
LTCC: Measure-Theoretic Probability, A. Gnedin Lecture 2

2 Random variables, independence, integration and conditioning

2.1 Measurable functions, products and measure pushforward

Let (Ω,F), (Ω′,F ′) be two measurable spaces. When Ω′ is a topological space, we consider it per
default endowed with the Borel σ-algebra. A function X : Ω → Ω′ is called measurable if

X−1(B) ∈ F , for all B ∈ F ′, (1)

where
X−1(B) := {ω ∈ Ω : X(ω) ∈ B}.

When such a function is defined on a probability space (Ω,F ,P) we call X a random variable (with
values in Ω′).

It is enough to require (1) to hold for B running over some set of generators of F ′. For instance,
for R-valued X , measurability (1) holds if (1) holds for every B = (−∞, x] with x running over the
set of rational numbers.

A function X : Ω → R obtained by algebraic or analytic manipulations with a countable family
(Xn) of measurable R-valued functions is again a measurable function. For instance lim supXn is
measurable (in general, as function into extended real line R∪{∞}).

Example The indicator function of A ∈ F

1A(ω) =

{
1, ω ∈ A,

0, ω /∈ A
.

is measurable, and so for Aj ∈ F are the simple functions of the form

X(ω) =
n∑

j=1

yj1Aj
(ω), yj ∈ R .

Definition 2.1. Let (Xt, t ∈ T ) be a family of measurable functions Xt : Ω → Ω′. The smallest sub-
σ-algebra of F which makes all Xt’s measurable is called the σ-algebra generated by (Xt, t ∈ T )
and is denoted σ(Xt, t ∈ T ).

Example Let Ω = {0, 1}∞ be the coin-tossing space, Xn(ω) = ωn for ω = (ω1, ω2 · · · ). Then
σ(X1, X2, . . . ) is the σ-algebra having the cylinder sets A(ϵ1, · · · , ϵn), n ∈ N, as generators.

Example Generalising the example of the coin-tossing space, for ((Ωt,Ft), t ∈ T ) a family of
measurable spaces, consider the Cartesian product

Ω :=
∏
t∈T

Ωt = {(ωt, t ∈ T ) : ωt ∈ Ωt},

Define Xt to be the tth coordinate of ω ∈ Ω. The product σ-algebra is generated by the family
(Xt, t ∈ T ) and is denoted

⊗
t∈T Ft; this has the set of generators of the form

At ×
∏
s ̸=t

Ωs, At ∈ Ft.
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For two measure spaces (Ω,F , µ) and (Ω′,F ′, µ′) define a function on the family of rectanges

ν(B ×B′) := µ(B)µ(B′), B ∈ F , B′ ∈ F ′. (2)

Theorem 2.2. If µ and µ′ are σ-finite measures, the function ν defined by (2) has a unique extension
to a measure on the σ-algebra F ⊗ F ′.

The extension is called the product measure and is denoted µ×µ′, and the triple (Ω×Ω′,F⊗F ′, µ×µ′)
is called the product measure space.

Under measurable mapping the measure is transported from the source to the target space.

Definition 2.3. Let X : Ω → Ω′ be a measurable function on a measure space (Ω,F , µ). The image
(or pushforward) measure is defined as

µ′(B′) = µ(X−1(B′)).

Sometimes notation µX for µ′ is used.

Example For simple random variable

X =
n∑

j=1

yj1Aj

the image measure on R is discrete,

µX =
n∑

j=1

µ(Aj)δyj ,

charging point yj with mass µ(Aj).

For X a real random variable on a probability space (Ω,F ,P), the image probability measure
measure is uniquely determined by the function

FX(x) = P(X ≤ x), x ∈ R,

known as the cumulative distribution function of X .
For Rn-valued random variable X = (X1, · · · , Xn) (random vector) defined on some proba-

bility space (Ω,F ,P), the image measure on Rn is called the probability distribution of X , or the
joint probability distribution of X1, · · · , Xn. Let i1 < · · · < im be a subset of {1, · · · , n} and con-
sider the projection (x1, · · · , xn) 7→ (xi1 , · · · , xim) which removes the entries outside the index set
{i1, · · · , im}. Under such projection, the joint distribution of (X1, · · · , Xn) is mapped to the joint
distribution of subvector (Xi1 , · · · , Xim) called an m-dimensional marginal distribution of vector X .

