ft, t ≥ 0, and
P(τ <∞) = 1. Define Fτ to be the σ-algebra of events A that occur before τ ; which means that

A ∈ Fτ ⇐⇒ A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0.

Then
B̂(t) := B(t+ τ)−B(τ), t ≥ 0,

is a BM independent of Fτ . This fact (which is intuitively evident but requires a rigorous proof)
entails the strong Markov property of the BM: conditionally on the value at time τ , the future of the
BM after τ is independent of the pre-τ path of the process.

Taking the BM with minus sign, (−B(t), t ≥ 0), yields another BM, as is readily derived from
symmetry of the normal distribution and definition of the BM. This feature has a nice generalisation
known as the reflection principle. For x ≥ 0, consider the hitting time

τx := min{t ≥ 0 : B(t) = x},

then
B̃(t) := B(t)1(τx ≤ t) + (x− (B(t)− x))1(τx > t), t ≥ 0

is another BM by symmetry and the strong Markov property. If in this formula ’x + · · · ’ stood in
place of ‘x − · · · ’ this would be a path decomposition for B. But for B̃ the path coincides with the
path of B before first-hitting level x at time τx, and after τx the path of B̃ is obtained by reflecting the
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Figure 1: Brownian path reflected upon hitting level x = 50.

path of B about the level x, see the picture. For the maximum value M := maxt∈[0,1]B(t) we have
by the reflection principle

P(M > x,B(1) > x) = P(M > x,B(1) ≤ x),

whence, using M ≥ B(1) and symmetry of the normal distribution,

P(M > x) = P(M > x,B(1) > x) + P(M > x,B(1) ≤ x) = 2P(M > x,B(1) > x) =

2P(B(1) > x) = P(|B(1)| > x) =
2√
2π

∫ ∞

x

e−y2/2dy.

It follows that M has the ‘folded’ normal distribution, with p.d.f. being the standard normal p.d.f. on
R+ multiplied with factor 2.

More generally, distribution of the maximum M(t) := maxs∈[0,t]B(s) follows from the identity

M(t)
d
=

√
tM(1) which in turn is a consequence of the self-similarity property of the BM(1).

5.2 Skorokhod embedding

If τ is a stopping time with E τ <∞, then EB(τ) = 0, because BM is a martingale and a continuous-
time counterpart of Doob’s Optional Sampling Theorem from Lecture 3 is applicable. The distribution
of the BM value B(τ) at time τ depends, of course, on τ . Which distributions may appear that way?

Example (Gambler’s ruin) Choose −a < 0 < b. For τ = min{t : B(t) ∈ {a, b}} we have

P(B(τ = a) =
b

a+ b
, P(B(τ = b) =

a

a+ b
.

As we vary a and b, we obtain for B(τ) any two-point distribution with mean 0.

This simple observation has a powerful generalisation.

Theorem 5.1. (Skorokhod embedding) For any random variable ξ with E ξ = 0,E ξ2 < ∞ there
exists a stopping time τ (adapted to the natural Brownian filtration) such that E τ <∞ and

B(τ)
d
= ξ.

This result allows one to realise a random walk Sn = ξ1 + · · · + ξn, n ≥ 0, (with i.i.d. ξi’s,
E ξj = 0,Var ξj <∞) in terms of the BM as

Sn
d
= B(τ1 + · · ·+ τn).

(1)Notation ξ
d
= η stays for ‘have the same probability distribution’.
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Here, the identity in distribution is joint for n ≥ 0, τ0 = 0, and for n ≥ 1 the pairs

(τn, B(τ1 + · · ·+ τn)−B(τ1 + · · ·+ τn−1))

are i.i.d. copies of (τ1, ξ1). The embedding can be pursued to prove functional convergence of the
scaled random walk to the Brownian motion. See Section 1.11 of [1] for details of this approach.

