2 Random variables, independence, integration and conditioning

2.1 Measurable functions, products and measure pushforward

Let $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}')$ be two measurable spaces. When Ω' is a topological space, we consider it per default endowed with the Borel σ -algebra. A function $X : \Omega \to \Omega'$ is called *measurable* if

$$X^{-1}(B) \in \mathcal{F}, \text{ for all } B \in \mathcal{F}',$$
 (1)

where

$$X^{-1}(B) := \{ \omega \in \Omega : X(\omega) \in B \}.$$

When such a function is defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we call X a random variable (with values in Ω').

It is enough to require (1) to hold for B running over some set of generators of \mathcal{F}' . For instance, for \mathbb{R} -valued X, measurability (1) holds if (1) holds for every $B = (-\infty, x]$ with x running over the set of rational numbers.

A function $X : \Omega \to \mathbb{R}$ obtained by algebraic or analytic manipulations with a countable family (X_n) of measurable \mathbb{R} -valued functions is again a measurable function. For instance $\limsup X_n$ is measurable (in general, as function into extended real line $\mathbb{R} \cup \{\infty\}$).

Example The indicator function of $A \in \mathcal{F}$

$$1_A(\omega) = \begin{cases} 1, & \omega \in A, \\ 0, & \omega \notin A \end{cases}$$

is measurable, and so for $A_j \in \mathcal{F}$ are the *simple* functions of the form

$$X(\omega) = \sum_{j=1}^{n} y_j \mathbb{1}_{A_j}(\omega), \quad y_j \in \mathbb{R}.$$

Definition 2.1. Let $(X_t, t \in T)$ be a family of measurable functions $X_t : \Omega \to \Omega'$. The smallest sub- σ -algebra of \mathcal{F} which makes all X_t 's measurable is called the σ -algebra generated by $(X_t, t \in T)$ and is denoted $\sigma(X_t, t \in T)$.

Example Let $\Omega = \{0,1\}^{\infty}$ be the coin-tossing space, $X_n(\omega) = \omega_n$ for $\omega = (\omega_1, \omega_2 \cdots)$. Then $\sigma(X_1, X_2, \ldots)$ is the σ -algebra having the cylinder sets $A(\epsilon_1, \cdots, \epsilon_n), n \in \mathbb{N}$, as generators.

Example Generalising the example of the coin-tossing space, for $((\Omega_t, \mathcal{F}_t), t \in T)$ a family of measurable spaces, consider the Cartesian product

$$\Omega := \prod_{t \in T} \Omega_t = \{ (\omega_t, \ t \in T) : \omega_t \in \Omega_t \},\$$

Define X_t to be the *t*th coordinate of $\omega \in \Omega$. The *product* σ -algebra is generated by the family $(X_t, t \in T)$ and is denoted $\bigotimes_{t \in T} \mathcal{F}_t$; this has the set of generators of the form

$$A_t \times \prod_{s \neq t} \Omega_s, \ A_t \in \mathcal{F}_t.$$

For two measure spaces $(\Omega, \mathcal{F}, \mu)$ and $(\Omega', \mathcal{F}', \mu')$ define a function on the family of rectanges

$$\nu(B \times B') := \mu(B)\mu(B'), \quad B \in \mathcal{F}, \ B' \in \mathcal{F}'.$$
⁽²⁾

Theorem 2.2. If μ and μ' are σ -finite measures, the function ν defined by (2) has a unique extension to a measure on the σ -algebra $\mathcal{F} \otimes \mathcal{F}'$.

The extension is called *the product measure* and is denoted $\mu \times \mu'$, and the triple $(\Omega \times \Omega', \mathcal{F} \otimes \mathcal{F}', \mu \times \mu')$ is called *the product measure space*.

Under measurable mapping the measure is transported from the source to the target space.

Definition 2.3. Let $X : \Omega \to \Omega'$ be a measurable function on a measure space $(\Omega, \mathcal{F}, \mu)$. The *image* (or pushforward) measure is defined as

$$\mu'(B') = \mu(X^{-1}(B')).$$

Sometimes notation μ_X for μ' is used.

Example For simple random variable

$$X = \sum_{j=1}^{n} y_j \mathbf{1}_{A_j}$$

the image measure on \mathbb{R} is discrete,

$$\mu_X = \sum_{j=1}^n \mu(A_j) \delta_{y_j},$$

charging point y_i with mass $\mu(A_i)$.

For X a real random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the image probability measure measure is uniquely determined by the function

$$F_X(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}$$

known as the cumulative distribution function of X.

