
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 4

4 The Brownian motion

4.1 Finite-dimensional distributions, Gaussian processes

A continuous-time random process with time parameter t ∈ R+ is a family of random variables
(X(t), t ≥ 0) defined on some probability space (Ω,F ,P). The random function t 7→ X(t) is called
a path of the process. For any selection of distinct times 0 ≤ t1 < · · · < tk, (X(t1), . . . , X(tk)) is a
random vector characterised by some joint probability distribution

µt1,...,tk(A) = P((X(t1), . . . , X(tk)) ∈ A), A ∈ B(Rk). (1)

(which may or may not have density). Each µt1,...,tk is a probability measure on (Rk,B(Rk)), and
these measures are consistent:

µt1,...,tk(A× R) = µt1,...,tk−1
(A), A ∈ B(Rk−1).

In practice, a starting point for the construction of random process is a family of such consistent
probability measures µt1,...,tk . Let R[0,∞) be the space of functions x : R+ → R, with Borel σ-
algebra B(R[0,∞)) generated by the cylider sets {x : x(t) ∈ A} where t is fixed and A ∈ B(R). By
Kolmogorov’s extension theorem (see Lecture 1) there exists a unique probability measure P on the
measurable space (R[0,∞),B(R[0,∞))) such that (1) holds.

It is more challenging to verify if there exists a version of the process whose paths have certain
properties like continuity. Two random processes (X(t), t ≥ 0) and (Y (t), t ≥ 0) are versions of
one another if P(X(t) = Y (t)) = 1 for all t.

Definition 4.1. A random vector (ξ1, . . . , ξk) has a multivariate normal distribution (we also call such
vector Gaussian) if each linear combination

∑k
i=1 aiξi has a one-dimensional normal distribution.

This definition has advantage over specifying the joint density of (ξ1, . . . , ξk) in that the existence
of the density is not required. For instance, (ξ, ξ) is Gaussian if ξ is. Also, the following properties
are immediate:

(i) vector (ξ1, . . . , ξk)M is Gaussian for any k × n matrix M ,

(ii) distribution (ξ1, . . . , ξk) is uniquely determined by the mean vector (E ξ1, . . . ,E ξk) and the k×k
covariance matrix with entries Cov(ξi, ξj),

(iii) if Cov(ξi, ξj) = 0 for all i ̸= j, then ξ1, . . . , ξk are mutually independent.

Definition 4.2. A random process (X(t), t ≥ 0) is called Gaussian, if the vector (X(t1), . . . , X(tk))
is Gaussian for any selection of distinct times t1, . . . .tk.

The probability law of a Gaussian process is uniquely determined by the mean function m(t) =
EX(t) and the covariance function c(s, t) = Cov(X(s), X(t)); this is because of property (ii) of the
multivariate normal distribution of each vector (X(t1), . . . , X(tk)).

4.2 Processes with stationary independent increments

A stochastic process (X(t), t ≥ 0) has stationary increments if the distribution of X(t) − X(s)
depends only on t − s for 0 ≤ s ≤ t. It has independent increments if Xtj+1

− Xtj , 1 ≤ j ≤ k, are
independent random variables for 0 ≤ t1 < t2 < · · · < tk and any k ≥ 1.

A process with stationary independent increments is called a Lévy process.
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Example Poisson process (N(t), t ≥ 0) with parameter λ > 0 is a Lévy process, with N(t)−N(s)
having the Poisson(λ(t− s)) distribution.

A more general type of process is

Example Compound Poisson process X(t) =
∑N(t)

j=1 Yj where (N(t), t ≥ 0) is a Poisson process,
independent of Y1, Y2, · · · which are i.i.d.

These processes have right-continuous paths with jumps at ‘arrivals times’ of the Poisson process.

Proposition 4.3. For random process (X(t), t ≥ 0) the following are equivalent:

(i) (X(t), t ≥ 0) is a Lévy process with X(t) ∼ N (0, t) for t ≥ 0.

(ii) (X(t), t ≥ 0) is Gaussian with EX(t) = 0 and Cov(X(t), X(s)) = s ∧ t.

A Gaussian process in Proposition 4.3 is a ‘Brownian motion in a wide sense’, that is without concern
about the continuity of paths.

4.3 Scaled random walk

The general random walk is a sequence of sums of i.i.d. (independent, identically distributed) random
variables. Let ξ1, ξ2, . . . be i.i.d. rv’s with E ξi = 0,Var ξi = 1. By the Central Limit Theorem
(CLT), the random walk Sn = ξ1 + · · ·+ ξn, n ∈ N, satisfies

Sn√
n

d→ B(1), where B(1) ∼ N (0, 1),

and the symbol ∼ in this context stays for ‘the random variable has distribution...’. The convergence
in distribution stated in the CLT means that

lim
n→∞

P
(
Sn√
n
≤ x

)
= Φ(x) :=

∫ x

−∞

e−y2/2

√
2π

dy, x ∈ R.

