
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 3

3 Convergence concepts and martingales

3.1 Convergence of random variables

Convergence of a numerical sequence, written xn → x (as n → ∞) or x = limn→∞ xn is a familiar
concept from Analysis. Random variables are functions, for which convergence can be understood in
various ways.

Let Xn, n ∈ Z+, and X be real random variables defined on a probability space (Ω,F ,P). We
denote Z+ := {0, 1, 2, . . . }. The sequence (Xn) is said to converge to X

(i) almost surely, written Xn
a.s.→ X , if P(Xn → X) = 1,

(ii) in probability, written Xn
P→ X , if limn→∞ P(|Xn −X| > ϵ) = 0 for every ϵ > 0.

(iii) in the pth mean (p > 0), written Xn
Lp

→ X , if limn→∞ E |Xn −X|p = 0.

Further convergence concepts address the probability distributions rather then the random vari-
ables themselve, that is make sense also when the random variables are defined on different probability
spaces. The basic type of convergence of this kind is

(iv) the weak convergence, also called convergence in distribution, written Xn
d→ X (or Xn ⇒ X),

which requires that limn→∞ E f(Xn) = E f(X) for every bounded continuous function f . The
concept generalises straightforwardly to random variables with values in arbitrary metric space.

The proximity of distributions is commonly assessed in terms of some ‘probability metric’ de-
fined as

d(X, Y ) = sup |E f(X)− E f(Y )|, f ∈ D,

where the supremum is taken over a given class of functions D (and the expectations may refer to
different probability spaces). In particular,

(v) Xn is said to converge to X in total variation if dTV (Xn, X) → 0, where dTV (X, Y ) =
sup|f |≤1 |E f(X)− E f(Y )|.

Limit theorems of Probability employ all these and other types of convergence.
In particular, the central limit theorem is a statement about convergence in distribution, while the

strong law of large numbers asserts convergence in the sense ‘almost surely’.

Example Let X1, X2, . . . be i.i.d. random variables, with EX1 = µ < ∞, Sn = X1 + · · ·+Xn. The
strong Law of Large Numbers asserts that as N → ∞

Sn

n

a.s.→ µ,

which is the convergence in the sense ‘almost surely’.
The weak Law of Large Numbers, in many Probability courses proved with the aid of Chebyshev

inequality under the assumption Var(X1) = σ2 < ∞, states that the convergence in probability holds

Sn

n

P→ µ.
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The Central Limit Theorem

P
(
Sn − µn

σ
√
n

≤ x

)
→ Φ(x)

is a result about convergence in distribution.

The types of convergence (i)-(iv) are connected as follows:

a.s.→ ⇒ P→,
Lp

→ ⇒ P→,
P→ ⇒ d→ .

For constant c, convergence Xn
P→ c is equivalent to Xn

d→ c. That the other implications do not hold
is seen from the following examples.

Example Consider [0, 1] with Lebesgue measure, and simple r.v.’s Xn = n2 · 1[0,1/n]. Then Xn → 0
a.s., but EXn = n → ∞. So there is convergence to X = 0 almost surely but not in the mean.

Example Consider [0, 1] with Lebesgue measure, and simple r.v.’s Xn,k = 1[k2−n,(k+1)2−n], 0 ≤ k ≤
2n − 1. We have P(Xn,k ̸= 0) = 2−n hence Xn,k

P→ 0 as n, k → ∞ but there is no almost sure
convergence.

However, convergence in probability Xn
P→ X implies that we can choose a subsequence (nk)

to have Xnk

a.s.→ X as k → ∞. Convergence in distribution Xn
d→ X implies that it is possible

to introduce a probability space and define random variables X ′
n, X

′ is such a way that X ′
n

d
= Xn

(identical in distribution), X ′ d
= X and X ′

n
a.s.→ X ′.

Convergence in total variation is much stronger than the convergence in distribution, so some-
times it is too restrictive for applications as the following example suggests.

Example The total variation distance between discrete X and continuous Y is always 1. Thus, for
Sn the number of successes in n Bernoulli trials, the distance between (Sn − np)/

√
np(1− p) and

the limiting normal random variable is equal to 1 for all n.
It can be shown that Xn

Lp

→ X implies convergence of the pth means E |Xn|p → E |X|p.
Convergence almost surely implies convergence of expected values under certain conditions:

Theorem 3.1. (Monotone convergence) Suppose that Y ≤ X0 ≤ X1 ≤ . . . , Xn
a.s.→ X , EY > −∞.

