2 Random variables, independence, integration and conditioning

2.1 Measurable functions, products and measure pushforward

Let $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be two measurable spaces. When Ω^{\prime} is a topological space, we consider it per default endowed with the Borel σ-algebra. A function $X: \Omega \rightarrow \Omega^{\prime}$ is called measurable if

$$
\begin{equation*}
X^{-1}(B) \in \mathcal{F}, \text { for all } B \in \mathcal{F}^{\prime} \tag{1}
\end{equation*}
$$

where

$$
X^{-1}(B):=\{\omega \in \Omega: X(\omega) \in B\}
$$

When such a function is defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we call X a random variable (with values in Ω^{\prime}).

It is enough to require (1) to hold for B running over some set of generators of \mathcal{F}^{\prime}. For instance, for \mathbb{R}-valued X, measurability (1) holds if (1) holds for every $B=(-\infty, x]$ with x running over the set of rational numbers.

A function $X: \Omega \rightarrow \mathbb{R}$ obtained by algebraic or analytic manipulations with a countable family $\left(X_{n}\right)$ of measurable \mathbb{R}-valued functions is again a measurable function. For instance limsup X_{n} is measurable (in general, as function into extended real line $\mathbb{R} \cup\{\infty\}$).

Example The indicator function of $A \in \mathcal{F}$

$$
1_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \notin A\end{cases}
$$

is measurable, and so for $A_{j} \in \mathcal{F}$ are the simple functions of the form

$$
X(\omega)=\sum_{j=1}^{n} y_{j} 1_{A_{j}}(\omega), \quad y_{j} \in \mathbb{R}
$$

Definition 2.1. Let $\left(X_{t}, t \in T\right)$ be a family of measurable functions $X_{t}: \Omega \rightarrow \Omega^{\prime}$. The smallest sub-$\sigma$-algebra of \mathcal{F} which makes all X_{t} 's measurable is called the σ-algebra generated by $\left(X_{t}, t \in T\right)$ and is denoted $\sigma\left(X_{t}, t \in T\right)$.

Example Let $\Omega=\{0,1\}^{\infty}$ be the coin-tossing space, $X_{n}(\omega)=\omega_{n}$ for $\omega=\left(\omega_{1}, \omega_{2} \cdots\right)$. Then $\sigma\left(X_{1}, X_{2}, \ldots\right)$ is the σ-algebra having the cylinder sets $A\left(\epsilon_{1}, \cdots, \epsilon_{n}\right), n \in \mathbb{N}$, as generators.

Example Generalising the example of the coin-tossing space, for $\left(\left(\Omega_{t}, \mathcal{F}_{t}\right), t \in T\right)$ a family of measurable spaces, consider the Cartesian product

$$
\Omega:=\prod_{t \in T} \Omega_{t}=\left\{\left(\omega_{t}, t \in T\right): \omega_{t} \in \Omega_{t}\right\}
$$

Define X_{t} to be the t th coordinate of $\omega \in \Omega$. The product σ-algebra is generated by the family $\left(X_{t}, t \in T\right)$ and is denoted $\otimes_{t \in T} \mathcal{F}_{t}$; this has the set of generators of the form

$$
A_{t} \times \prod_{s \neq t} \Omega_{s}, \quad A_{t} \in \mathcal{F}_{t}
$$

For two measure spaces $(\Omega, \mathcal{F}, \mu)$ and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mu^{\prime}\right)$ define a function on the family of rectanges

$$
\begin{equation*}
\nu\left(B \times B^{\prime}\right):=\mu(B) \mu\left(B^{\prime}\right), \quad B \in \mathcal{F}, B^{\prime} \in \mathcal{F}^{\prime} . \tag{2}
\end{equation*}
$$

Theorem 2.2. If μ and μ^{\prime} are σ-finite measures, the function ν defined by (2) has a unique extension to a measure on the σ-algebra $\mathcal{F} \otimes \mathcal{F}^{\prime}$.
The extension is called the product measure and is denoted $\mu \times \mu^{\prime}$, and the triple $\left(\Omega \times \Omega^{\prime}, \mathcal{F} \otimes \mathcal{F}^{\prime}, \mu \times \mu^{\prime}\right)$ is called the product measure space.