We can interpolate the random walk to a continuous-time (piecewise-constant) random process

Xn(t) :=
S⌊nt⌋√
n
, t ≥ 0

(setting Xn(0) = 0), where ⌊z⌋ is the integer part of z. The CLT above concerns the limit distribution
of the sequence of random variables Xn(1), as n→ ∞, which is the value of the random process at a
sole time t = 1. This has a natural generalisation. Fix times 0 = t0 < t1 < t2 < · · · < tk, and note
that the increments

Xn(ti)−Xn(ti−1) =

⌊nti⌋∑
j=⌊nti−1⌋+1

ξj , i = 1, . . . , k,

are independent, because the sums for i = 1, . . . , k are over non-intersecting blocks of independent
random variables. We now claim that there is a joint convergence

(Xn(t1), . . . , Xn(tk))
d→ (B(t1), . . . , B(tk)) (2)

to some Gaussian vector. Changing variables the latter is equivalent to the joint convergence

Xn(ti)−Xn(ti−1)
d→ B(ti)−B(ti−1), i = 1, . . . , k,

which is indeed true by the CLT, for independent random variablesB(ti)−B(ti−1) ∼ N (0, ti−ti−1).
It is natural to ask if this multivariate convergence (2) can be embedded into a more general

theory, which would imply, in particular, that the maximum maxt∈[0,1]Xn(t) converges in distribution
to maximum of some random process, appearing as a limit form of scaled random walks.
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4.4 Definition of the BM

Definition 4.4. The Brownian motion (BM) is a continuous-time random process (B(t), t ≥ 0), such
that

(i) B(0) = 0 a.s.,

(ii) the paths t 7→ B(t) are continuous functions, almost surely,

(iii) the increments are independent and stationary,

(iv) B(t) ∼ N (0, t), t > 0.

For times 0 = t0 < t1, · · · < tk, we have that B(ti)−B(ti−1) ∼ N (0, ti − ti−1) are independent
rv’s. Passing from the increments to the vector of values (B(t1), . . . , B(tk)), we see that the vector is
multivariate normal, therefore the BM is a Gaussian process. The mean function is EB(t) = 0. The
covariance function is Cov(B(s), B(t)) = s ∧ t (where ∧ =minimum). The proof follows from (iii)
and (iv): for s < t

E[B(s)B(t)] = E[B(s)(B(s) + (B(t)−B(s))] = E[B(s)2] + E[B(s)(B(t)−B(s))] =

VarB(s) + E[B(s)]E[B(t)−B(s)] = s+ 0 = s.

Conditions (iii), (iv) can be replaced by the equivalent condition (Proposition 4.3)

(v) the process is Gaussian with mean zero and Cov(B(s), B(t)) = s ∧ t.

To derive from (v) the independence of increments, compute for 0 ≤ u < v ≤ s < t

Cov(B(v)−B(u), B(t)−B(s)) = v ∧ t− v ∧ s− u ∧ t+ u ∧ s = v − v − u+ u = 0,

and recall that, for normal variables, independence holds precisely when the variables are uncorre-
lated. A similar calculation with account of (v) implies that Var(B(t)−B(s)) = t− s.

There are some useful transformations, which map the BM to another BM.

Proposition 4.5. The following are Brownian motions:

(a) time shift: W1(t) = B(t+ c)−B(t), c > 0,

(b) Brownian scaling: W2(t) = B(ct)/
√
c, c > 0,

(c) time reversal on [0, 1]: W3(t) = B(1− t)−B(1), t ∈ [0, 1],

(d) W4(t) = tB(1/t) with the convention W4(t) = 0.

Checking the BM axioms in (a), (b), (c) is easy. For (d) one can use the Gaussian property (v),
but there is also need to verify the a.s. continuity at t = 0; as a partial check one can verify that
Var W4(t) → 0 whence W4

P→ 0 as t→ 0.

4.5 Existence of the BM

There are various ways to construct the BM by manipulating a countable reserve of independent
random variables defined on some probability space. We take first a less constructive approach, just
showing that the BM, as a process satisfying (i)-(iv), does exist. With the continuity condition (ii)
omitted, the existence of the Gaussian process with required distributional properties (cf Proposition
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4.3) follows from Kolmogorov’s extension theorem, since the finite-dimensional distributions are
consistent. However, the existence of a version with continuous paths needs effort.