Then EXn→EX .

The case EX = ∞ is included.

Theorem 3.2. (Dominated convergence) Suppose that Xn
a.s.→ X , |Xn| ≤ Y a.s. and E |Y | < ∞.

Then EXn → EX .

Conclusions of these theorems are also valid if only the convergence in probability is assumed. A
more general condition is the following.

Definition 3.3. A sequence (Xn) of random variables on probability space (Ω,F ,P) is called uni-
formly integrable if

sup
n

E[|Xn|1{|Xn|>c}] → 0, c → ∞.

Theorem 3.4. Suppose that 0 ≤ Xn
a.s.→ X , and EXn < ∞. Then EXn → EX if and only if the

sequence (Xn) is uniformly integrable.
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3.2 Martingales and their relatives

Fix probability space (Ω,F ,P) along with a filtration of σ-algebras F0 ⊂ F1 ⊂ · · · .

Definition 3.5. A sequence (Xn, n ∈ Z+) is called adapted process if each Xn is Fn-measurable. In
the case Fn = σ(X0, . . . , Xn) we call the filtration natural.

Definition 3.6. Adapted process (Xn, n ∈ Z+) with E |Xn| < ∞ is called

martingale if E[Xn+1|Fn] = Xn, n ∈ Z+,

submartingale if E[Xn+1|Fn] ≥ Xn, n ∈ Z+,

supermartingale if E[Xn+1|Fn] ≤ Xn, n ∈ Z+.

Intuitively, ‘on the average, by one-step look ahead’ the martingale does not change, submartin-
gale increases, supermartingale decreases.

Example Suppose ξ0, ξ1, . . . are independent with E ξn = 0. Then the sequence of sums Xn =
ξ0 + · · ·+ ξn (adapted to Fn = σ(ξ0, . . . , ξn)) is a martingale. Indeed, using measurability of Xn

E[Xn+1|Fn] = E[ξn+1|Fn] + E[Xn|Fn] = E ξn+1 +Xn = Xn.

Example Suppose ξ0, ξ1, . . . are independent, with E ξn = 1. Then the sequence of products
Xn =

∏n
j=0 ξj (adapted to Fn = σ(ξ0, . . . , ξn)) is a martingale.

Example If (Xn) is a martingale and g a convex function (for instance, twice differentiable and
satisfying g′′ ≥ 0), then Yn = g(Xn) is a submartingale. Indeed, using Jensen’s inequality and the
martingale identity

E[Yn+1|Fn] = E[g(Xn+1)|Fn] ≥ g(E[Xn+1|Fn]) = g(Xn) = Yn.

For instance, squared martingale (X2
n) is a submartingale.

Example Suppose E |ξ| < ∞. Then

Xn = E[ξ|Fn], n = 0, 1, . . .

is a martingale. Indeed, by the tower property

E[Xn+1|Fn] = E[E[ξ|Fn+1]|Fn]] = E[ξ|Fn] = Xn.

Important: for martingales EXn = EX0, the expectation is constant; increases with n for sub-
martingales, decreases for supermartingales.

Definition 3.7. A process (Cn, n = 1, 2, . . . ) is called predictable (or previsible) if Cn is measurable
with respect to Fn−1. For (Xn, n = 0, 1, . . . ) martingale, the process

Yn =
n∑

k=1

Ck(Xk −Xk−1), n = 1, 2, . . .

is called the martingale transform of (Xn) by (Cn). Notation: (Yn) = (Cn) • (Xn).

The transform is similar to integral sums known from Calculus, where Xk −Xk−1 is analogous
to dx, and Ck is the value of a to-be-integrated function. It is easy to check that (Yn) satisfies the
martingale identity; however this is a proper martingale in the sense of our definition only if E |Yn| <
∞ (to ensure this, it is enough to require that |Cn| < K for some constant K, for all n). In general,
the martingale transforms of a martingale yield processes known as local martingales, see below.
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Example Consider a coin-tossing game, with probability p to win any given round. You can think
of betting on ‘red’ in roulette, for instance. Mathematically, let ξj with values ±1 be independent,
Bernoulli(p), Xn = ξ1 + · · ·+ ξn, X0 = 0. So (Xn) is a random walk; this is a martingale if p = 1/2
(the game is fair), submartingale if p > 1/2 (the game is favourable), supermartingale if p < 1/2 (the
game is unfavourable). A betting strategy is a sequence of bet-sizes, where a bet Cn for the nth game
may depend on the outcome of previous rounds, but not on ξn, so (Cn) is a predictable process. The
capital Yn after round n is

Yn = Yn−1 + Cnξn =
n∑

k=1

ξkCk =
n∑

k=1

(Xk −Xk−1)Ck.