5.3 Weak convergence of probability measures

Let us review two classic results of Probability Theory, concerning the random walk Sn = ξ1+· · ·+ξn.

Example Suppose E ξi = m. By the Law of Large Numbers, as n→ ∞,

Sn

n

P→ m.

Since convergence in probability implies convergence in distribution, we have Sn/n
d→ m, which by

definition of convergence in distribution means that

E f
(
Sn

n

)
→ E f(m)

(= f(m) in this case) for all bounded continuous functions f . Introduce probability measures on
(R,B(R)) as

Pn(A) = P(Sn/n ∈ A), P (A) = δm(A)

(the second is the Dirac measure at point m), these are distributions of Sn/n and the constant rv m.
Re-writing the convergence of expectations in terms of the measures Pn, P we have∫

R
f(x)dPn(x) →

∫
R
f(x)dP (x).

This kind of convergence of measures is called weak convergence and denoted Pn ⇒ P .
Consider the corresponding cumulative distribution functions (c.d.f.)

Fn(x) = P(Sn/n ≤ x) = Pn((−∞, x]), F (x) = P ((−∞, x]) = 1(x ≥ m).

The convergence Fn(x) → F (x) holds in all points x ∈ R with the sole exception of x = m, where
F has a discontinuity.

Example Suppose further that Var ξi = σ2 < ∞. Let Pn be the probability distribution of the rv
(Sn − nm)/(σ

√
n), and P be the N (0, 1)-measure on R. Statement of the CLT can be recast as the

weak convergence Pn ⇒ P . If Fn is the c.d.f. of (Sn − nm)/(σ
√
n), this amounts to

Fn(x) → Φ(x), as n→ ∞,

for every x ∈ R. Unlike the first example, there are no exceptional points where convergence fails,
because the standard normal c.d.f. Φ is everywhere continuous.

To set up a fairly general framework, let (E,B, ρ) be a metric space with some distance function
ρ. The Borel σ-algebra B = B(E) is generated by open subsets of E.

Definition 5.2. For Pn, n ∈ N, and P probability measures on (E,B, ρ), we say that Pn converge
weaky to P , denoted Pn ⇒ P , if the convergence∫

E

f(x)dPn(x) →
∫
E

f(x)dP (x)

holds for all continuous bounded functions f : E → R.
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For random variables ξ, ξn with values in E and defined on some probability space (Ω,F ,P), let

Pn(A) = P(ξn ∈ A), P (A) = P(ξ ∈ A), A ∈ B(R).

Convergence in distribution ξn
d→ ξ is equivalent to the weak convergence Pn ⇒ P . The subtle

difference between the convergence concepts in that the first applies to random variables and the
second to induced measures (distributions of the rv’s).

Weak convergence is preserved by continuous mappings. Suppose g : E1 → E2 is a continuous
mapping of metric spaces. For measure µ on E1 we denote g ◦ µ its pushforward to E2, defined as
g ◦ µ(A) = µ(g−1(A)), A ∈ B(E2). Then Pn ⇒ P on E1 implies g ◦ Pn ⇒ g ◦ P on E2.

Theorem 5.3. (The ‘portmanteau’ theorem) The following conditions are equivalent:

(i) Pn ⇒ P ,

(ii) lim supn Pn(A) ≤ P (A) for all closed A ⊂ E,

(iii) lim infn Pn(A) ≥ P (A) for all open A ⊂ E,

(iv) limn→∞ Pn(A) = P (A) if P (∂A) = 0.

(The boundary ∂A is the intersection of the closure of A with the closure of E \ A.)

Example For E = R, the distribution function F (x) = P ((−∞, x]) has a jump at z if P ({z}) > 0.
On the other hand, ∂((−∞, z]) = {z}. Thus if P ({z}) > 0, the weak convergence Pn ⇒ P imposes
no convergence condition on the sequence Fn(z) = Pn((−∞, z]). But if F is continuous at z, then
Fn(z) → F (z) must hold.

