LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 2

2 Random variables, independence, integration and conditioning

2.1 Measurable functions, products and measure pushforward

Let (2, F), (€, F') be two measurable spaces. When €)' is a topological space, we consider it per
default endowed with the Borel o-algebra. A function X : Q — €' is called measurable if

XB) e F, forall Be F, (1)

where

X YB)={we: X(w) € B}
When such a function is defined on a probability space (€2, F,P) we call X a random variable (with
values in €0).

It is enough to require (1) to hold for B running over some set of generators of F'. For instance,
for R-valued X, measurability (1) holds if (1) holds for every B = (—o0, 2| with x running over the
set of rational numbers.

A function X : (2 — R obtained by algebraic or analytic manipulations with a countable family
(X,,) of measurable R-valued functions is again a measurable function. For instance lim sup X, is
measurable (in general, as function into extended real line R U{cc}).

Example The indicator function of A € F

1, weA,
1A(w):{0 wé¢ A

is measurable, and so for A; € F are the simple functions of the form
Xw)=) ylaw), v eR.
j=1

Definition 2.1. Let (X;, ¢t € T') be a family of measurable functions X; : 2 — €. The smallest sub-
o-algebra of F which makes all X;’s measurable is called the o-algebra generated by (X;, t € T')
and is denoted o(X;, t € T').

Example Let Q = {0,1}> be the coin-tossing space, X,(w) = w, for w = (wy,ws---). Then
o(Xy, Xy, ...) is the o-algebra having the cylinder sets A(e,--- ,€,),n € N, as generators.

Example Generalising the example of the coin-tossing space, for ((Q;, F;), t € T) a family of
measurable spaces, consider the Cartesian product

Q= HQt ={(w, t€T):w €N},
teT
Define X; to be the tth coordinate of w € (). The product o-algebra is generated by the family
(X, t € T') and is denoted ), F+; this has the set of generators of the form

A x ], Ae R
s#£t



For two measure spaces (€2, F, i) and (£, F', 1) define a function on the family of rectanges
v(Bx B'):=uB)u(B'), BeF, BeF. (2)

Theorem 2.2. If ju and 11 are o-finite measures, the function v defined by (2) has a unique extension
to a measure on the o-algebra F & F'.

The extension is called the product measure and is denoted 1 x 11/, and the triple (2x Q' FQF', ux ')
is called the product measure space.
Under measurable mapping the measure is transported from the source to the target space.

Definition 2.3. Let X : 2 — ' be a measurable function on a measure space (2, F, it). The image
(or pushforward) measure is defined as

Sometimes notation i x for ' is used.

Example For simple random variable

X = Z ylej
j=1

the image measure on R is discrete,
n
px = > (A5,
j=1

charging point y; with mass p(A4;).

For X a real random variable on a probability space (2, F,P), the image probability measure
measure is uniquely determined by the function

Fx(z) =P(X <z), z€R,

known as the cumulative distribution function of X .

For R"-valued random variable X = (X3, --,X,,) (random vector) defined on some proba-
bility space (€2, F,P), the image measure on R" is called the probability distribution of X, or the
Jjoint probability distribution of X, -, X,,. Leti; < --- < i,, be a subset of {1,--- ,n} and con-
sider the projection (z1,--- ,z,) — (x;,- - ,x;, ) which removes the entries outside the index set
{41, ,im}. Under such projection, the joint distribution of (X,---,X,) is mapped to the joint
distribution of subvector (X;,,- -, X;, ) called an m-dimensional marginal distribution of vector X.

i1y "

2.2 Independence

Let (2, F,P) be a probability space. Events (A;,t € T') C F are called independent if for every
selection of distinct ¢y, ..., € [

]P)(Atl ﬂ e ﬂ Atk> - P(Atl) e ]P)(Atk)
Let (F;,t € T) be sub-o-algebras of F. They are called independent if for any choice of distinct

indices 1, ..., 1, any events A, € F,,..., A, € Fy, are independent.
Independence of random variables X; is defined as independence of their generated o-algebras

For every family (P;,t € T') of probability measures on R there exists a family of independent
random variables (X;,¢ € T') with X, having distribution P. This follows from the construction of
the product measure.



2.3 Tail events
Let A; € F be events, ¢ € N. Consider the event ‘A, occurs inifnitely often’ (more precisely,
‘infinitely many of A,,’s occur’)

{Anio} = A4

n=1k=n

Theorem. (Borel-Cantelli Lemma)
@ If >, P(A,) < oo thenP(A,io0.) =0,
(b) If Ay, Ay, ... are independent and ) P(A,) = oo then P(A,i.0.) = 1.

