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Introduction  

to  

Maximum Entropy Principle



Ensemble
Definition 

An ensemble      is a triple                   where the outcome    
is the value of a random variable which takes on one of 
possible values                           having probabilities                                             
.                          with                 ,         and              .                    


Abbreviation 

Briefer notation will be used. For example,            maybe 
written as       or 

X (x, 𝒜X, 𝒫X) x

𝒜X = {a1, a2, …aM}

𝒫X = {p1, p2, …pM} pi ≥ 0 ∑
i∈𝒜X

P(x = ai) = 1P(x = ai) = pi

P(x = ai)
P(ai) P(x)



Joint ensemble
A joint ensemble      is an ensemble in which each outcome is an 
ordered pair         with                             ,


We call           the joint probability  of   

Marginal probability 

We can obtain the marginal probability         from the joint 
probability          by summation


Conditional probability 

The conditional probability is defined as  

XY
(x, y) x ∈ 𝒜X = {a1, a2, …aM} y ∈ 𝒜Y = {b1, b2, …bR}

P(x)

P(x, y)

P(x = ai |y = bj) =
P(x = ai, y = bj)

P(y = bj)
if P(y = bj) ≠ 0

(x, y)

P(x, y) P(x) = ∑
y∈𝒜Y

P(x, y)



Shannon information 
content of an outcome

Definition 

The Shannon information content of an outcome is defined to be 


Comment


The original definition is given in bits, i.e. the base of the logarithm is 
chosen to be         . However a popular choice is also        . The Shannon 
information content calculated in base         and the one calculated in base         
differ only by a multiplicative constant. If not explicitly stated here we take

h(x) = − logc p(x)

c = 2c = e
c = 2 c = e

c = e



The smaller is the probability of an outcome, the larger is its 
Shannon information content 

If the Shannon information content of a constant outcome is 
zero 


Shannon information 
content of an outcome

h(x) = − ln p(x) = ln
1

p(x)

p(x) = 1 then h(x) = 0



The Shannon information content of an outcome of a joint 
ensemble is given by 


In the case in which    and    are independent we have that 
the Shannon information content of (x,y) is given by the sum 
of the information content of x and y

Shannon information 
content of a joint ensemble

h(x, y) = − ln p(x, y)

h(x, y) = − ln p(x, y) = − ln[p(x)p(y)] = − h(x) − h(y)

x y



Entropy of an ensemble
Definition 

The entropy of an ensemble  is defined to be the average Shannon 
information of an outcome


where the following convention is adopted,


Therefore we can also write 


S = − ∑
x∈𝒜X

P(x)ln P(x)

0 ln 0 = 0

S = − ∑
x∈𝒜X|P(x)>0

P(x)ln P(x)



Properties of the Entropy
The entropy is non negative and is zero only for deterministic outcomes 

• Proof: Given the expression for the entropy


• If we have a non deterministic variable the


• If we have a deterministic outcome


   

S ≥ 0 with S = 0 iff P(x) = 1 for one x

P(x) ∈ (0,1)∀x therefore h(x) = − ln P(x) > 0 it follows that  S > 0

If P(x) > 0 then P(x) = 1 with h(x) = − ln P(x) = 0 it follows that S = 0

S = − ∑
x∈𝒜X|P(x)>0

P(x)ln P(x)



Properties of the Entropy
The entropy is maximised for uniform distribution 

•  If the  random variable can take M distinct values, i.e.


• then the maximum entropy  over all possible distributions is


•where                  is the uniform distribution 


   

If |𝒜X | = M

max
P(x)

S[P(x)] = S[PU(x)] = ln M

PU(x) =
1
M

PU(x)



Proof
|𝒜X | = M

ℱ = S − ν ∑
x∈𝒜X

P(x) − 1 = − ∑
x∈𝒜X

P(x)ln P(x) − ν ∑
x∈𝒜X

P(x) − 1

∑
x∈𝒜X

P(x) = 1

S = − ∑
x∈𝒜X

P(x)ln P(x)

∂ℱ
∂P(x)

= − ln P(x) − 1 − ν = 0

Let us assume that our variable can take M possible values


The entropy of any distribution        which is naturally normalised 


is given by 


In order to maximise the entropy over all normalised distributions

 consider the functional


where     is a Lagrangian multiplier.