For \mathbb{R}^n -valued random variable $X = (X_1, \dots, X_n)$ (random vector) defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the image measure on \mathbb{R}^n is called the *probability distribution* of X, or the *joint* probability distribution of X_1, \dots, X_n . Let $i_1 < \dots < i_m$ be a subset of $\{1, \dots, n\}$ and consider the projection $(x_1, \dots, x_n) \mapsto (x_{i_1}, \dots, x_{i_m})$ which removes the entries outside the index set $\{i_1, \dots, i_m\}$. Under such projection, the joint distribution of (X_1, \dots, X_n) is mapped to the joint distribution of subvector $(X_{i_1}, \dots, X_{i_m})$ called an *m*-dimensional *marginal* distribution of vector X.

2.2 Independence

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Events $(A_t, t \in T) \subset \mathcal{F}$ are called independent if for every selection of distinct $t_1, \ldots, t_k \in I$

$$\mathbb{P}(A_{t_1} \cap \cdots \cap A_{t_k}) = \mathbb{P}(A_{t_1}) \cdots \mathbb{P}(A_{t_k}).$$

Let $(\mathcal{F}_t, t \in T)$ be sub- σ -algebras of \mathcal{F} . They are called independent if for any choice of distinct indices t_1, \ldots, t_k any events $A_{t_1} \in \mathcal{F}_{t_1}, \ldots, A_{t_k} \in \mathcal{F}_{t_k}$ are independent.

Independence of random variables X_i is defined as independence of their generated σ -algebras $\sigma(X_i)$.

For every family $(P_t, t \in T)$ of probability measures on \mathbb{R} there exists a family of independent random variables $(X_t, t \in T)$ with X_t having distribution P. This follows from the construction of the product measure.

2.3 Tail events

Let $A_i \in \mathcal{F}$ be events, $i \in \mathbb{N}$. Consider the event ' A_n occurs inifinitely often' (more precisely, 'infinitely many of A_n 's occur')

$$\{A_n \text{ i.o.}\} := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

Theorem. (Borel-Cantelli Lemma)

(a) If $\sum_{n} \mathbb{P}(A_n) < \infty$ then $\mathbb{P}(A_n \text{ i.o.}) = 0$,

(b) If A_1, A_2, \ldots are independent and $\sum_n \mathbb{P}(A_n) = \infty$ then $\mathbb{P}(A_n \text{ i.o.}) = 1$.

Proof. Part (a) is an exercise from Lecture 1. We focus on (b). We have

$$\{A_n \text{ i.o.}\}^c = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$$

Clearly

$$\bigcap_{k=1}^{\infty} A_k^c \subset \bigcap_{k=2}^{\infty} A_k^c \subset \cdots,$$

hence

$$\mathbb{P}(\{A_n \text{ i.o.}\}^c) = \lim_{n \to \infty} \mathbb{P}\left(\bigcap_{k=n}^{\infty} A_k^c\right) = \lim_{n \to \infty} \lim_{m \to \infty} \mathbb{P}\left(\bigcap_{k=n}^m A_k^c\right) =$$

using independence and that $\sum_{n} \mathbb{P}(A_n) = \infty$

$$= \lim_{n \to \infty} \lim_{m \to \infty} \prod_{k=n}^{m} (1 - \mathbb{P}(A_k)) = 0.$$

Example Let X_1, X_2, \ldots be independent $\mathcal{N}(0, 1)$ -distributed random variables (any other continuous distribution would also work). We say that there is a record at index n if $X_n = \max(X_1, \ldots, X_n)$; denote this event A_n . One can check that $\mathbb{P}(A_n) = 1/n$ and that the events are independent. Since $\sum_n 1/n = \infty$ the number of records is infinite with probability 1.

Suppose the occurence/not occurence of event A_n becomes known to an observer at time n. The Borel-Cantelli Lemma exemplifies situation where probability of some related 'distant' event may assume only values 0 and 1. Results of the kind are known as 'zero-one laws, which we discuss next.

Let $\mathcal{F}_j, j \in \mathbb{N}$, be σ -algebras (sub- σ -algebras of \mathcal{F}). We define the *tail* σ -algebra as

$$\mathcal{T} := \bigcap_{n=1}^{\infty} \sigma \left(\bigcup_{k=n}^{\infty} \mathcal{F}_k \right).$$

Each $A \in \mathcal{T}$ is called *tail event*.

Example In the coin-tossing space, let \mathcal{F}_n be the σ -algebra generated by outcomes in n first trials. The event 'the pattern 1011101 occurs infinitely many times in the sequence' is a tail event.