Proof. Part (a) is an exercise from Lecture 1. We focus on (b). We have

{A io} =[] 45

n=1k=n

oo [o¢]
(Aic()Aic--,
k=1 k=2

Clearly

hence
P({A, i.0.}°) = nlggop (D Ak) = nhjEO WILLH;OIP’ (,D Ak) =

using independence and that ) | P(A,) = oo
= Jun fim 16 =P =0
]

Example Let X;, X5, ... be independent N (0, 1)-distributed random variables (any other continu-
ous distribution would also work). We say that there is a record at index n if X,, = max(Xy, ..., X,,);
denote this event A,,. One can check that P(A,) = 1/n and that the events are independent. Since
>, 1/n = oo the number of records is infinite with probability 1.

Suppose the occurence/not occurence of event A,, becomes known to an observer at time n. The
Borel-Cantelli Lemma exemplifies situation where probability of some related ‘distant’ event may
assume only values 0 and 1. Results of the kind are known as ‘zero-one laws, which we discuss next.

Let F;,j € N, be o-algebras (sub-c-algebras of F). We define the tail o-algebra as

T = ﬂ o (U Fk> )
=1 k=n
Each A € T is called tail event.

Example In the coin-tossing space, let F,, be the o-algebra generated by outcomes in n first trials.
The event ‘the pattern 1011101 occurs infinitely many times in the sequence’ is a tail event.

Theorem. (Kolmogorov’s 0 — 1 law) If F, Fo, - - - are independent, then T is trivial in the sense that
P(A) =0or 1 foreach A€ T.

Proof. Suppose A is a tail event, since A € o(|J,—, F), we have that A is independent of Fi, ..., F,,_;.
Since this holds for every n, A is independent of o(|J;-, F%) and thus independent of smaller o-
algebra 7. In particular, A is independent of itself, P(A) = P(AN A) = P(A)P(A), which is only
possible when P(A) is 0 or 1. O



Example Let X, X,,... be independent random variables, generating o-algebras o(X;), j € N.
The event

A={we: ZX” converges}

n=1

is a tail event, therefore can only have probability O or 1.

Theorem. (Kolmogorov’s Three Series Theorem) Series Y~ | X,, of independent random variable
converges alsmost surely if and only if the following conditions hold with some constant ¢ > (

@) 2oL P(I Xl > ¢) < oo,
(i) D02 E(Xn Lyix,j<ep) < 00,
(iti) D200, Var(X,, 1x.|<q) < 00.

2

Example For independent normal random variables X,, ~ N(m,,, o2

n NOLAS 1T and oniy 1 m,, an ) oth converge.
. X, holds if and only if ¥ d>" 02 both g

) convergence of the series

2.4 Lebesgue integral and expectation

The expectation of discrete random variable X with values z1, o, ... is
EX =) x;P(X =),
J

and if X has a density fx
EX:/ xfx(z)dz.

These are unified by the general concept of Lebesgue integral.
For measurable function g : R — R and a measure ; on R we wish to define

/Rg(:c)du(x) (also written as /g(x)u(d:c))

R

Suppose first that g is nonnegative. For simple

g(x) = Zyle,- (2), A; € B(R)

we set
k
/Rg(ﬂf)du(x) =D _yin(A).

For the general f > 0, consider sets

{v: 5 < fla) <™}, k=0,1,...,52 -1,

Ak = {{x Cf(x) > Y, k=2,

and simple functions
j2

50) = 5 Tau(o),

k=0
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Figure 1: Lower Riemann integral sum and integral sum for Lebesgue integral.

SO

29
k
[ ot@dute) =3 5w
@ k=0
which we consider as a lower approximation for Lebesgue integral. The Lebesgue integral of g is
defined as the limit

/Qg(x)d,u(x) = lim [ g;(x)dp(x).

Jj—o0 Q

Example Let g(x) = 1j1]\¢ be the indicator function of irrational numbers on [0, 1]. The Riemann
integral over [0, 1] does not exist, because every upper integral sum is 1, and every lower is 0. The
Lebesgue integral is

/[Dl]g(l‘)dﬂc =1-X([0,1]\ Q) +0-X([0,1]NQ) = 1.

Note that here dz means the same as d\(z).
For the general g : Q@ — R let g, (z) = max(g(z),0), g_(x) = max(—g(z),0) be positive and
negative parts, then g(z) = g, (z) — g_(z). If

/Q 19(2)|du(z) < oo

we say that g is integrable and we define the Lebesgue integral of f as
[ st@nto) = [ ge@in(o) - [ g-@)auta)
Q Q Q

Note that [~ 27 (sin z)dz = lim,_,e [, 27 *(sinz)dz = 7 /2 exists as improper Riemann inte-
gral over R, but not as Lebesgue integral because [ |(sinz)/z|dz = oc.

The definition of Lebesgue integral for random variable X defined on a probability space (£2, F,P)
is analogous to the inegral over R. These are related as

EX ::/QX(w)dIP’(w) :/RachX(x),

where Py is the distribution of X.