Under measurable mapping the measure is transported from the source to the target space.
Definition 2.3. Let $X: \Omega \rightarrow \Omega^{\prime}$ be a measurable function on a measure space $(\Omega, \mathcal{F}, \mu)$. The image (or pushforward) measure is defined as

$$
\mu^{\prime}\left(B^{\prime}\right)=\mu\left(X^{-1}\left(B^{\prime}\right)\right)
$$

Sometimes notation μ_{X} for μ^{\prime} is used.

Example For simple random variable

$$
X=\sum_{j=1}^{n} y_{j} 1_{A_{j}}
$$

the image measure on \mathbb{R} is discrete,

$$
\mu_{X}=\sum_{j=1}^{n} \mu\left(A_{j}\right) \delta_{y_{j}}
$$

charging point y_{j} with mass $\mu\left(A_{j}\right)$.
For X a real random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the image probability measure measure is uniquely determined by the function

$$
F_{X}(x)=\mathbb{P}(X \leq x), \quad x \in \mathbb{R}
$$

known as the cumulative distribution function of X.
For \mathbb{R}^{n}-valued random variable $X=\left(X_{1}, \cdots, X_{n}\right)$ (random vector) defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the image measure on \mathbb{R}^{n} is called the probability distribution of X, or the joint probability distribution of X_{1}, \cdots, X_{n}. Let $i_{1}<\cdots<i_{m}$ be a subset of $\{1, \cdots, n\}$ and consider the projection $\left(x_{1}, \cdots, x_{n}\right) \mapsto\left(x_{i_{1}}, \cdots, x_{i_{m}}\right)$ which removes the entries outside the index set $\left\{i_{1}, \cdots, i_{m}\right\}$. Under such projection, the joint distribution of $\left(X_{1}, \cdots, X_{n}\right)$ is mapped to the joint distribution of subvector $\left(X_{i_{1}}, \cdots, X_{i_{m}}\right)$ called an m-dimensional marginal distribution of vector X.

2.2 Independence

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Events $\left(A_{t}, t \in T\right) \subset \mathcal{F}$ are called independent if for every selection of distinct $t_{1}, \ldots, t_{k} \in I$

$$
\mathbb{P}\left(A_{t_{1}} \cap \cdots \cap A_{t_{k}}\right)=\mathbb{P}\left(A_{t_{1}}\right) \cdots \mathbb{P}\left(A_{t_{k}}\right) .
$$

Let $\left(\mathcal{F}_{t}, t \in T\right)$ be sub- σ-algebras of \mathcal{F}. They are called independent if for any choice of distinct indices t_{1}, \ldots, t_{k} any events $A_{t_{1}} \in \mathcal{F}_{t_{1}}, \ldots, A_{t_{k}} \in \mathcal{F}_{t_{k}}$ are independent.

Independence of random variables X_{i} is defined as independence of their generated σ-algebras $\sigma\left(X_{i}\right)$.

For every family $\left(P_{t}, t \in T\right)$ of probability measures on \mathbb{R} there exists a family of independent random variables $\left(X_{t}, t \in T\right)$ with X_{t} having distribution P. This follows from the construction of the product measure.

2.3 Tail events

Let $A_{i} \in \mathcal{F}$ be events, $i \in \mathbb{N}$. Consider the event ' A_{n} occurs inifnitely often' (more precisely, 'infinitely many of A_{n} 's occur')

$$
\left\{A_{n} \text { i... }\right\}:=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} .
$$

Theorem. (Borel-Cantelli Lemma)
(a) If $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$ then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$,
(b) If A_{1}, A_{2}, \ldots are independent and $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$ then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.