If the game is fair, (Yn) is a martingale transform of the martingale (Xn). As a special case,
which is ‘martingale strategy’ in the historical meaning of the word, consider the strategy of doubling
the stake until a round is won. Let C1 = 1 and Cn = 2n−1 in the event ξ1 = . . . ξn−1 = −1. Now, if
ξ1 = · · · = ξn = −1, ξn+1 = 1 then the gambler’s capital after n rounds is

Yn = −
n∑

i=1

2i−1 = −(2n − 1)

and after n+ 1 rounds is

Yn+1 = Yn + Cn+1 = −(2n − 1) + 2n = 1.

Denoting τ the duration of the game, we have P(τ = n) = 2−n, so τ < ∞ a.s. (although E τ = ∞,
so the gambler should have a lot of money to play martingale!).

The study of sub-/supermartingales is largely reduced to the properties of martingales by the
vurtue of the following representation.

Theorem 3.8. (Doob-Meyer decomposition) Let (Xn) be a submartingale. There exist unique mar-
tingale (Mn) and predictable process (Cn) such that

Xn = Mn + Cn, n ∈ Z+.

Proof. Set M0 = X0, C0 = 0, and for n ≥ 1

Mn := M0 +
n−1∑
k=0

(Xk+1 − E[Xk+1|Fk]), Cn :=
n−1∑
k=1

(E[Xk+1|Fk]−Xk).

Check that (Mn) is a martingale.

Let (Xn) be square-integrable martingale, that is with EX2
n < ∞. The function g(x) = x2 is

convex, hence (X2
n) is a submartingale admitting a Doob-Meyer decomposition

X2
n = Mn + ⟨X⟩n,

where

⟨X⟩n =
n∑

k=1

E[(Xk −Xk−1)
2|Fk]

is the random process called quadratic characteristic of (Xn). For n > m we have the formula

E[(Xn −Xm)
2|Fm] = E[⟨X⟩n − ⟨X⟩m|Fm].
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Example Suppose ξ1, ξ2, . . . are independent, with E ξi = 0, E ξ2i < ∞. Then Xn = ξ1 + · · · + ξn
is a martingale, with

⟨X⟩n = EX2
n = Varξ1 + · · ·+Varξn,

which is the variance of Xn in this case.

3.3 Stopping times

In the last doubling-stake example, exiting the game immediately once in + is an instance of stopping
time. These are random times adapted to the history. Think of some decision strategy to stop a series
of random observations, or exit from a betting game, times to sell/buy assets etc. The decision to stop
may depend on the historical data but not on the future observations.

Definition 3.9. Stopping time is a random variable τ with values in {0, 1, 2, . . . ,∞} such that {τ =
n} ∈ Fn, n ∈ Z+.

Equivalently {τ ≤ n} ∈ Fn, n ∈ Z+. We say τ is finite if P(τ = ∞) = 0.

Example For B ∈ B(R), τ = min{n : Xn ∈ B} is a stopping time, called hitting time or the first
entrance time for set B.

If (Xn) adapted process, we define stopped variable

Xτ =
∞∑
k=0

Xk · 1{τ=k},

which coincides with Xk in the event {τ = k}. We do not exclude the possibility P(τ = ∞) > 0, in
which case we need one more variable X∞ to have Xτ well-defined.

Example Let τ0 = 0 and, recursively for k = 1, 2, . . . , τk := min{n : Xn > Xτk−1
}. Then τk is a

stopping time, which is the time when the kth record in the sequence X0, X1, . . . occurs. Recall that
we say that a record occurs at time n is Xn > X0, . . . , Xn > Xn−1.

Write ∧ for ‘minimum’, e.g. a∧ b = min(a, b). If τ1, τ2 stopping times, then τ1∧ τ2 is a stopping
time too. Since a constant n is a stopping time, τ ∧ n also is.