2.2 Independence

Let (Ω,F ,P) be a probability space. Events (At, t ∈ T ) ⊂ F are called independent if for every
selection of distinct t1, . . . , tk ∈ I

P(At1 ∩ · · · ∩ Atk) = P(At1) · · ·P(Atk).

Let (Ft, t ∈ T ) be sub-σ-algebras of F . They are called independent if for any choice of distinct
indices t1, . . . , tk any events At1 ∈ Ft1 , . . . , Atk ∈ Ftk are independent.

Independence of random variables Xi is defined as independence of their generated σ-algebras
σ(Xi).

For every family (Pt, t ∈ T ) of probability measures on R there exists a family of independent
random variables (Xt, t ∈ T ) with Xt having distribution P . This follows from the construction of
the product measure.
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2.3 Tail events

Let Ai ∈ F be events, i ∈ N. Consider the event ‘An occurs inifnitely often’ (more precisely,
‘infinitely many of An’s occur’)

{An i.o.} :=
∞⋂
n=1

∞⋃
k=n

Ak.

Theorem. (Borel-Cantelli Lemma)

(a) If
∑

n P(An) < ∞ then P(An i.o.) = 0,

(b) If A1, A2, . . . are independent and
∑

n P(An) = ∞ then P(An i.o.) = 1.

Proof. Part (a) is an exercise from Lecture 1. We focus on (b). We have

{An i.o.}c =
∞⋃
n=1

∞⋂
k=n

Ac
k.

Clearly
∞⋂
k=1

Ac
k ⊂

∞⋂
k=2

Ac
k ⊂ · · · ,

hence

P({An i.o.}c) = lim
n→∞

P

(
∞⋂
k=n

Ac
k

)
= lim

n→∞
lim

m→∞
P

(
m⋂

k=n

Ac
k

)
=

using independence and that
∑

n P(An) = ∞

= lim
n→∞

lim
m→∞

m∏
k=n

(1− P(Ak)) = 0.

Example Let X1, X2, . . . be independent N (0, 1)-distributed random variables (any other continu-
ous distribution would also work). We say that there is a record at index n if Xn = max(X1, . . . , Xn);
denote this event An. One can check that P(An) = 1/n and that the events are independent. Since∑

n 1/n = ∞ the number of records is infinite with probability 1.
Suppose the occurence/not occurence of event An becomes known to an observer at time n. The

Borel-Cantelli Lemma exemplifies situation where probability of some related ‘distant’ event may
assume only values 0 and 1. Results of the kind are known as ‘zero-one laws, which we discuss next.

Let Fj, j ∈ N, be σ-algebras (sub-σ-algebras of F). We define the tail σ-algebra as

T :=
∞⋂
n=1

σ

(
∞⋃
k=n

Fk

)
.

Each A ∈ T is called tail event.

Example In the coin-tossing space, let Fn be the σ-algebra generated by outcomes in n first trials.
The event ‘the pattern 1011101 occurs infinitely many times in the sequence’ is a tail event.

Theorem. (Kolmogorov’s 0−1 law) If F1,F2, · · · are independent, then T is trivial in the sense that
P(A) = 0 or 1 for each A ∈ T .

Proof. Suppose A is a tail event, since A ∈ σ(
⋃∞

k=nFk), we have that A is independent of F1, . . . ,Fn−1.
Since this holds for every n, A is independent of σ(

⋃∞
k=1Fk) and thus independent of smaller σ-

algebra T . In particular, A is independent of itself, P(A) = P(A ∩ A) = P(A)P(A), which is only
possible when P(A) is 0 or 1.
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Example Let X1, X2, . . . be independent random variables, generating σ-algebras σ(Xj), j ∈ N.
The event

A = {ω ∈ Ω :
∞∑
n=1

Xn converges}

is a tail event, therefore can only have probability 0 or 1.

Theorem. (Kolmogorov’s Three Series Theorem) Series
∑∞

n=1Xn of independent random variable
converges alsmost surely if and only if the following conditions hold with some constant c > 0

(i)
∑∞

n=1 P(|Xn| > c) < ∞,

(ii)
∑∞

n=1 E(Xn 1{|Xn|≤c}) < ∞,

(iii)
∑∞

n=1 Var(Xn 1{|Xn|≤c}) < ∞.