Proof. Part (a) is an exercise from Lecture 1. We focus on (b). We have

$$
\left\{A_{n} \text { i.o. }\right\}^{c}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{c} \text {. }
$$

Clearly

$$
\bigcap_{k=1}^{\infty} A_{k}^{c} \subset \bigcap_{k=2}^{\infty} A_{k}^{c} \subset \cdots,
$$

hence

$$
\mathbb{P}\left(\left\{A_{n} \text { i.o. }\right\}^{c}\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\bigcap_{k=n}^{\infty} A_{k}^{c}\right)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \mathbb{P}\left(\bigcap_{k=n}^{m} A_{k}^{c}\right)=
$$

using independence and that $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$

$$
=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \prod_{k=n}^{m}\left(1-\mathbb{P}\left(A_{k}\right)\right)=0
$$

Example Let X_{1}, X_{2}, \ldots be independent $\mathcal{N}(0,1)$-distributed random variables (any other continuous distribution would also work). We say that there is a record at index n if $X_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$; denote this event A_{n}. One can check that $\mathbb{P}\left(A_{n}\right)=1 / n$ and that the events are independent. Since $\sum_{n} 1 / n=\infty$ the number of records is infinite with probability 1.

Suppose the occurence/not occurence of event A_{n} becomes known to an observer at time n. The Borel-Cantelli Lemma exemplifies situation where probability of some related 'distant' event may assume only values 0 and 1 . Results of the kind are known as 'zero-one laws, which we discuss next.

Let $\mathcal{F}_{j}, j \in \mathbb{N}$, be σ-algebras (sub- σ-algebras of \mathcal{F}). We define the tail σ-algebra as

$$
\mathcal{T}:=\bigcap_{n=1}^{\infty} \sigma\left(\bigcup_{k=n}^{\infty} \mathcal{F}_{k}\right) .
$$

Each $A \in \mathcal{T}$ is called tail event.
Example In the coin-tossing space, let \mathcal{F}_{n} be the σ-algebra generated by outcomes in n first trials. The event 'the pattern 1011101 occurs infinitely many times in the sequence' is a tail event.
Theorem. (Kolmogorov's $0-1$ law) If $\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots$ are independent, then \mathcal{T} is trivial in the sense that $\mathbb{P}(A)=0$ or 1 for each $A \in \mathcal{T}$.
Proof. Suppose A is a tail event, since $A \in \sigma\left(\bigcup_{k=n}^{\infty} \mathcal{F}_{k}\right)$, we have that A is independent of $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n-1}$. Since this holds for every n, A is independent of $\sigma\left(\bigcup_{k=1}^{\infty} \mathcal{F}_{k}\right)$ and thus independent of smaller σ algebra \mathcal{T}. In particular, A is independent of itself, $\mathbb{P}(A)=\mathbb{P}(A \cap A)=\mathbb{P}(A) \mathbb{P}(A)$, which is only possible when $\mathbb{P}(A)$ is 0 or 1 .

Example Let X_{1}, X_{2}, \ldots be independent random variables, generating σ-algebras $\sigma\left(X_{j}\right), j \in \mathbb{N}$. The event

$$
A=\left\{\omega \in \Omega: \sum_{n=1}^{\infty} X_{n} \text { converges }\right\}
$$

is a tail event, therefore can only have probability 0 or 1 .
Theorem. (Kolmogorov's Three Series Theorem) Series $\sum_{n=1}^{\infty} X_{n}$ of independent random variable converges alsmost surely if and only if the following conditions hold with some constant $c>0$
(i) $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right|>c\right)<\infty$,
(ii) $\sum_{n=1}^{\infty} \mathbb{E}\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq c\right\}}\right)<\infty$,
(iii) $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n} 1_{\left\{\left|X_{n}\right| \leq c\right\}}\right)<\infty$.

Example For independent normal random variables $X_{n} \sim \mathcal{N}\left(m_{n}, \sigma_{n}^{2}\right)$ convergence of the series $\sum_{n} X_{n}$ holds if and only if $\sum_{n} m_{n}$ and $\sum_{n} \sigma_{n}^{2}$ both converge.