Proposition 3.10. Let (Xn, n ∈ Z+) be a martingale (or sub-, or supermartingale), and let τ be a
stopping time. The the stopped process

(Xτ∧n, n ∈ Z+)

is a martingale (respectively, sub- or supermartingale).

The stopped process is frozen at the value in time τ . For example, in the event τ = 3, the stopped
process is X0, X1, X2, X3, X3, X3, . . .

To motivate the next definition, recall that the conditional expectation may be sometimes defined
for variables with infinite expectation. Suppose X has EX = ∞ (an example is X with Pareto
density 1/x2 on [1,∞)), and let ξ be independent of X , with E ξ < ∞ For Y := X + ξ. we have
E[Y |X] = ξ +X is well defined, although EY = ∞.

Definition 3.11. Adapted process (Xn, n ∈ Z+) is called local martingale if there exists an increasing
infinite sequence of finite stopping times τ1 < τ2 < . . . such that each stopped process

(Xτk∧n, n ∈ Z+)

is a martingale.
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Of course every martingale is a local martingale: just take τk = k for ‘localising’ stopping
times, but in general the concept is more general, covering the case when E[Xn+1|Fn] = Xn with
E |Xn| = ∞. In fact:

Theorem 3.12. Every local martingale (Yn) can be represented as a martingale transform (Cn)•(Xn)
of some martingale (Xn).

Let τ be a finite stopping time, (Xn) a martingale, so (Xτ∧n, n ∈ Z+) is a martingale, hence
EXτ∧n = EX0. Sending n → ∞ we get τ ∧ n

a.s.→ τ thus Xτ∧n
a.s.→ Xτ . But this does not imply

EXτ = EX0.

Example In the fair coin-tossing game let τ = min{n : Xn = 1}. We now that the random walk
(Xn) will reach 1 with certainty, that is τ is finite, and so Xτ = 1, EXτ = 1 ̸= 0 = EX0. Conditions
that guarantee EXτ = EX0 are given in the next theorem.

Theorem 3.13. (Doob’s optional sampling theorem) Let (Xn) be a supermartingale, τ a stopping
time. Then EXτ ≤ EX0 if any of the following conditions hold:

(i) τ is bounded (P(τ < K) = 1 for some constant K),

(ii) |Xn| < K for all n, and some constant K,

(iii) E τ < ∞ and E[|Xn+1 −Xn||Fn] < K for all n, and some constant K,

(iv) supn E(|Xn| · 1{|Xn|>K}) → 0 as K → ∞ (uniform integrability).

If (Xn) is a martingale, any of these conditions ensures that EXτ = EX0. Under any of these
conditions, if σ is another stopping time with σ ≤ τ then EXτ ≤ EXσ (with equality in the case of
martingale).

Example (Gambler’s ruin) Consider the coin-tossing game with probability p to win, q = 1 − p to
lose a round. A gambler with initially A pounds plays agains a bank with initially B pounds until
one of them is ruined. Each round the stake is one pound. In terms of the random walk (Xn), with
X0 = 0, the question is about the stopping time τ = min{n : Xn ∈ {−A,B}}. If Xτ = −A the
gambler is ruined, and if Xτ = B the bank is ruined.

Suppose first the game is fair, p = q = 1/2, then (Xn) is a martingale. By the optional sampling
theorem, 0 = EX0 = EXτ = −AP(Xτ = −A) + B P(Xτ = B). Together with P(Xτ = −A) +
P(Xτ = B) = 1 this gives

P(Xτ = −A) =
B

A+B
, P(Xτ = B) =

A

A+B
.

If p ̸= q, we may consider the martingale

Yn :=

(
q

p

)Xn

.

By the optional sampling theorem,

P(Xτ = −A)

(
q

p

)−A

+ P(Xτ = B)

(
q

p

)B

= 1,

whence the probability of gambler’s/bank’s ruin is

P(Xτ = −A) =

(
p
q

)A+B

−
(

p
q

)A

(
p
q

)A+B

− 1
, P(Xτ = B) =

(
p
q

)A

− 1(
p
q

)A+B

− 1
. (1)
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3.4 Wald’s identities

You roll a die until the first 6. What is the expected total of the rolls? Each roll the score is uniformly
distributed on {1, 2, 3, 4, 5, 6}, with mean 3.5. However, if you know that the first 6 occurs at, say, 8th
roll, the first 7 scores are uniform on {1, 2, 3, 4, 5}. Computing the expected total with the formula of
total expectation is a challenging task. By Wald’s identity, the answer 21 = 3.5 · 6 is straightforward;
here, 6 is the mean of the geometric distribution with parameter 1/6.