2.5 Absolute continuity of measures

Let p;, j € N be positive numbers, with sum 1. We may treat the identity function on N as a random
variable X : N — N with the probability mass function P = (p;, j € N). For any function g we have
the expectation of g(.X) calculated as

=> 9(i)ps
jEN
If @ = (Qj,j € N) is some other probability mass function, the corresponding expectation is
=> 9(i)a
jEN
To write the (Q-expectation in terms of P, let £(j) = ¢, /p;, then
Eqg(X)=>_g()&p; = Ep [€9(X)].
jEN

The random variable ¢ is an instance of the Radon-Nikodym derivative (or density).
In full generality, let i, v be two measures on (2, F). Call v absolutely continuous with respect
to u, written as y > v if
Ae F, u(A)=0 = v(A)=0.

The measures are called equivalent, denoted i1 ~ v, if
wA) =0 & v(A) =0,
which means that the measures have the same null-sets.

Theorem. (Radon-Nikodym theorem.) If 1 > v and p is o-finite then there exists a nonnegative
measurable function £ on () such that for any measurable g : () — R

[ s@ivta) = [ s@e@an),

provided one of the integrals exists.

In particular, v(A) = [, € 1 ). We write £ = and call £ the Radon-Nikodym deritative of v
with respect to . Such Eis umque up to values on a set of p-measure 0.

Example For ) the lebesgue measure, v the normal A/ (0, 1) distribution, the Radon-Nikodym deriva-
tive is the normal density

e—x2/2

V2.

§(x) =

2.6 Conditional expectation

For two random variables, X, Y, recall that the conditional expectation E[X|Y] is defined as follows.
Calculate the function h(y) = E[X|Y = y], in case of discrete random variables as

X‘Y—y] Zl‘l —.’Ellyzy]],



or when (X, Y') have joint density as

BIXY =y = [ afayo,(o)ds,
where )
Fav—fo) = LY

is the conditional density. Then define E[X |Y] = h(Y") by subsituting random variable Y for dummy
variable y.

Intuitively, E[X|X] = X, and in the discrete case this is easily checked. When X has density,
this is still true but we cannot use the above formula with Y = X, because (X, X') has no joint density
function.

We wish to introduce more general conditional expectation E[X |G] given sigma-algebra G C F.
Suppose first X > 0. Let

Q(A) ==E[X - 14] = /AXdIP’.

For disjoint sets A, € G

UnAn

dP = d
AXIE” zn:/AnXIP,

which entails that QQ is a measure, and QQ is absolutely continuous with respect to P. By the Radon-
Nikodym theorem there exists a G-measurable random variable £ such that

Q) - [ ear.

We denote this variable as

¢ = E[X|g],
and call it the conditional expectattion of X given G. The defining property is

/ XdP = / E[X|GldP, A€d.

A A

For any X, we write X = X, — X _ and define the conditional expectation by
E[X|G] = E[X,[F] - E[X_|d],

which exists if X is integrable.
The following rules will be used in the sequel:

(i) E[X|[{2,Q}) =EX,
(i) E[aX + bY|G] = a E[X|G] + bE[Y|G],
(iif) E[19] = 1,
(iv) taking out what is known: if Y is G-measurable, then
EXY|¢] =Y -E[X]|d],

(v) tower property: for G; C G
E[E[X]G]|G1] = E[X|G],

in particular E[E[X|G]] = E X.



Exercises

1. Let Y3, Y5, ... be independent, exponentially distributed random variables with EY; = 1. Show
that P(Y,, > logni.o.) = 1.

2. Show that condition (i) in the three series theorem is necessary for convergence of the series.

3. Supposerv’s Xy, --- , X, independent, rv’s Y7, - - - | Y, independent, and random vectors (X1, -+ , X,,)
and (Y1, - ,Y,,) are independent. Show that the (n-+m) random variables X, --- , X,,, Y1,--- , Y},
are independent.

4. Let Xy, Xy, ... be arbitrary random variables. Prove that if > > | E[X;| < oo then the series
Z;‘;l X converges absolutely with probability one.

5. Suppose EX exists. Argue that for every e there exists ¢ such that P(A) < ¢ implies
E(|X| -14) <€
(where 14 indicator of event A).
6. Show that E[XY| = EX EY if the rv’s are independent.

7. For three measures suppose p > v > p and that p, v, p are o-finite. Prove the chain rule for

the Radon-Nikodym derivative:
dp  dvdp

dpu ~ dpdv

8. Let p be a normal distribution A/ (m, 0?), and v the exponential distribution with parameter /3.
Argue that 1 > v and find the Radon-Nikodym derivative dv/dpu.

9. Let A, ; be a system of disjoint events, with U, jA; ; = (2. Let A; = U; A, ;. Let G, be generated
by all A, ;’s, and let G, be generated by A;’s. Describe as precise as you can the random variables
E[X|G1], E[X|Gs]. Assuming P(4; ;) > 0, prove the tower property in this example.
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