2.4 Lebesgue integral and expectation

The expectation of discrete random variable X with values x_{1}, x_{2}, \ldots is

$$
\mathbb{E} X=\sum_{j} x_{j} \mathbb{P}\left(X=x_{j}\right)
$$

and if X has a density f_{X}

$$
\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

These are unified by the general concept of Lebesgue integral.
For measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a measure μ on \mathbb{R} we wish to define

$$
\left.\int_{\mathbb{R}} g(x) d \mu(x) \text { (also written as } \int_{\mathbb{R}} g(x) \mu(d x)\right)
$$

Suppose first that g is nonnegative. For simple

$$
g(x)=\sum_{j=1}^{k} y_{j} 1_{A_{j}}(x), \quad A_{j} \in \mathcal{B}(\mathbb{R})
$$

we set

$$
\int_{\mathbb{R}} g(x) d \mu(x)=\sum_{j=1}^{k} y_{j} \mu\left(A_{j}\right) .
$$

For the general $f \geq 0$, consider sets

$$
A_{j k}=\left\{\begin{array}{l}
\left\{x: \frac{k}{2^{j}} \leq f(x)<\frac{k+1}{2^{j}}\right\}, \quad k=0,1, \ldots, j 2^{j}-1, \\
\{x: f(x) \geq j\}, \quad k=j 2^{j},
\end{array}\right.
$$

and simple functions

$$
g_{j}(x)=\sum_{k=0}^{j 2^{j}} \frac{k}{2^{j}} 1_{A_{j k}}(x),
$$

Figure 1: Lower Riemann integral sum and integral sum for Lebesgue integral.
so

$$
\int_{\Omega} g_{j}(x) d \mu(x)=\sum_{k=0}^{j 2^{j}} \frac{k}{2^{j}} \mu\left(A_{j k}\right)
$$

which we consider as a lower approximation for Lebesgue integral. The Lebesgue integral of g is defined as the limit

$$
\int_{\Omega} g(x) d \mu(x):=\lim _{j \rightarrow \infty} \int_{\Omega} g_{j}(x) d \mu(x)
$$

Example Let $g(x)=1_{[0,1] \backslash \mathbb{Q}}$ be the indicator function of irrational numbers on $[0,1]$. The Riemann integral over $[0,1]$ does not exist, because every upper integral sum is 1 , and every lower is 0 . The Lebesgue integral is

$$
\int_{[0,1]} g(x) d x=1 \cdot \lambda([0,1] \backslash \mathbb{Q})+0 \cdot \lambda([0,1] \cap \mathbb{Q})=1 .
$$

Note that here $d x$ means the same as $d \lambda(x)$.
For the general $g: \Omega \rightarrow \mathbb{R}$ let $g_{+}(x)=\max (g(x), 0), g_{-}(x)=\max (-g(x), 0)$ be positive and negative parts, then $g(x)=g_{+}(x)-g_{-}(x)$. If

$$
\int_{\Omega}|g(x)| d \mu(x)<\infty
$$

we say that g is integrable and we define the Lebesgue integral of f as

$$
\int_{\Omega} g(x) d \mu(x)=\int_{\Omega} g_{+}(x) d \mu(x)-\int_{\Omega} g_{-}(x) d \mu(x) .
$$

Note that $\int_{0}^{\infty} x^{-1}(\sin x) d x=\lim _{a \rightarrow \infty} \int_{0}^{a} x^{-1}(\sin x) d x=\pi / 2$ exists as improper Riemann integral over \mathbb{R}_{+}, but not as Lebesgue integral because $\int_{0}^{\infty}|(\sin x) / x| d x=\infty$.

The definition of Lebesgue integral for random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is analogous to the inegral over \mathbb{R}. These are related as

$$
\mathbb{E} X:=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)=\int_{\mathbb{R}} x d P_{X}(x)
$$

where P_{X} is the distribution of X.