Let us first use Kolmogorov’s theorem to set up a probability space (Ω,F ,P) to define a process
(B(t), t ∈ Q ∩ [0, 1]) with time parameter running over the rational numbers within [0, 1]. If it turns
that the paths are continuous on Q1 := Q ∩ [0, 1], then the paths can be uniquely interpolated to
continuous functions on the whole [0, 1]. Consider

∆n := sup
s,t∈Q1,|s−t|≤1/n

|B(t)−B(s)|.

Proving ∆n
a.s.→ 0 would be enough to show the continuity.

It is convenient to consider a better tractable quantity

Yk,n = sup
s,t∈Q∩[ k−1

n
, k
n ]
|B(t)−B(s)|, k = 1, . . . , n,

which gives upper bound
∆n ≤ 3 max

1≤k≤n
Yk,n.

As a check, for instance, if s < k/n ≤ t,

|B(t)−B(s)| ≤
∣∣∣∣B(t)−B

(
k − 1

n

)∣∣∣∣+ ∣∣∣∣B(
k

n

)
−B

(
k − 1

n

)∣∣∣∣+ ∣∣∣∣B(s)−B

(
k

n

)∣∣∣∣ ,
which explains the factor 3 above.

Clearly,

P( max
1≤k≤n

Yk,n ≥ ε) ≤
n∑

k=1

P(Yk,n ≥ ε) = nP(Y1,n ≥ ε),

the latter by the stationarity of increments.
The process (B(t), t ∈ Q1) is a martingale, because the increments have mean zero. To comply

with the setting of Lecture 3, where we only discussed discrete-time martingales with time-range N,
we may just use the fact that the sequence Z1 = B(t1), . . . , Zn = B(tn) has the martingale property
for arbitrary t1 < · · · < tn in Q1. The function z 7→ z4 is convex, hence (B(t)4, t ∈ Q1) is a
submartingale. Applying the maximal inequality (Proposition 1.13 of Lecture 3), we have estimate

P(Y1,n ≥ ε) = P( max
t∈Q1∩[0, 1/n]

|B(t)) ≥ ε) ≤ ε−4 EB(1/n)4.

By the scaling property, EB4(t) = t2 EB(1) = 3t2, as a consequence of the familiar moments
formula E[B(1)]2k = (2k − 1)(2k − 3) · . . . · 3 · 1 for N (0, 1). It follows that

P(Y1,n ≥ ε) ≤ 3

n2ε4
⇒ P( max

1≤k≤n
Yk,n) <

3

nε4
→ 0, as n→ ∞.

This implies ∆n
P→ 0, but since ∆n decreases with n, we have a stronger ∆n

a.s.→ 0, as wanted(1).
Replacing power 4 in our argument by other powers, we can conclude that

sup
t,s∈[0,1]

|B(t)−B(s)| < C|t− s|α,

with some random variable C and 0 < α < 1/2. This property of the Brownian path is known as the
local Hölder continuity with exponent α.

(1)We use that ξ1 ≤ ξ2 ≤ · · · , and ξn
P→ ξ imply ξn

a.s.→ ξ.
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If function f is continuously differentiable on [0, 1], then f is locally Hölder-continuous with
exponent α = 1, where for C we can choose maxt∈[0,1] |f ′(t)|. The functions you studied in Analysis
are all continuously differentiable, perhaps excluding some set of isolated singular points. Compared
with that, the Brownian path is a very odd function, because it is nowhere differentiable with proba-
bility one.

To see that there is no derivative at t = 0, note that the process (B(t)/t, t ≥ 0) has the same
distribution as (tB(1/t)/t, t ≥ 0) = (B(1/t), t ≥ 0) (see Proposition 1.4, part (d)). But B(1/t)
has no limit value, as t→ ∞, with probability one (see Exercises), thus B(t)/t does not converge for
t → 0, which along with B(0) = 0 means that the derivative at 0 does not exist. The same argument
together with the shift property (a) shows that the BM is not differentiable in any other point t > 0,
and with some more effort nowhere differentiability follows.

If a differentiable function has f ′ ̸= 0 then the set of solutions to f(t) = 0 is discrete. To
highlight the complexity of Brownian path, we mention here that the zero set Z = {t : B(t) = 0} of
BM is a closed set of Lebesgue measure 0, with no isolated points (similarly to the Cantor set). It is
possible to define on a measure (so called local time) supported by Z that characterises the time spent
by a path near 0.