Example For independent normal random variables Xn ∼ N (mn, σ
2
n) convergence of the series∑

n Xn holds if and only if
∑

n mn and
∑

n σ
2
n both converge.

2.4 Lebesgue integral and expectation

The expectation of discrete random variable X with values x1, x2, . . . is

EX =
∑
j

xj P(X = xj),

and if X has a density fX

EX =

∫ ∞

−∞
xfX(x)dx.

These are unified by the general concept of Lebesgue integral.
For measurable function g : R → R and a measure µ on R we wish to define∫

R
g(x)dµ(x) (also written as

∫
R
g(x)µ(dx))

Suppose first that g is nonnegative. For simple

g(x) =
k∑

j=1

yj1Aj
(x), Aj ∈ B(R)

we set ∫
R
g(x)dµ(x) =

k∑
j=1

yjµ(Aj).

For the general f ≥ 0, consider sets

Ajk =

{{
x : k

2j
≤ f(x) < k+1

2j

}
, k = 0, 1, . . . , j2j − 1,

{x : f(x) ≥ j}, k = j2j,

and simple functions

gj(x) =

j2j∑
k=0

k

2j
1Ajk

(x),
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Figure 1: Lower Riemann integral sum and integral sum for Lebesgue integral.

so ∫
Ω

gj(x)dµ(x) =

j2j∑
k=0

k

2j
µ(Ajk),

which we consider as a lower approximation for Lebesgue integral. The Lebesgue integral of g is
defined as the limit ∫

Ω

g(x)dµ(x) := lim
j→∞

∫
Ω

gj(x)dµ(x).

Example Let g(x) = 1[0,1]\Q be the indicator function of irrational numbers on [0, 1]. The Riemann
integral over [0, 1] does not exist, because every upper integral sum is 1, and every lower is 0. The
Lebesgue integral is ∫

[0,1]

g(x)dx = 1 · λ([0, 1] \Q) + 0 · λ([0, 1] ∩Q) = 1.

Note that here dx means the same as dλ(x).
For the general g : Ω → R let g+(x) = max(g(x), 0), g−(x) = max(−g(x), 0) be positive and

negative parts, then g(x) = g+(x)− g−(x). If∫
Ω

|g(x)|dµ(x) < ∞

we say that g is integrable and we define the Lebesgue integral of f as∫
Ω

g(x)dµ(x) =

∫
Ω

g+(x)dµ(x)−
∫
Ω

g−(x)dµ(x).

Note that
∫∞
0

x−1(sinx)dx = lima→∞
∫ a

0
x−1(sinx)dx = π/2 exists as improper Riemann inte-

gral over R+, but not as Lebesgue integral because
∫∞
0

|(sinx)/x|dx = ∞.
The definition of Lebesgue integral for random variable X defined on a probability space (Ω,F ,P)

is analogous to the inegral over R. These are related as

EX :=

∫
Ω

X(ω)dP(ω) =
∫
R
xdPX(x),

where PX is the distribution of X .
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2.5 Absolute continuity of measures

Let pj, j ∈ N be positive numbers, with sum 1. We may treat the identity function on N as a random
variable X : N → N with the probability mass function P = (pj, j ∈ N). For any function g we have
the expectation of g(X) calculated as

EP [g(X)] =
∑
j∈N

g(j)pj

If Q = (Qj, j ∈ N) is some other probability mass function, the corresponding expectation is

EQ [g(X)] =
∑
j∈N

g(j)qj.

To write the Q-expectation in terms of P , let ξ(j) = qj/pj , then

EQ g(X) =
∑
j∈N

g(j)ξjpj = EP [ξg(X)].

The random variable ξ is an instance of the Radon-Nikodym derivative (or density).
In full generality, let µ, ν be two measures on (Ω,F). Call ν absolutely continuous with respect

to µ, written as µ ≫ ν if
A ∈ F , µ(A) = 0 ⇒ ν(A) = 0.

The measures are called equivalent, denoted µ ∼ ν, if

µ(A) = 0 ⇔ ν(A) = 0,

which means that the measures have the same null-sets.

Theorem. (Radon-Nikodym theorem.) If µ ≫ ν and µ is σ-finite then there exists a nonnegative
measurable function ξ on Ω such that for any measurable g : Ω → R∫

Ω

f(x)dν(x) =

∫
Ω

f(x)ξ(x)dµ(x),

provided one of the integrals exists.