By differentiating respect to           and putting the derivative to zero we get 

P(x)

P(x)
ν



Proof (continuation)

|𝒜X | = M

P(x) = PU(x) =
1
M S[PU(x)] = − ∑

x∈𝒜X

1
M

ln
1
M

= ln M

∂ℱ
∂P(x)

= − ln P(x) − 1 − ν = 0 ∀x ∈ 𝒜X

P(x) = e−1−ν

∑
x∈𝒜X

P(x) = e−1−νM = 1 or equivalently e−1−ν =
1
M

From the equations


                                                                      

we get 


By extremising      with respect to     we get the  normalization condition


Since we have                   the normalisation condition reads


It follows that the distribution        that maximised the entropy is uniform


                                   and that 

P(x)

∂ℱ
∂ν

= − ∑
x∈𝒜X

P(x) − 1 = 0

ℱ ν



Entropy of a Bernoulli 
variable

Given a Bernoulli variable


with distribution


the entropy is given by 


The entropy is zero for p=0 or p=1 (deterministic variable) and is maximised for 
p=1/2, i.e. 


  


 The entropy is a concave function
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p

S

x ∈ {0,1}

P(x) = px(1 − p)1−x

S = − p ln p − (1 − p)ln(1 − p)

S = 0 for p = 0 or p = 1

S = ln M = ln 2 for p =
1
2



Entropy of a joint ensemble
Defintion 

The entropy of a joint ensemble is defined as 


with the usual convention


Uncorrelated joint ensembles 

For uncorrelated variables, i.e. if 


The entropy is given by   


therefore we have 

S = − ∑
(x,y)∈𝒜XY

P(x, y)ln P(x, y)

0 ln 0 = 0

S = − ∑
(x,y)∈𝒜XY

P(x)P(y)ln[P(x)P(y)]

S = SX + SY

P(x, y) = P(x)P(y)



Quote

Everything should be made  

as simple as possible, but not simpler 

Einstein



Maximum entropy principle

The least biased ensemble  

that satisfies a set of constraints  

if the ensemble that maximises the entropy 

(under the imposed constraints)



Maximum entropy principle

• Typically the constraints come from observations (data) or 
from previous knowledge about the ensemble.


• The maximum entropy principle is a very powerful tool to 
construct ensemble starting from partial information



Examples of Maximum 
entropy ensembles

Let us construct a maximum entropy ensemble in which we fix the 
expectations of some observables


  i.e. our constraints will be 


with                        being P constants. 

fμ(x) for μ = 1,2…, P

∑
x∈𝒜X

P(x)fμ(x) = Cμ μ = 1,2…, P

Cμ, μ = 1,2…, P



The maximum entropy ensemble satisfying these constraints is given by  the 
Gibbs measure


where        is the normalisation constant also called partition function


and            are the Lagrangian multipliers fixed by the constraints or equivalently 


Examples of Maximum 
entropy ensembles

P(x) =
e−∑P

μ=1 λμ fμ(x)

Z

Z = ∑
x∈𝒜X

e−∑P
μ=1 λμ fμ(x)

Z

λμ

−
∂ ln Z
∂λμ

= Cμ



Proof

ℱ = − ∑
x∈𝒜X

P(x)ln P(x) −
P

∑
μ=1

λμ ∑
x∈𝒜X

P(x)fμ(x) − Cμ − ν ∑
x∈𝒜X

P(x) − 1

∑
x∈𝒜X

P(x) = 1

S = − ∑
x∈𝒜X

P(x)ln P(x)

We consider the maximum entropy ensemble of distribution        

satisfying the constraints 


and the normalisation constraint


Therefore we need to maximise the entropy


Under this constraints. 

To this end we  consider the functional


where             are Lagrangian multipliers.

By differentiating respect to        and to each  Lagrangian multiplier putting 

the derivative to zero we can determine the maximum entropy ensemble distribution.

P(x)

∑
x∈𝒜X

P(x)fμ(x) = Cμ μ = 1,2…, P

{λμ}, ν
P(x)



Proof (continuation)

P(x) = e−1−νe−∑P
μ=1 λμ fμ(x)

eν+1 = Z = ∑
x∈𝒜X

e−λμ fμ(x)

These equations read


                                                                      


From the first equation we get


From the normalisation condition we get 


 

Finally              are fixed by the conditions 

Cμ = ∑
x∈𝒜X

fμ(x)P(x) =
1
Z ∑

x∈𝒜X

fμ(x)e−∑P
μ̃=1 λμ̃ fμ̃(x) = −

∂ ln Z
∂λμ

∂ℱ
∂λμ

= − ∑
x∈𝒜X

P(x)fμ(x) − Cμ = 0

∂ℱ
∂P(x)