4.6 A random series construction

We sketch a construction of the BM based on a random orthogonal series of functions. The space of
measurable, square-integrable functions L2([0, 1],B([0, 1], λ) (λ - the Lebesgue measure) endowed
with the scalar product

⟨f, g⟩ =
∫ 1

0

f(s)g(s)ds

is a Hilbert space, in many respects analogous to finite-dimensional Euclidean spaces Rn. A sequence
of functions ψk, k ∈ Z+, is an orthonormal basis of the Hilbert space if ⟨ψi, ψi⟩ = 1, ⟨ψi, ψj⟩ = 0
for i ̸= j, and the completeness property holds, that is ⟨f, ψj⟩ = 0 for all j ∈ Z+ implies f = 0 a.s.
For instance, the system of trigonometric functions {1,

√
2 sin(2πjs),

√
2 cos(2πjs); j = 1, 2, · · · } is

an orthonormal basis.
Then, for ξ0, ξ1, . . . i.i.d. N (0, 1)-distributed r.v.’s, and ψ0, ψ1, . . . orthonormal basis, the series

B(t) =
∞∑
j=0

ξj

∫ t

0

ψj(s)ds, t ∈ [0, 1]

converges uniformly (almost surely) and defines a BM on [0, 1]. To show the convergence one needs
to verify that the series of variances converges.

4.7 The arcsine laws

A random variable ξ has the arcsine distribution if its cumulative distribution function is

P(ξ ≤ x) =
2

π
arcsin

√
t, 0 ≤ t ≤ 1.

Equivalently, the density is

fξ(x) =
1

π
√
t(1− t)

, 0 < t < 1.

This belongs to the family of beta distributions.
The arcsine distribution apppears as
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(i) the distribution of the last zero Z of the BM on [0, 1]

Z = max{t ∈ [0, 1] : B(t) = 0}.

(ii) the distribution of the time spent on the positive side

T :=

∫ 1

0

1(B(t) > 0)dt.

4.8 BM as Markov process and a martingale

Define Ft to be the σ-algebra generated by (B(s), s ≤ t). The family (Ft, t ≥ 0) is the natural
filtration of the BM.

For g : R → R any measurable function and s < t we have the identity

E[g(B(t))|Fs] = E[g(B(t))|B(s)],

which is one way to express that the BM is a Markov process taking values in the ‘continuous state-
space’ R.

The distribution of future values of the BM after time s depends on (B(u), u ≤ s) only through
B(s). That is to say, conditionally on B(s) = x (a present, time-s state), the future (after-s) values
of the process are independent of the BM values B(u1), . . . , B(uk) for arbitrary choice of past times
ui < s. Note that given B(s) = x, the conditional distribution of B(t) is N (x, t− s), as is seen from
the decomposition

B(t) = B(s) + (B(t)−B(s))

into independent terms B(s) and B(t)−B(s), therefore

E[g(B(t))|B(s) = x] =

∫ ∞

−∞
g(y)p(t− s, x, y)dy.

Here, the function of three variables

p(τ, x, y) :=
1√
2πτ

exp

(
−(y − x)2

2τ

)
is the transition density of the BM. Viewed as a function of y for fixed τ > 0 and fixed x ∈ R, this is
the conditional p.d.f. (probability density function) of B(s+ τ) given B(s) = x.

Axioms (iii), (iv) in the definition of the BM can be equivalently replaced by the condition that

(vi) (B(t), t ≥ 0) is a Markov process with transition density function p(τ, x, y) for moving from
state x to state y over time interval of length τ > 0.

In our notation, τ is a dummy variable for the time increment t−s. That the transition density depends
on s, t (with s < t) only through t− s is the feature called time-homogeneity of the Markov process.
The BM is also state-homogeneous, in the sense that p(τ, x, y) depends on x, y only through |x− y|.

Choosing for g the identity function we arrive at the identity

E[B(t)|Fs] = E[B(t)|B(s)] = B(s), 0 ≤ s < t,

which means that (B(t), t ≥ 0) is a continuous-time martingale, considered along with its natural
filtration.
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4.9 Finite dimensional distributions

Let 0 = t0 < t1 < · · · < tk. The joint p.d.f. of the vector of increments (B(t1)−B(t0), . . . , B(tk)−
B(tk−1)) is clear from the axioms (i), (iii), (iv):

(y1, . . . , yk) 7→
k∏

j=1

1√
2π(tj − tj−1)

exp

(
−y2k

2(tk − tk−1)

)
,

which is just a product of one-dimensional normal p.d.f.’s. Changing variables to x1 = y1, x2 =
y1 + y2, . . . , xk = y1 + · · ·+ yk (and so yj = xj − xj−1) and observing that the Jacobian of the linear
transformation is 1, we arrive at the joint p.d.f. of (B(t1), . . . , B(tk))

(x1, . . . , xk) 7→
k∏

j=1

p(tj − tj−1, xj−1, xj),

written in terms of the transition density function. This formula for p.d.f.’s of the finite-dimensional
distributions is yet another way to express axioms (iii), (iv).