Let
φn(θ) =

∫
R
eiθxdPn(x), φ(θ) =

∫
R
eiθxdP (x)

be the characteristic functions of probability measures Pn, P . The weak convergence Pn ⇒ P is
equivalent to the pointwise convergence of the characteristic functions: φn(θ) → φ(θ), for every
θ ∈ R. This fact underlies classic proofs of the CLT and its generalisations for sums of i.i.d. rv’s.

Example Consider the case of E = Rk endowed with the Euclidean distance. For probability mea-
sures Pn, P on Rk introduce the multidimensional cumulative distribution functions as

Fn(x1, . . . , xk) = Pn((−∞, x1]×· · ·×(−∞, xk]), F (x1, . . . , xk) = P ((−∞, x1]×· · ·×(−∞, xk]).

If P is the distribution of random vector (ξ1, . . . , ξk), the function

F (x1, . . . , xk) = P(ξ1 ≤ x1, . . . , ξk ≤ xk)

is known as the joint c.d.f. Similarly to the case k = 1, the weak convergence Pn ⇒ P holds if and
only if

Fn(x1, . . . , xk) → F (x1, . . . , xk)

for every point (x1, . . . , xk), where F is continuous.

Example For E = R∞ := {(x1, x2, . . . ) : xj ∈ R} we may consider the uniform (also known
as square or ℓ∞) metric ρ(x, y) = supj |xj − yj|. Let πk : (x1, x2, . . . ) 7→ (x1, . . . , xk) be the k-
dimensional projection. Weak convergence Pn ⇒ P holds iff πk ◦ Pn ⇒ πk ◦ P for every k ∈ N.
The pushforward probability measure πk ◦ P is the k-dimensional marginal distribution defined by
πk ◦ P (A) = P (π−1

k (A)), A ∈ B(Rk).

Example Consider E = C[0, 1], the space of continuous functions x : [0, 1] → R with distance
ρ(x, y) = supt∈[0,1] |x(t) − y(t)|. For 0 ≤ t1 < · · · < tk let πt1,...,tk : x 7→ (x(t1), . . . , x(tk)). If
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Pn ⇒ P then, of course, πt1,...,tk ◦Pn ⇒ πt1,...,tk ◦P by continuity of the projections, but the converse
is not true.

Here is a (counter-)example. Let Pn be the Dirac measure on C[0, 1] supported by the function
xn(t) = nt · 1(0 ≤ t < 1/n) + (2− nt) · 1(1/n ≤ t ≤ 2/n) (where 1(· · · ) = 1 if · · · is true and = 0
otherwise). Then πt1,...,tk ◦ Pn ⇒ δ(0,...,0) for every projection. But Pn has no weak limit, because the
sequence of functions xn has no limit in C[0, 1].

Remark on the notation. If P is the probability law of a process X = (X(t), t ∈ [0, 1]),
then πt1,...,tk ◦ P is the distribution of the vector (X(t1), . . . , X(tk)). In Lecture 3 we denoted this
k-dimensional distribution µt1,...,tk .

Definition 5.4. A family of probability measures P = (Pj, j ∈ J) on E is called relatively compact
if every sequence of measures from P contains a weakly convergent subsequence.

For instance, consider Pn(A) = λ(A ∩ [n − 1, n]), the uniform distribution on [n − 1, n]. The
corresponding distribution functions converge pointwise to the 0 function, which does not correspond
to a probability measure on R. The sequence (Pn) has no convergent subsequence, since the measure
‘escapes to infinity’ as n grows.

Definition 5.5. A family of probability measures P = (Pj, j ∈ J) on E is called tight if for every
ε > 0 there exists a compact set K ⊂ E such that

sup
j∈J

Pj(E \K) ≤ ε.