Theorem. (Kolmogorov's 0-1 law) If $\mathcal{F}_1, \mathcal{F}_2, \cdots$ are independent, then \mathcal{T} is trivial in the sense that $\mathbb{P}(A) = 0$ or 1 for each $A \in \mathcal{T}$.

Proof. Suppose A is a tail event, since $A \in \sigma(\bigcup_{k=n}^{\infty} \mathcal{F}_k)$, we have that A is independent of $\mathcal{F}_1, \ldots, \mathcal{F}_{n-1}$. Since this holds for every n, A is independent of $\sigma(\bigcup_{k=1}^{\infty} \mathcal{F}_k)$ and thus independent of smaller σ -algebra \mathcal{T} . In particular, A is independent of itself, $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)\mathbb{P}(A)$, which is only possible when $\mathbb{P}(A)$ is 0 or 1. **Example** Let X_1, X_2, \ldots be independent random variables, generating σ -algebras $\sigma(X_j), j \in \mathbb{N}$. The event

$$A = \{ \omega \in \Omega : \sum_{n=1}^{\infty} X_n \text{ converges} \}$$

is a tail event, therefore can only have probability 0 or 1.

Theorem. (Kolmogorov's Three Series Theorem) Series $\sum_{n=1}^{\infty} X_n$ of independent random variable converges alsmost surely if and only if the following conditions hold with some constant c > 0

- (i) $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > c) < \infty$,
- (ii) $\sum_{n=1}^{\infty} \mathbb{E}(X_n \mathbb{1}_{\{|X_n| \le c\}}) < \infty$,
- (iii) $\sum_{n=1}^{\infty} \operatorname{Var}(X_n 1_{\{|X_n| \le c\}}) < \infty.$

Example For independent normal random variables $X_n \sim \mathcal{N}(m_n, \sigma_n^2)$ convergence of the series $\sum_n X_n$ holds if and only if $\sum_n m_n$ and $\sum_n \sigma_n^2$ both converge.

2.4 Lebesgue integral and expectation

The expectation of discrete random variable X with values x_1, x_2, \ldots is

$$\mathbb{E} X = \sum_{j} x_{j} \mathbb{P}(X = x_{j}),$$

and if X has a density f_X

$$\mathbb{E} X = \int_{-\infty}^{\infty} x f_X(x) dx.$$

These are unified by the general concept of Lebesgue integral.

For measurable function $g:\mathbb{R}\to\mathbb{R}$ and a measure μ on \mathbb{R} we wish to define

$$\int_{\mathbb{R}} g(x) d\mu(x) \text{ (also written as } \int_{\mathbb{R}} g(x) \mu(dx))$$

Suppose first that g is nonnegative. For simple

$$g(x) = \sum_{j=1}^{k} y_j \mathbb{1}_{A_j}(x), \quad A_j \in \mathcal{B}(\mathbb{R})$$

we set

$$\int_{\mathbb{R}} g(x) d\mu(x) = \sum_{j=1}^{k} y_j \mu(A_j).$$

For the general $f \ge 0$, consider sets

$$A_{jk} = \begin{cases} \left\{ x : \frac{k}{2^{j}} \le f(x) < \frac{k+1}{2^{j}} \right\}, & k = 0, 1, \dots, j2^{j} - 1, \\ \left\{ x : f(x) \ge j \right\}, & k = j2^{j}, \end{cases}$$

and simple functions

$$g_j(x) = \sum_{k=0}^{j_{2^j}} \frac{k}{2^j} \, \mathbf{1}_{A_{jk}}(x),$$

Figure 1: Lower Riemann integral sum and integral sum for Lebesgue integral.

so

$$\int_{\Omega} g_j(x) d\mu(x) = \sum_{k=0}^{j2^j} \frac{k}{2^j} \ \mu(A_{jk}),$$

which we consider as a lower approximation for Lebesgue integral. The *Lebesgue integral* of g is defined as the limit

$$\int_{\Omega} g(x) d\mu(x) := \lim_{j \to \infty} \int_{\Omega} g_j(x) d\mu(x).$$

Example Let $g(x) = 1_{[0,1]\setminus\mathbb{Q}}$ be the indicator function of irrational numbers on [0, 1]. The Riemann integral over [0, 1] does not exist, because every upper integral sum is 1, and every lower is 0. The Lebesgue integral is

$$\int_{[0,1]} g(x)dx = 1 \cdot \lambda([0,1] \setminus \mathbb{Q}) + 0 \cdot \lambda([0,1] \cap \mathbb{Q}) = 1$$

Note that here dx means the same as $d\lambda(x)$.