Theorem 3.14. (Wald’s identities) Let ξ1, ξ2, . . . be independent, identically distributed random vari-
ables with E |ξi| < ∞, and let τ be a stopping time with E τ < ∞. Then

E[ξ1 + · · ·+ ξτ ] = E ξ1 E τ.

If also E ξ2i < ∞ then
E[(ξ1 + · · ·+ ξτ )− τ E ξ1]

2 = Varξ1 · E τ.

Proof. We will prove only the first identity. Consider martingale

Xn = ξ1 + · · ·+ ξn − nE ξ1

with respect to filtration Fn = σ(ξ1, . . . , ξn), with X0 = 0. By the optional sampling theorem

0 = EXτ = E(ξ1 + · · ·+ ξτ )− E ξ1 E τ,

Indeed, condition (ii) of the theorem applies, because by independence

E[|Xn+1 −Xn||Fn] = E[|ξn+1 − E ξ1||Fn] = E |ξn+1 − E ξ1| ≤ 2E |ξ1| < ∞.

Example Let’s apply to the duration of the game in gambler’s ruin problem. This is found from
EXτ = E ξ1 E τ where EXτ derives from (1) and E ξ1 = p− q. In the fair game case E τ = AB.

Example In fair coin-tossing (symmetric random walk) let τ = min{n : Xn = 1} be the first time
when the gambler has more rounds won than lost. A martingale argument yields the distribution of τ .
Clearly, τ may only assume odd values 1, 3, . . . The moment generating function of Xn is

E[eλXn ] =
(
E[eλξ1 ]

)n
=

(
eλ + e−λ

2

)n

= (coshλ)n,

hence

Mn :=
eλXn

(coshλ)n

is a martingale. From EMτ∧n = 1 and Mτ∧n < eλ (for λ > 0) we get by the optional sampling
theorem EMτ = 1, so

E
[

eλXτ

(coshλ)τ

]
= 1.

Change variable:

z :=
1

coshλ
, e−λ =

1−
√
1− z2

z
and recall that Xτ = 1 by definition of τ . Thus we obtain the probability generating function of τ ,

E[zτ ] =
∞∑
n=0

P(τ = n)zn =
1−

√
1− z2

z
.
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Expanding the numerator in right-hand side in binomial series yields

P(τ = 2m− 1) = (−1)m+1

(
1/2

m

)
= (−1)m+1

1
2
(1
2
− 1) · · · (1

2
−m+ 1)

m!

(recall the definition of generalised binomial coefficients).

3.5 Inequalities and martingale convergence

Recall two inequalities from your courses. Markov’s inequality: for nonnegative r.v. X and λ > 0
it holds that P(X ≥ λ) ≤ λ−1 EX . Chebyshev’s inequality: for r.v. X with EX2 < ∞ it holds
that P(|X − EX| ≥ λ) ≤ λ−2VarX . These generalise to martingales (sub-, super-) in the form of
maximal inequalities involving the maximum maxk≤nXk.

It will be convenient tro write 1(A) (instead of 1A) for indicator of event A ∈ F .

Proposition 3.15. If (Xn) is a submartingale then for λ > 0

P(max
k≤n

Xk ≥ λ) ≤ λ−1 E[X+
n · 1(max

k≤n
Xk ≥ λ)] ≤ λ−1 EX+

n .

If (Xn) is a martingale then

P(max
k≤n

|Xk| ≥ λ) ≤ λ−2 EX2
n.

Proof. For the first inequality, consider stopping time τ = min{k ≤ n : Xk ≥ λ}, with the conven-
tion that τ = n in the event maxk≤n Xk < λ. By the optional sampling theorem

EXn ≥ EXτ = E[Xτ · 1(max
k≤n

Xk ≥ λ)] + E[Xn · 1(max
k≤n

Xk < λ)] ≥

λP(max
k≤n

Xk ≥ λ) + E[Xn · 1(max
k≤n

Xk < λ)],

whence

λP(max
k≤n

Xk ≥ λ) ≤ EXn − E[Xn · 1(max
k≤n

Xk < λ)] = E[Xn · 1(max
k≤n

Xk ≥ λ)] ≤ EX+
n .