4.10 The quadratic variation

For function f : [a, b] → R the variation of order β > 0 on the interval [a, b] is defined as the
supremum

Vβ(f ; a, b) := sup
k∑

i=1

|f(ti)− f(ti−1)|β,

over all partitions a = t0 < t1 < · · · < tk−1 < tk = b of the interval [a, b]. We call V1(f ; a, b) the
variation of f , and V2(f ; a, b) the quadratic variation of f on [a, b].

If f is continuously differentiable, its variation is

V1(f ; a, b) =

∫ b

a

|f ′(t)|dt,

but Vβ(f ; a, b) = 0 for β = 2 or any other β > 1.
For the Brownian motion the situation is radically different. To save notation, let us focus on

[0, 1], and consider the uniform partition by points tj = j/n, j = 0, 1, . . . , n. We have as n→ ∞

E
n∑

i=1

|B(i/n)−B((i− 1)/n)| = nE |B(1/n)| = n√
n
E |B(1)| =

√
n

√
π

2
→ ∞.

This can be pursued to show that V1(B; a, b) = ∞ a.s., the variation of the BM is infinite.
Let us assess the quadratic variation of the BM. We have

E
n∑

i=1

|B(i/n)−B((i− 1)/n)|2 = nEB(1/n)2 = 1,

and

Var
n∑

i=1

|B(i/n)−B((i− 1)/n)|2 = nVar[B(1/n)2] =
n

n2
VarB(1)2 → 0.

Thus, as n→ ∞,
n∑

i=1

|B(i/n)−B((i− 1)/n)|2 P→ 1,
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and with some effort one shows that the limit holds in the sense ‘almost surely’.
Using the scaling property, we see that the quadratic variation of the BM on [0, t] is equal to t. In

Probability Theory the quadratic variation is also denoted by angular brackets, thus

⟨B⟩(t) = t.

Warning. One should not confuse the variance and the quadratic variation. Formula VarB(t) = t
features a single rv B(t). But ⟨B⟩(t) = t is the quadratic variation accumulated over the time interval
[0, t], which is the property of a path (B(s), s ≤ t).

Written symbolically, the quadratic variation property of the BM is the differential rule

(dB(t))2 = dt.

This underlies the formulas for stochastic integrals like∫ t

0

B(s)dB(s) = 1
2
B(t)2 − 1

2
t,

where the second term appears due to the nontrivial quadratic variation. To compare with classic
Calculus, for differentiable f with f(0) = 0∫ t

0

f(s)df(s) =

∫ t

0

f(s)f ′(s)ds = 1
2
f(t)2.

Theorem 4.6. (Lévy’s characterisation) Let (M(t), t ≥ 0) be a martingale (relative to the natural
filtration of the process) satisfying

(i) M(0) = 0,

(ii) the paths are continuous,

(iii) ⟨M⟩(t) = t, t ≥ 0.

Then (M(t), t ≥ 0) is a Brownian motion.

Thus the the normal distribution and independence of increments can be concluded from the
martingale property and formula (iii) for the quadratic variation.
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Exercises

1. Write in terms of the density functions, what it means for distributions ofB(1/2) and (B(1/2), B(3/2))
to be consistent.

2. Show that the process (Xk(t) − t, t ≥ 0) is a martingale for (a) k = 1 and X the Poisson
process, (b) k = 2 and X the BM.

3. Give a detailed proof of Proposition 1.3.

4. For constants µ, σ > 0 the process Bµ,σ(t) := µt + σB(t) is ‘a Brownian motion with drift µ
and diffusion/volatility σ’. Show that Bµ,σ is Gaussian, find its mean and covariance functions.
Also find the quadratic variation of the process on [0, t].
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5. The process B◦(t) := B(t) − tB(1), t ∈ [0, 1], is known as the Brownian bridge. Find the
covariance function of B◦. Is this process Gaussian? Markov? Martingale? Explain your
answers.

6. Prove that B(t) has no limit as t → ∞ almost surely. Hint: it is enough to show that B(n) −
B(n− 1) is not a Cauchy sequence, n ∈ N.

7. Show that lim supt→∞B(t)/
√
t = ∞. [Hint: use Kolmogorov’s 0-1 law.
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