For the general $g: \Omega \to \mathbb{R}$ let $g_+(x) = \max(g(x), 0), g_-(x) = \max(-g(x), 0)$ be positive and negative parts, then $g(x) = g_+(x) - g_-(x)$. If

$$\int_{\Omega} |g(x)| d\mu(x) < \infty$$

we say that g is integrable and we define the Lebesgue integral of f as

$$\int_{\Omega} g(x)d\mu(x) = \int_{\Omega} g_{+}(x)d\mu(x) - \int_{\Omega} g_{-}(x)d\mu(x)$$

Note that $\int_0^\infty x^{-1}(\sin x)dx = \lim_{a\to\infty} \int_0^a x^{-1}(\sin x)dx = \pi/2$ exists as improper Riemann integral over \mathbb{R}_+ , but not as Lebesgue integral because $\int_0^\infty |(\sin x)/x|dx = \infty$.

The definition of Lebesgue integral for random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is analogous to the inegral over \mathbb{R} . These are related as

$$\mathbb{E}X := \int_{\Omega} X(\omega) d \mathbb{P}(\omega) = \int_{\mathbb{R}} x dP_X(x),$$

where P_X is the distribution of X.

2.5 Absolute continuity of measures

Let $p_j, j \in \mathbb{N}$ be positive numbers, with sum 1. We may treat the identity function on \mathbb{N} as a random variable $X : \mathbb{N} \to \mathbb{N}$ with the probability mass function $P = (p_j, j \in \mathbb{N})$. For any function g we have the expectation of g(X) calculated as

$$\mathbb{E}_P\left[g(X)\right] = \sum_{j \in \mathbb{N}} g(j) p_j$$

If $Q = (Q_j, j \in \mathbb{N})$ is some other probability mass function, the corresponding expectation is

$$\mathbb{E}_Q\left[g(X)\right] = \sum_{j \in \mathbb{N}} g(j)q_j.$$

To write the Q-expectation in terms of P, let $\xi(j) = q_j/p_j$, then

$$\mathbb{E}_Q g(X) = \sum_{j \in \mathbb{N}} g(j)\xi_j p_j = \mathbb{E}_P [\xi g(X)].$$

The random variable ξ is an instance of the Radon-Nikodym derivative (or density).

In full generality, let μ, ν be two measures on (Ω, \mathcal{F}) . Call ν absolutely continuous with respect to μ , written as $\mu \gg \nu$ if

$$A \in \mathcal{F}, \ \mu(A) = 0 \quad \Rightarrow \quad \nu(A) = 0.$$

The measures are called *equivalent*, denoted $\mu \sim \nu$, if

$$\mu(A) = 0 \quad \Leftrightarrow \quad \nu(A) = 0,$$

which means that the measures have the same null-sets.

Theorem. (Radon-Nikodym theorem.) If $\mu \gg \nu$ and μ is σ -finite then there exists a nonnegative measurable function ξ on Ω such that for any measurable $g : \Omega \to \mathbb{R}$

$$\int_{\Omega} f(x)d\nu(x) = \int_{\Omega} f(x)\xi(x)d\mu(x),$$

provided one of the integrals exists.

In particular, $\nu(A) = \int_A \xi(x) d\mu(x)$. We write $\xi = \frac{d\nu}{d\mu}$ and call ξ the Radon-Nikodym deritative of ν with respect to μ . Such ξ is unique up to values on a set of μ -measure 0.

Example For λ the lebesgue measure, ν the normal $\mathcal{N}(0, 1)$ distribution, the Radon-Nikodym derivative is the normal density

$$\xi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}.$$

2.6 Conditional expectation

For two random variables, X, Y, recall that the conditional expectation $\mathbb{E}[X|Y]$ is defined as follows. Calculate the function $h(y) = \mathbb{E}[X|Y = y]$, in case of discrete random variables as

$$\mathbb{E}[X|Y = y_j] = \sum_j x_i \mathbb{P}(X = x_i|Y = y_j],$$

or when (X, Y) have joint density as

$$\mathbb{E}[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y=y}(x) dx,$$

where

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

is the conditional density. Then define $\mathbb{E}[X|Y] = h(Y)$ by subsituting random variable Y for dummy variable y.

Intuitively, $\mathbb{E}[X|X] = X$, and in the discrete case this is easily checked. When X has density, this is still true but we cannot use the above formula with Y = X, because (X, X) has no *joint* density function.