For the second inequality, with martingale (Xn), use that (X2
n) is a submartingale, and apply the

first inequality.

The martingale Xn = E[ξ|Fn] can be thought of as a sequence of approximations to random
variable ξ, which are updated as the information about ξ increases. Suppose ξ is measurable with
respect to F∞ := σ(∪∞

n=0Fn). It is natural to expect then that the sequence Xn converges to ξ,
because ξ is known exactly when the whole infinite information flow gets processed. This intuition is
made precise by the martingale convergence theorems.

Theorem 3.16. (Doob’s martingale convergence theorem.) Let (Xn, n ∈ Z+) be a submartingale
with supn E |Xn| < ∞. Then there exists a random variable X∞ with E |X∞| < ∞ and such that

Xn
a.s.→ X∞, as n → ∞.

If the submartingale is uniformly integrable, then also convergence in the mean holds:

Xn
L1

→ X∞, as n → ∞.
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Example If E |ξ| < ∞ then E[ξ|Fn] converges to E[ξ|F∞] almost surely and in the mean.

Example ( Galton-Watson Branching process) Let ξnk be i.i.d. with some discrete distribution on
Z+, let

µ = E ξnk, Var ξnk < ∞.

The Galton-Watson branching process is defined recursively by setting Z0 = 1

Zn = ξn1 + ξn2 + · · ·+ ξn,Zn .

Think of ξnk as offspring number of individual k from generation n, then Zn is the population size in
generation n.

Using Wald’s identity,
E[Zn+1|Fn] = E[Zn+1|Fn] = µZn,

where Fn = σ(Z0, · · · , Zn), and the first equality holds since this is a Markov process. Thus

Zn

µn
, n ∈ Z+

is a martingale, hence there exists a limit

Zn

µn

a.s.→ W.

If µ > 1 (supercritical case) the limit W is a random variable with W = 0 in the event of extinction
∪∞

n=1{Zn = 0}, and W > 0 on the event {Zn → ∞}. If µ ≤ 1 the extinction is certain and W = 0
a.s.

Exercises

1. Suppose Xn
d→ c for constant c. Show that Xn

P→ c. Hint: use functions

fϵ(x) = (1− |x− c|ϵ−1)+

to estimate P(|Xn − c| ≤ ϵ) from below.

2. Suppose
∑∞

n=1 E |Xn| < ∞. Using Chebyshev inequality and Borel-Cantelli lemma show that
Xn

a.s.→ 0.

3. Suppose that Xn
P→ X . Show that there exists subsequence (nk) such that Xnk

a.s.→ X .

4. Suppose Xn
P→ Y and Xn

P→ Z. Prove that P(Y ̸= Z) = 0.

5. Show that E[Xn+1|Fn] = Xn holds if and only if E[Xn+1 · 1A] = E[Xn · 1A] for every A ∈ Fn.

6. For martingale (Xn), show that E[Xn|Fm] = Xm for n ≥ m. What are the analogues for sub-
and supermartingales?

7. Let ξ1, ξ2, . . . be r.v.’s with E |ξj| < ∞ and E[ξn+1|Fn] = 0. Show that Xn =
∑n

k=1 ξk is a
martingale (with X0 = 0).

8. Let τ, σ be stopping times. Which of the following random variables are stopping times: σ ∨
τ, σ ∧ τ, σ + τ, σ + τ + 1, σ · τ, σ − τ? We use ∨ for max, ∧ for min.

9. Two dice are rolled until a sum of 7 is thrown. Find the expectation of the sum of scores over
all rolls.
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10. Let ξ1, ξ2, . . . be i.i.d. with E ξj = 0, Xn = ξ1 + · · · + ξn, τ = min{n : Xn ≥ 0}. Prove that
E τ = ∞.

11. Let X1, X2, . . . be independent with EXj = 0. Show that Yn =
∑

1≤i<j≤nXiXj is a martin-
gale.

12. Show that for submartingales (Xn), (Yn) also (Xn ∧ Yn) is a submartingale.

13. Consider the coin-tossing game with probabilities p and q, starting with X0 = 0. For τ =
min{n : Xn = 1} (where τ = ∞ if no such n exists) find P(τ < ∞).
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