= − ln P(x) −
P

∑
μ=1

λμ fμ(x) − 1 − ν = 0

∂ℱ
∂ν

= − ∑
x∈𝒜X

P(x) − 1 = 0

{λμ}



Entropy of the ensemble

• The entropy of this ensemble is given by 


• (left as an exercise)

S =
P

∑
μ=1

λμCμ + ln Z



Log-likelihood of an 
outcome

Consider an outcome     of a random variable with unknown distribution


We assume that the unknown distribution is  coming from a family 


of distributions            dependent on the parameters 


Definition 

The log-likelihood of a parameters      is defined as


ℒ( ⃗λ |x) = ln P ⃗λ (x)

x P(x)

⃗λ

P ⃗λ (x) ⃗λ



Likelihood of a set of data
• Consider a set of data  formed by independent outcomes of the random 

variable 


• The log-likelihood of this set of data is 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi)

x = {x1, x2, …, xN}

x



Maximum likelihood 
estimation

The maximum likelihood estimation of the parameters 


corresponding to the distribution          


that best approximate the data 


(according to maximum likelihood estimation) takes the form


⃗λ⋆

P ⃗λ⋆ (x)

⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |x) = argmax ⃗λ [
N

∑
i=1

ln P ⃗λ (xi)]



Relation between maximum 
entropy and maximum likelihood

Assuming that               is the Gibbs measures of the type


Maximum likelihood estimation of the parameters 


Implies that                is the maximum entropy ensemble with constraints fixed by the data 


⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |x)

P ⃗λ (x)

P ⃗λ (x) =
e−∑P

μ=1 λμ fμ(x)

Z

⃗λ ⋆

⟨ fμ(x)⟩DATA = ⟨ fμ(x)⟩ENSEMBLE = ∑
x∈𝒜X

P ⃗λ fμ(x)

P ⃗λ (x)



Proof
Consider a set of data  formed by independent outcomes of the random variable 


The log-likelihood of this set of data is


assuming  


We have 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi)

D = {x1, x2, …, xN}

X

P ⃗λ (x) =
e−∑P

μ=1 λμ fμ(x)

Z

ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi) = − ∑
μ

λμ

N

∑
i=1

fμ(xi) − N ln Z



Proof
Maximising the log-likelihood 


The log-likelihood of this set of data is


We get  


Therefore we  have 


ℒ( ⃗λ |x) =
N

∑
i=1

ln P ⃗λ (xi) = − ∑
μ

λμ

N

∑
i=1

fμ(xi) − N ln Z

0 =
∂ℒ( ⃗λ |x)

∂λμ
= −

N

∑
i=1

fμ(xi) − N
∂ ln Z
∂λμ

for μ = 1,2…, P

1
N

N

∑
i=1

fμ(xi) = −
∂ ln Z
∂λμ

= ∑
x∈𝒜X

P ⃗λ (x)fμ(x) for μ = 1,2,…, P

⟨ fμ(x)⟩DATA = ⟨ fμ(x)⟩ENSEMBLE = ∑
x∈𝒜X

P ⃗λ fμ(x) for μ − 1,2…, P



What we have covered so 
far

In this first lesson we have covered


A. Maximum entropy principle 

B. Uniform distribution maximised the entropy 

C. Exponential families (Gibbs distributions)  maximise the entropy given a set 
of soft constraints 

D. Relation between maximum entropy and maximum likelihood 

In the next lesson we will introduce 


maximum entropy ensembles of networks



Microcanonical  

and  

Canonical 

 Network Ensembles
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Network Ensemble
Definition (for simple networks) 

A network  ensemble      is a triple                    where             
is any possible network                belonging to the set  of all   
simple networks with N nodes       and             with                  
is the probability associate to each graph                                                     


Generalization 

The definition can be extended to non simple networks such 
as directed, weighted networks and also to generalised 
network structures by suitably changing the definition of

𝒢 (G, ΩG, P(G)) G

ΩG

G = (E . V )

ΩG P(G) ≥ 0 ∑
G∈ΩG

P(G) = 1

G



Entropy of network 
ensembles

Definition 

The entropy of a network ensemble is given by 


It can be thought as the logarithm of the typical number of 
networks in the ensemble.


Here we have chosen the natural logarithm for simplicity

S = − ∑
G∈ΩG

P(G)ln P(G)



Constraints
 We distinguish between soft constraints and  hard constraints.


The soft constraints are the constraints satisfied in average 
over the ensemble of networks.


The hard constraints are the constraints satisfied by each 
network in the ensemble.