A metric space E is called Polish if it is complete (every Cauchy sequence has a limit) and
separable (there exists a dense countable subset). By a result from Topology, each probability measure
P on Polish space satisfies the ‘compact containment condition’: for every ε > 0, there exists a
compact set K ⊂ E such that P (E \ K) ≤ ε. Prokhorov’s Theorem to follow generalises this
property.

Theorem 5.6. (Prokhorov) On a Polish metric space (E,B, ρ), a family of probability measures
P = (Pj, j ∈ J) is relatively compact if and only if P is tight.

In particular, (Pn) has a weak limit only if the sequence is tight.
Whenever Pn is the distribution of a random variable Xn with values in E, we say that (Xn) is

tight if the sequence of measures (Pn) is tight.

5.4 Weak convergence in C[0, 1]

We focus on the fundamental issue of weak convergence of probability measures on the space of
continuous functions C[0, 1], which is a Polish space(2).

For two probability measures P and Q on C[0, 1], the equality P = Q holds if and only if
πt1,...,tk ◦ P = πt1,...,tk ◦ Q for all t1 < · · · < tk. That is to say, the finite-dimensional projections
uniquely determine the measure. However, weak convergence of πt1,...,tk ◦ Pn’s does not guarantee
that Pn has a weak limit at all (see example above).

Let X = (X(t), t ∈ [0, 1]), Xn = (Xn(t), t ∈ [0, 1]) be random processes with a.s. continuous
paths. Recasting Prokhorov’s theorem, we have

Proposition 5.7. As n→ ∞, Xn
d→ X if and only if the conditions hold:

(i) (Xn(t1), . . . , Xn(tk))
d→ (X(t1), . . . , X(tk)) for every choice of times 0 ≤ t1 < · · · < tk,

(2)For C[0, T ] the theory is completely analogous, and for C(R+) the weak convergence amounts to the weak convergence of
projections to each C[0, T ], T > 0.
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(ii) the sequence (Xn) is tight.

To apply the proposition we need explicit conditions ensuring tightness in C[0, 1]. These rely on
the following quantity that measures fluctuations of a continuous function.

Definition 5.8. For x ∈ C[0, 1], the modulus of continuity is

w(x;h) = sup
|t−s|≤h

|x(t)− x(s)|, h > 0.

Each particular x ∈ C[0, 1] is uniformly continuous, or, stated in terms of the modulus of conti-
nuity, limh→0w(x;h) = 0. Since convergence ‘almost surely’ implies convergence in probability, for
every probability measure P on C[0, 1], it holds that limh→0 P{x : w(x;h) > ε} = 0, for ε > 0.

Recall the Arzela-Ascoli theorem from Analysis: a family of functions (xj, j ∈ J) ⊂ C[0, 1] is
relatively compact if the functions are uniformly bounded and equicontinuous. These conditions hold
precisely when (a) supj∈J |xj(0)| ≤ r for some r > 0, and (b) limh→0 supj∈J w(xj;h) = 0. The next
tightness criterion is a probabilistic counterpart of conditions (a), (b).

Theorem 5.9. A sequence of probability measures (Pn) on C[0, 1] is tight if and only if the following
two conditions hold.

(i)
lim
r→∞

lim sup
n

Pn{x : |xn(0)| > r} = 0

(i.e. π0 ◦ Pn is tight).

(ii) For every ε > 0

lim
h→0

lim sup
n

Pn{x : w(x;h) > ε} = 0.

For practical use the condition (ii) is inconvenient, because to assess w(x;h) we need to examine
all s, t at distance at most h. To get a sufficient condition for tightness, one can replace (ii) by better
accessible

(ii′) For every t ∈ [0, 1] and ε > 0

lim
h→0

lim sup
n

1

h
max

1≤j≤h−1
Pn{x : sup

(j−1)h≤s≤jh

|x(t)− x(s)| > ε} = 0.