In particular, ν(A) =
∫
A
ξ(x)dµ(x). We write ξ = dν

dµ
and call ξ the Radon-Nikodym deritative of ν

with respect to µ. Such ξ is unique up to values on a set of µ-measure 0.

Example For λ the lebesgue measure, ν the normal N (0, 1) distribution, the Radon-Nikodym deriva-
tive is the normal density

ξ(x) =
e−x2/2

√
2π.

2.6 Conditional expectation

For two random variables, X, Y , recall that the conditional expectation E[X|Y ] is defined as follows.
Calculate the function h(y) = E[X|Y = y], in case of discrete random variables as

E[X|Y = yj] =
∑
j

xi P(X = xi|Y = yj],
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or when (X, Y ) have joint density as

E[X|Y = y] =

∫ ∞

−∞
xfX|Y=y(x)dx,

where

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

is the conditional density. Then define E[X|Y ] = h(Y ) by subsituting random variable Y for dummy
variable y.

Intuitively, E[X|X] = X , and in the discrete case this is easily checked. When X has density,
this is still true but we cannot use the above formula with Y = X , because (X,X) has no joint density
function.

We wish to introduce more general conditional expectation E[X|G] given sigma-algebra G ⊂ F .
Suppose first X ≥ 0. Let

Q(A) := E[X · 1A] =
∫
A

XdP .

For disjoint sets An ∈ G ∫
∪nAn

XdP =
∑
n

∫
An

XdP,

which entails that Q is a measure, and Q is absolutely continuous with respect to P. By the Radon-
Nikodym theorem there exists a G-measurable random variable ξ such that

Q(A) =

∫
A

ξdP .

We denote this variable as
ξ = E[X|G],

and call it the conditional expectattion of X given G. The defining property is∫
A

XdP =

∫
A

E[X|G]dP, A ∈ G.

For any X , we write X = X+ −X− and define the conditional expectation by

E[X|G] = E[X+|G]− E[X−|G],

which exists if X is integrable.
The following rules will be used in the sequel:

(i) E[X|{∅,Ω}) = EX ,

(ii) E[aX + bY |G] = aE[X|G] + bE[Y |G],

(iii) E[1|G] = 1,

(iv) taking out what is known: if Y is G-measurable, then

E[XY |G] = Y · E[X|G],

(v) tower property: for G1 ⊂ G2

E[E[X|G2]|G1] = E[X|G1],

in particular E[E[X|G]] = EX.
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Exercises

1. Let Y1, Y2, . . . be independent, exponentially distributed random variables with EYi = 1. Show
that P(Yn > log n i.o.) = 1.

2. Show that condition (i) in the three series theorem is necessary for convergence of the series.

3. Suppose rv’s X1, · · · , Xn independent, rv’s Y1, · · · , Ym independent, and random vectors (X1, · · · , Xn)
and (Y1, · · · , Ym) are independent. Show that the (n+m) random variables X1, · · · , Xn, Y1, · · · , Ym

are independent.

4. Let X1, X2, . . . be arbitrary random variables. Prove that if
∑∞

j=1 E|Xj| < ∞ then the series∑∞
j=1Xj converges absolutely with probability one.

5. Suppose EX exists. Argue that for every ϵ there exists δ such that P(A) < δ implies

E(|X| · 1A) < ϵ

(where 1A indicator of event A).

6. Show that E[XY ] = EX EY if the rv’s are independent.

7. For three measures suppose µ ≫ ν ≫ ρ and that µ, ν, ρ are σ-finite. Prove the chain rule for
the Radon-Nikodým derivative:

dρ

dµ
=

dν

dµ

dρ

dν
.

8. Let µ be a normal distribution N (m,σ2), and ν the exponential distribution with parameter β.
Argue that µ ≫ ν and find the Radon-Nikodym derivative dν/dµ.

9. Let Ai,j be a system of disjoint events, with ∪i,jAi,j = Ω. Let Ai = ∪jAi,j . Let G2 be generated
by all Ai,j’s, and let G1 be generated by Ai’s. Describe as precise as you can the random variables
E[X|G1],E[X|G2]. Assuming P(Ai,j) > 0, prove the tower property in this example.
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