Fμ(G) = Cμ for μ = 1,2…, P

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Anand Bianconi 2009



Examples of hard 
constraints

• Example 1:We can fix the total number of links 


• Example 2: We can fix the entire degree sequence

L

∑
i<j

aij = L

N

∑
j=1

aij = ki for i = 1,2,…, N

P = 1
F1(G) = ∑

i<j

aij

C1 = L

P = N

Fi(G) =
N

∑
j=1

aij

Ci = ki

{
{

Fμ(G) = Cμ for μ = 1,2…, P



Examples of soft 
constraints

• Example 1:We can fix the expected total number of links 


• Example 2: We can fix the expected degree sequence

L̄

∑
G∈ΩG

∑
i<j

aij P(G) = L̄

∑
G∈ΩG

N

∑
j=1

aij P(G) = k̄i for i = 1,2,…, N

P = 1
F1(G) = ∑

i<j

aij

C1 = L̄

P = N

Fi(G) =
N

∑
j=1

aij

Ci = k̄i

{
{

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P



Canonical and microcanical 
ensembles

• The microcanonical ensemble is the maximum entropy 
ensemble satisfying a given set of hard constraints of the 
type


• The canonical ensemble is the maximum entropy ensemble 
satisfying a given set of soft constraints of the type


 
∑

G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Fμ(G) = Cμ for μ = 1,2…, P

Anand Bianconi 2009



Conjugated ensembles
A microcanonical ensemble and a canonical ensemble 


are conjugated  

when they satisfy corresponding constraints, 


i.e. when they satisfy


with the same choice of        and     respectively.  

Fμ(G) = Cμ for μ = 1,2…, P

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

Fμ(G) Cμ



Canonical network 
ensemble

Proposition 

The canonical ensemble satisfying the set of soft constraints 


is determined by a probability  given by


where     is a normalisation constant                                is called the Hamiltonian


and  the Lagrangian multipliers    are fixed by the constraints. 


For this reason the canonical network ensembles are also called exponential 
random graphs

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

P(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Z

λμ

H(G) =
P

∑
μ=1

λμFμ(G)



Proof

ℱ = − ∑
G∈ΩG

P(G)log P(G) −
P

∑
μ=1

λμ ∑
G∈ΩG

P(G)Fμ(G) − Cμ − ν ( ∑
G∈Ω

P(G) − 1)

∑
G∈ΩG

P(G) = 1

S = − ∑
G∈ΩG

P(G)log P(G)

We consider the maximum entropy network ensemble of distribution        

satisfying the constraints 


and the normalisation constraint


Therefore we need to maximise the entropy


Under this constraints. 

To this end we  consider the functional


where             are Lagrangian multipliers.

By differentiating respect to        and to each  Lagrangian multiplier putting 

the derivative to zero we can determine the maximum entropy ensemble distribution.

P(G)

∑
G∈ΩG

P(G)Fμ(G) = Cμ μ = 1,2…, P

{λμ}, ν
P(G)



Proof (continuation)

P(G) = e−1−νe−∑P
μ=1 λμFμ(G)

By maximising the functional


We obtain the equations


                                                                      


From the first equation we get


∂ℱ
∂λμ

= − ∑
G∈ΩG

P(G)Fμ(G) − Cμ = 0

∂ℱ
∂P(G)

= − ln P(G) −
P

∑
μ=1

λμFμ(G) − 1 − ν = 0

∂ℱ
∂ν

= − ∑
G∈ΩG

P(G) − 1 = 0

ℱ = − ∑
G∈ΩG

P(G)log P(G) −
P

∑
μ=1

λμ ∑
G∈ΩG

P(G)Fμ(G) − Cμ − ν ( ∑
G∈Ω

P(G) − 1)



Proof (continuation)
P(G) = e−1−νe−∑P

μ=1 λμFμ(G)

eν+1 = Z = ∑
G∈ΩG

e−∑μ λμFμ(G)

Given the Gibbs measure


by using the normalisation condition                                                                      


we get


The other Lagrangian multipliers        are fixed by the conditions


 

Obtaining

Cμ = ∑
G∈ΩG

Fμ(G)P(G) =
1
Z ∑

G∈ΩG

Fμ(G)e−∑P
μ̃=1 λμ̃Fμ̃(G) = −

∂ ln Z
∂λμ

∑
G∈ΩG

P(G)Fμ(G) = Cμ

∑
G∈ΩG

P(G) = 1

{λμ}

Cμ = −
∂ ln Z
∂λμ



Entropy of canonical 
ensemble

Proposition  

The entropy   of a canonical ensemble enforcing the 
constraints 


is given by 

∑
G∈ΩG

Fμ(G)P(G) = Cμ for μ = 1,2…, P

S =
P

∑
μ=1

λμCμ + ln Z



Proof 
The maximum entropy distribution of a canonical network ensemble is given by


This ensemble has entropy


The entropy  can be calculated explicitly as  


where we have used the constraints that the ensemble satisfies.