That (ii′) implies (ii) follows from the estimate (valid for any P on C[0, 1])

P{x : w(x;h) > 3ε} ≤
∑

1≤j≤h−1

P{x : sup
(j−1)h≤s≤jh

|x(t)− x(s)| > ε}

(the reason for factor 3 is the same as in Lecture 4, p. 4).

5.5 Donsker’s Invariance Principle

We have now tools to address the convergence in distribution of a scaled random walk

S⌊nt⌋√
n
, t ≥ 0,

6



(where Sn = ξ1 + · · · + ξn with i.i.d. ξ1, ξ2, . . . having E ξj = 0,Var ξj = 1). A small nuisance is
that the process is a piecewise constant function of t, increasing by jumps. To circumvent this, hence
stay within the C[0, 1] setting, we resort to a linear interpolation

Xn(t) =
1√
n

⌊nt⌋∑
j=1

ξj + (nt− ⌊nt⌋)ξ⌊nt⌋+1

 (2)

(so, we update the notation and now Xn stays for a continuous process).
Since Xn(0) = 0, condition (i) of tightness is trivially satisfied. For (ii′) we apply a maximum

inequality (due to Ottaviani, see [2])(3)

P(max
1≤i≤n

Si > 2r
√
n) ≤ P(|Sn| ≥ r

√
n)

1− 1/r2
.

By the i.i.d. assumption, the probabilities in (ii′) are the same for all j, and choosing j = 1, we
estimate using Ottaviani’s inequality

1

h
P(sup

s≤h
|Xn(s)| ≥ ε) =

1

h
P( max

1≤i≤nh
|Si| ≥ ε

√
n) ≤

1

h

P(|S⌊nh⌋| ≥ ε
√
n/2)

1− 4h/ε
=

1

h

P
(

|S⌊nh⌋|√
nh

≥ ε
2
√
h

)
1− 4h/ε

→ 1

h

2
(
1− Φ

(
ε

2
√
h

))
1− 4h/ε

as n → ∞, where the limit holds by the CLT for Sn/
√
n. Letting h → 0, the right-hand side

converges to 0, in consequence of the familiar bound, for x > 0

1− Φ(x) <
e−x2/2

x
√
2π

on the tail of the normal distribution and by elementary properties of the exponential function.
Therefore, (Xn) is tight. Taken together with the convergence of finite-dimensional distributions,

we have completed the proof of

Theorem 5.10. (Donsker’s Invariance Principle) The scaled random walk (2) satisfies

Xn
d→ B,

where B is the Brownian motion.

This important result is also called the ‘functional CLT’. The word ‘invariance’ appears in this
context to emphasize that ψ(Xn)

d→ ψ(B) for every continuous functional ψ : C[0, 1] → R. The
example we started with, was ψ(f) = maxt∈[0,1] f(t), hence

max
1≤j≤n

Sj√
n

d→ max
t∈[0,1]

B(t),

the latter distributed like |B(1)|, i.e. with folded normal distribution.
We could have been dealing with the piecewise constant version of the scaled random walk.

But this would require working in a larger Skorokhod space of functions with possible jumps. This
space extension does not capture any new features because jumps of the scaled random walk become
negligible in the limit.

(3)In the simplest case of the random walk generated by fair coin-tossing, the reflection principle allows one to express the distribution
of max0≤i≤n Si in terms of the binomial distribution.
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5.6 The invariance principle via Skorokhod embedding

For r.v. ξ with Eξ = 0,Varξ = 1 the stopping time τ from by Theorem 5.1 should satisfy Eτ = 1, by
the virtue of Wald’s identity

VarB(τ) = Var ξ E τ.

Iterating Skorokhod’s theorem and appealing to the strong Markov property of the BM readily yields
embedding of a random walk.

Corollary 5.10.1. Let Sn = ξ1 + · · · + ξn be a random walk with i.i.d. increments having E ξ1 =
0,Var ξ1 = 1. There exist nonnegative r.v.’s τ1, τ2, . . . such that τ1+· · ·+τn is a stopping time adapted
to the natuaral filtration of the BM, and

(B(τ1 + · · ·+ τn), n > 0)
d
= (Sn, n > 0).