We wish to introduce more general conditional expectation $\mathbb{E}[X|\mathcal{G}]$ given sigma-algebra $\mathcal{G} \subset \mathcal{F}$. Suppose first $X \ge 0$. Let

$$\mathbb{Q}(A) := \mathbb{E}[X \cdot 1_A] = \int_A X d \mathbb{P}.$$

For disjoint sets $A_n \in \mathcal{G}$

$$\int_{\bigcup_n A_n} Xd\,\mathbb{P} = \sum_n \int_{A_n} Xd\,\mathbb{P},$$

which entails that \mathbb{Q} is a measure, and \mathbb{Q} is absolutely continuous with respect to \mathbb{P} . By the Radon-Nikodym theorem there exists a \mathcal{G} -measurable random variable ξ such that

$$\mathbb{Q}(A) = \int_A \xi d \,\mathbb{P} \,.$$

We denote this variable as

$$\xi = \mathbb{E}[X|\mathcal{G}],$$

and call it the conditional expectation of X given \mathcal{G} . The defining property is

$$\int_{A} X d \mathbb{P} = \int_{A} \mathbb{E}[X|\mathcal{G}] d \mathbb{P}, \quad A \in \mathcal{G}.$$

For any X, we write $X = X_{+} - X_{-}$ and define the conditional expectation by

$$\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X_+|\mathcal{G}] - \mathbb{E}[X_-|\mathcal{G}],$$

which exists if X is integrable.

The following rules will be used in the sequel:

- (i) $\mathbb{E}[X|\{\emptyset,\Omega\}) = \mathbb{E}X$,
- (ii) $\mathbb{E}[aX + bY|\mathcal{G}] = a \mathbb{E}[X|\mathcal{G}] + b \mathbb{E}[Y|\mathcal{G}],$

(iii)
$$\mathbb{E}[1|\mathcal{G}] = 1$$
,

(iv) taking out what is known: if Y is \mathcal{G} -measurable, then

$$\mathbb{E}[XY|\mathcal{G}] = Y \cdot \mathbb{E}[X|\mathcal{G}]$$

(v) tower property: for $\mathcal{G}_1 \subset \mathcal{G}_2$

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}_2]|\mathcal{G}_1] = \mathbb{E}[X|\mathcal{G}_1]$$

in particular $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E} X.$

Exercises

- 1. Let Y_1, Y_2, \ldots be independent, exponentially distributed random variables with $\mathbb{E} Y_i = 1$. Show that $\mathbb{P}(Y_n > \log n \text{ i.o.}) = 1$.
- 2. Show that condition (i) in the three series theorem is necessary for convergence of the series.
- 3. Suppose rv's X_1, \dots, X_n independent, rv's Y_1, \dots, Y_m independent, and random vectors (X_1, \dots, X_n) and (Y_1, \dots, Y_m) are independent. Show that the (n+m) random variables $X_1, \dots, X_n, Y_1, \dots, Y_m$ are independent.
- 4. Let X_1, X_2, \ldots be arbitrary random variables. Prove that if $\sum_{j=1}^{\infty} \mathbb{E}|X_j| < \infty$ then the series $\sum_{j=1}^{\infty} X_j$ converges absolutely with probability one.
- 5. Suppose $\mathbb{E}X$ exists. Argue that for every ϵ there exists δ such that $\mathbb{P}(A) < \delta$ implies

$$\mathbb{E}(|X| \cdot 1_A) < \epsilon$$

(where 1_A indicator of event A).

- 6. Show that $\mathbb{E}[XY] = \mathbb{E}X \mathbb{E}Y$ if the rv's are independent.
- 7. For three measures suppose $\mu \gg \nu \gg \rho$ and that μ, ν, ρ are σ -finite. Prove the chain rule for the Radon-Nikodým derivative:

$$\frac{d\rho}{d\mu} = \frac{d\nu}{d\mu} \frac{d\rho}{d\nu}$$

- 8. Let μ be a normal distribution $\mathcal{N}(m, \sigma^2)$, and ν the exponential distribution with parameter β . Argue that $\mu \gg \nu$ and find the Radon-Nikodym derivative $d\nu/d\mu$.
- 9. Let A_{i,j} be a system of disjoint events, with ∪_{i,j}A_{i,j} = Ω. Let A_i = ∪_jA_{i,j}. Let G₂ be generated by all A_{i,j}'s, and let G₁ be generated by A_i's. Describe as precise as you can the random variables E[X|G₁], E[X|G₂]. Assuming P(A_{i,j}) > 0, prove the tower property in this example.

Literature

- 1. S. Resnick, A probability path, Springer 2003.
- 2. R. Schilling, Measures, integrals and martingales, CUP 2005.
- 3. A. Shiryaev, Probability, Springer, 1996.