2.5 Absolute continuity of measures

Let $p_{j}, j \in \mathbb{N}$ be positive numbers, with sum 1 . We may treat the identity function on \mathbb{N} as a random variable $X: \mathbb{N} \rightarrow \mathbb{N}$ with the probability mass function $P=\left(p_{j}, j \in \mathbb{N}\right)$. For any function g we have the expectation of $g(X)$ calculated as

$$
\mathbb{E}_{P}[g(X)]=\sum_{j \in \mathbb{N}} g(j) p_{j}
$$

If $Q=\left(Q_{j}, j \in \mathbb{N}\right)$ is some other probability mass function, the corresponding expectation is

$$
\mathbb{E}_{Q}[g(X)]=\sum_{j \in \mathbb{N}} g(j) q_{j}
$$

To write the Q-expectation in terms of P, let $\xi(j)=q_{j} / p_{j}$, then

$$
\mathbb{E}_{Q} g(X)=\sum_{j \in \mathbb{N}} g(j) \xi_{j} p_{j}=\mathbb{E}_{P}[\xi g(X)]
$$

The random variable ξ is an instance of the Radon-Nikodym derivative (or density).
In full generality, let μ, ν be two measures on (Ω, \mathcal{F}). Call ν absolutely continuous with respect to μ, written as $\mu \gg \nu$ if

$$
A \in \mathcal{F}, \mu(A)=0 \quad \Rightarrow \quad \nu(A)=0
$$

The measures are called equivalent, denoted $\mu \sim \nu$, if

$$
\mu(A)=0 \quad \Leftrightarrow \quad \nu(A)=0
$$

which means that the measures have the same null-sets.
Theorem. (Radon-Nikodym theorem.) If $\mu \gg \nu$ and μ is σ-finite then there exists a nonnegative measurable function ξ on Ω such that for any measurable $g: \Omega \rightarrow \mathbb{R}$

$$
\int_{\Omega} f(x) d \nu(x)=\int_{\Omega} f(x) \xi(x) d \mu(x)
$$

provided one of the integrals exists.
In particular, $\nu(A)=\int_{A} \xi(x) d \mu(x)$. We write $\xi=\frac{d \nu}{d \mu}$ and call ξ the Radon-Nikodym deritative of ν with respect to μ. Such ξ is unique up to values on a set of μ-measure 0 .

Example For λ the lebesgue measure, ν the normal $\mathcal{N}(0,1)$ distribution, the Radon-Nikodym derivative is the normal density

$$
\xi(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}
$$

2.6 Conditional expectation

For two random variables, X, Y, recall that the conditional expectation $\mathbb{E}[X \mid Y]$ is defined as follows. Calculate the function $h(y)=\mathbb{E}[X \mid Y=y]$, in case of discrete random variables as

$$
\mathbb{E}\left[X \mid Y=y_{j}\right]=\sum_{j} x_{i} \mathbb{P}\left(X=x_{i} \mid Y=y_{j}\right]
$$

or when (X, Y) have joint density as

$$
\mathbb{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y=y}(x) d x
$$

where

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

is the conditional density. Then define $\mathbb{E}[X \mid Y]=h(Y)$ by subsituting random variable Y for dummy variable y.

Intuitively, $\mathbb{E}[X \mid X]=X$, and in the discrete case this is easily checked. When X has density, this is still true but we cannot use the above formula with $Y=X$, because (X, X) has no joint density function.

We wish to introduce more general conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$ given sigma-algebra $\mathcal{G} \subset \mathcal{F}$. Suppose first $X \geq 0$. Let

$$
\mathbb{Q}(A):=\mathbb{E}\left[X \cdot 1_{A}\right]=\int_{A} X d \mathbb{P} .
$$

For disjoint sets $A_{n} \in \mathcal{G}$

$$
\int_{\cup_{n} A_{n}} X d \mathbb{P}=\sum_{n} \int_{A_{n}} X d \mathbb{P},
$$

which entails that \mathbb{Q} is a measure, and \mathbb{Q} is absolutely continuous with respect to \mathbb{P}. By the RadonNikodym theorem there exists a \mathcal{G}-measurable random variable ξ such that

$$
\mathbb{Q}(A)=\int_{A} \xi d \mathbb{P} .
$$

We denote this variable as

$$
\xi=\mathbb{E}[X \mid \mathcal{G}],
$$

and call it the conditional expectattion of X given \mathcal{G}. The defining property is

$$
\int_{A} X d \mathbb{P}=\int_{A} \mathbb{E}[X \mid \mathcal{G}] d \mathbb{P}, \quad A \in \mathcal{G} .
$$