In particular,
Sn√
n

d
=
B(τ1 + · · ·+ τn)√

n
.

If we could introduce n inside B to have instead

B(τ1 + · · ·+ τn)

n

(which is straighforward if τn’s are constant), then the Law of Large Numbers for the arithmetic
averages of τn’s could be applied to conclude that Sn/

√
n converges in distribution to N (0, 1), thus

concluding the CLT from the LLN(4).
By self-similarity

Bn(t) :=
√
nB(t/n), t ≥ 0

is a BM. Therefore applying Corollary 5.10.1 to Bn we see that there exist τ1,n, . . . , τn,n such that(
Sn√
n
, 1 ≤ k ≤ n

)
d
=

(
B(τ1,n + · · ·+ τk,n)√

n
, 1 ≤ k ≤ n

)
.

As the notation shows the τk,n’s depend on n, because Bn depends on n, although (τ1,n, . . . , τn,n)
d
=

(τ1, . . . , τn) for a single i.i.d. sequence τ1, τ2, . . ..

Proof of Theorem 5.10 via embedding Consider

Tn(t) :=
τ1,n + · · ·+ τ⌊nt⌋,n

n
.

The processes have the same distribution:(
S⌊nt⌋√
n
, t ∈ [0, 1]

)
d
= (B(Tn(t)), t ∈ [0, 1]) .

For δ > 0 we have that

P
(

sup
0≤t≤1

|B(Tn(t)−B(t)| ≥ ε

)
≤ P

(
sup
0≤t≤1

|Tn(t)− t| ≥ δ

)
+

P
(

sup
0≤t≤1, 0≤s,t≤1+δ

|B(s)−B(t)| ≥ ε

)
.

(4)These two standard results are presented separately in most Probability courses.
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For δ → 0 the 2nd term approaches 0 by the continuity of the BM.
The 1st term satisfies

sup
0≤t≤1

|Tn(t)− t| P→ 0 (3)

as n→ ∞. Indeed, for ε > 0

sup
0≤t≤1

|Tn(t)− t| ≤

1

n
+ sup

1≤k≤n

∣∣∣∣τ1,n + · · ·+ τk,n − k

n

∣∣∣∣ d
=

1

n
+ sup

1≤k≤n

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣ ≤
1

n
+ sup

k≤nε

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣+ sup
k>nε

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣ ≤
1

n
+ ε sup

k>0

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣+ sup
k>nε

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣ .
By the strong LLN

sup
k>0

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣
is bounded, and as n→ ∞

sup
k>nε

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣ → 0 a.s..

Since ε can be chosen arbitrarily small

sup
1≤k≤n

k

n

∣∣∣∣τ1 + · · ·+ τk
k

− 1

∣∣∣∣ → 0 a.s.

This gives (3) since convergence almost surely for τ1, τ2, . . . implies convergence in probability for
the triangular array τk,n, 1 ≤ k ≤ n.

5.7 Functional limit for the empirical distribution function

Fitting distribution to the empirical data is a central theme in Statistics, which motivated study of
maxima of random processes.

Suppose ξ1, ξ2, . . . are i.i.d. rv’s, uniformly distributed on [0, 1]. Think of the realisation of
ξ1, . . . , ξn as sample data collected in a statistical experiment. We call

Fn(t) :=
#{j ≤ n : ξj ≤ t}

n

the empirical distribution function. For instance, Fn(1/2) is the proportion of the sample that falls in
the left half of [0, 1].

In fact, Fn is a random c.d.f. corresponding to a random discrete probability measure n−1
∑n

j=1 δξj .
For each fixed t ∈ [0, 1], nFn(t) is a Binomial(n, t) random variable.

As n→ ∞, the Law of Large Numbers tells us that for t ∈ [0, 1]

Fn(t)
a.s.→ t.