For any X, we write $X=X_{+}-X_{-}$and define the conditional expectation by

$$
\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}\left[X_{+} \mid \mathcal{G}\right]-\mathbb{E}\left[X_{-} \mid \mathcal{G}\right],
$$

which exists if X is integrable.
The following rules will be used in the sequel:
(i) $\mathbb{E}[X \mid\{\varnothing, \Omega\})=\mathbb{E} X$,
(ii) $\mathbb{E}[a X+b Y \mid \mathcal{G}]=a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]$,
(iii) $\mathbb{E}[1 \mid \mathcal{G}]=1$,
(iv) taking out what is known: if Y is \mathcal{G}-measurable, then

$$
\mathbb{E}[X Y \mid \mathcal{G}]=Y \cdot \mathbb{E}[X \mid \mathcal{G}]
$$

(v) tower property: for $\mathcal{G}_{1} \subset \mathcal{G}_{2}$

$$
\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{G}_{1}\right],
$$

in particular $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E} X$.

Exercises

1. Let Y_{1}, Y_{2}, \ldots be independent, exponentially distributed random variables with $\mathbb{E} Y_{i}=1$. Show that $\mathbb{P}\left(Y_{n}>\log n\right.$ i.o. $)=1$.
2. Show that condition (i) in the three series theorem is necessary for convergence of the series.
3. Suppose rv's X_{1}, \cdots, X_{n} independent, rv's Y_{1}, \cdots, Y_{m} independent, and random vectors (X_{1}, \cdots, X_{n}) and $\left(Y_{1}, \cdots, Y_{m}\right)$ are independent. Show that the $(n+m)$ random variables $X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}$ are independent.
4. Let X_{1}, X_{2}, \ldots be arbitrary random variables. Prove that if $\sum_{j=1}^{\infty} \mathbb{E}\left|X_{j}\right|<\infty$ then the series $\sum_{j=1}^{\infty} X_{j}$ converges absolutely with probability one.
5. Suppose $\mathbb{E} X$ exists. Argue that for every ϵ there exists δ such that $\mathbb{P}(A)<\delta$ implies

$$
\mathbb{E}\left(|X| \cdot 1_{A}\right)<\epsilon
$$

(where 1_{A} indicator of event A).
6. Show that $\mathbb{E}[X Y]=\mathbb{E} X \mathbb{E} Y$ if the rv's are independent.
7. For three measures suppose $\mu \gg \nu \gg \rho$ and that μ, ν, ρ are σ-finite. Prove the chain rule for the Radon-Nikodým derivative:

$$
\frac{d \rho}{d \mu}=\frac{d \nu}{d \mu} \frac{d \rho}{d \nu} .
$$

8. Let μ be a normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$, and ν the exponential distribution with parameter β. Argue that $\mu \gg \nu$ and find the Radon-Nikodym derivative $d \nu / d \mu$.
9. Let $A_{i, j}$ be a system of disjoint events, with $\cup_{i, j} A_{i, j}=\Omega$. Let $A_{i}=\cup_{j} A_{i, j}$. Let \mathcal{G}_{2} be generated by all $A_{i, j}$'s, and let \mathcal{G}_{1} be generated by A_{i} 's. Describe as precise as you can the random variables $\mathbb{E}\left[X \mid \mathcal{G}_{1}\right], \mathbb{E}\left[X \mid \mathcal{G}_{2}\right]$. Assuming $\mathbb{P}\left(A_{i, j}\right)>0$, prove the tower property in this example.

Literature

1. S. Resnick, A probability path, Springer 2003.
2. R. Schilling, Measures, integrals and martingales, CUP 2005.
3. A. Shiryaev, Probability, Springer, 1996.