A stronger version of the LLN in this context is known as the Glivenko-Cantelli theorem, which states
that

sup
t∈[0,1]

|Fn(t)− t| a.s.→ 0.
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The identity function on [0, 1] is the c.d.f. of the uniform distribution, thus the theorem asserts con-
vergence of the empirical distribution function to the ‘true c.d.f.’ in the metric of C[0, 1].

For each fixed t, by the normal approximation to the binomial distribution,

√
n(Fn(t)− t)

d→ N (0, t(1− t)).

Comparing with the variance function of the Brownian bridge B◦ (see Lecture 4), one might guess
that the left-hand side viewed as a random process converges in distribution to B◦.

Let Yn = (Yn(t), t ∈ [0, 1]) be the random continuous function whose graph is obtained by
spanning a broken line on the points (0, 0), (1, 1) and (ξj,

√
n(Fn(ξj) − ξj)), 1 ≤ j ≤ n. This is just

a linear interpolation, similar to that employed for the scaled random walk.

Theorem 5.11. As n→ ∞
Yn

d→ B◦.

Let K = maxt∈[0,1] |B◦(t)|. The rv K has the Kolmogorov-Smirnov distribution

P(K ≤ y) = 1− 2
∞∑
j=1

(−1)j−1e−2j2y2 .

The theorem implies that
max
t∈[0,1]

|Yn(t)|
d→ K.

For big samples, to test the statistical null-hypothesis that ‘the data come from the uniform distribu-
tion’ one can calculate the sample value of maxt∈[0,1] |Yn(t)| and check if it falls in a critical region
depending on the desired confidence level.

The procedure is readily adapted to test if ‘the data η1, . . . , ηn come from the probability distribu-
tion with given continuous c.d.f. F ’. To that end, just recall that ξj := F (ηj) follow the Uniform[0, 1]
distribution, by the virtue of the probability integral transform you have seen in Statistics courses.

Exercises

1. Let Sn = ξ1 + · · · + ξn, n ≥ 0, be a random walk. (a) Find a condition on the distribution of
ξ1 to ensure that (Sn, n ≥ 0) and (−Sn, n ≥ 0) have identical distributions. (b) Assuming the
RW is simple, i.e. P(ξi = 1) = P(ξi = −1) = 1/2, use the Reflection Principle to relate the
distribution of max0≤i≤n Si to the distribution of Sn.

2. For x ≥ 0 let τx be the first time the BM hits level x. (a) Show that τcx
d
= c2τx. (b) Derive

the p.d.f. of τx. (c) Show that the process (τx, x ≥ 0) has stationary, independent increments.
(d) We have EB(τx) = x and not 0. Explain why Doob’s Optional Sampling Theorem is not
applicable.

3. For a > 0 let τ̂a = min{t : B(t) = t+ a)}. (a) Using the strong Markov property, show that

P (τ̂a+b <∞|τ̂a <∞) = P(τ̂b <∞).

(b) Using (a), prove that supt≥0(B(t)− t) has exponential distribution.

4. Show that maxt∈[0,1] x(t) is a continuous functional on C[0, 1].

5. Formulate the invariance principle for (S⌊nt⌋, t ∈ [0, T ]).
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6. Let (N(s), s ≥ 0) be a Poisson process with rate 1. (a) State a CLT for N(t)− t as t→ ∞. (b)
Let for T > 0

XT (t) :=
N(tT )− tT√

T
, t ∈ [0, 1].

Find the functional limit for the processXT as T → ∞. You are not expected to show tightness,
but justify the convergence of finite-dimensional distributions. (You may assume that T is an
integer parameter, although this is not necessary).

7. Calculate and compare the covariance functions of the empirical process (Fn(t), t ∈ [0, 1])
(derived from the Uniform[0, 1] sample) and of the Brownian bridge (B◦(t), t ∈ [0, 1]).
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