P(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

S = − ∑
G∈ΩG

P(G)ln P(G)

S = − ∑
G∈ΩG

P(G)ln P(G) = − ∑
G∈ΩG

P(G)ln [ 1
Z

e−∑P
μ=1 λμFμ(G)]

S = − ∑
G∈ΩG

P(G) −ln Z −
P

∑
μ=1

λμFμ(G) = ln Z +
P

∑
μ=1

λμ ∑
G∈ΩG

P(G)Fμ(G) = ln Z +
P

∑
μ=1

λμCμ



Maximum entropy micro 
canonical ensembles

Fμ(G) = Cμ for μ = 1,2…, P

• The microcanonical ensemble is the maximum entropy ensemble satisfying a given set of hard constraints 
of the type


• In other words the micro canonical ensemble is the ensemble which satisfies the constraint


Therefore the entropy of this ensemble can be written as 


P(G) > 0 iff Fμ(G) = Cμ for μ = 1,2…, P

S = − ∑
G∈ΩG|{Fμ(G)=Cμ}μ=1,2…,P

P(G)ln P(G)



Maximum entropy micro 
canonical ensembles

Fμ(G) = Cμ for μ = 1,2…, P

The microcanonical ensemble satisfying a given set of 
hard constraints of the type


has uniform distribution over all the networks satisfying the 
above constraints i.e.


or where

P(G) =
1

ZM

P

∏
μ=1

δ (Fμ(G), Cμ)

ZM = ∑
G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ)



Proof
The proof follows directly from the fact that maximum 
entropy distribution over a set of possible outcomes 


of cardinality 


is the uniform distribution


P(G) =
1

ZM

P

∏
μ=1

δ (Fμ(G), Cμ)

ZM = |{G ∈ ΩG |Fμ(G) = Cμ ∀μ} | = ∑
G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ)

{G ∈ ΩG |Fμ(G) = Cμ ∀μ}



Entropy of the  
microcanonical ensemble

Proposition 

The entropy of the micro canonical ensemble is given by 


Proof 

In fact we have


Therefore 


S = − ∑
G∈ΩG|{Fμ(G)=Cμ}μ=1,2…,P

1
ZM

ln ( 1
ZM ) = ln ZM

Σ = − ∑
G∈ΩG|{Fμ(G)=Cμ}μ=1,2…,P

P(G)ln P(G) = ln ZM

P(G) =
1

ZM

P

∏
μ=1

δ (Fμ(G), Cμ) with ZM = ∑
G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ)



Entropy of conjugated 
ensembles

Proposition 

The entropy of a micro canonical ensemble      and the entropy       
of the conjugated canonical ensemble are related by 


 


where 


and where               indicates the Kronecker delta.

Σ = S − Ω

Ω = − ln ∑
G∈ΩG

PC(G)
P

∏
μ=1

δ (Fμ(G), Cμ) PC(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Σ S

δ(x, y)

Anand Bianconi 2010



Proof
Our aim is to calculate 


where


By inserting this explicit expression we obtain 

Ω = − ln
1
Z

e−∑P
μ=1 λμCμ ∑

G∈ΩG

P

∏
μ=1

δ (Fμ(G), Cμ) = − ln [e−SZM] = − ln e−S+Σ = S − Σ

PC(G) =
1
Z

e−∑P
μ=1 λμFμ(G)

Ω = − ln ∑
G∈ΩG

PC(G)
P

∏
μ=1

δ (Fμ(G), Cμ)

Ω = − ln ∑
G∈ΩG

1
Z

e−∑P
μ=1 λμFμ(G)

P

∏
μ=1

δ (Fμ(G), Cμ) = − ln ∑
G∈ΩG

1
Z

e−∑P
μ=1 λμCμ

P

∏
μ=1

δ (Fμ(G), Cμ)



Equivalence of the 
ensembles

If 


the entropies of conjugated ensembles 


are asymptotically equal in the large network limit, i.e.


In this case we say that we have equivalence of the ensembles.


This implies that the two resembles have the same statistical properties.  

Ω = 𝒪(1)

N ≫ 1Σ ≃ S



Preview:  
Non-equivalence of the ensembles with 

extensive number of constraints

If the number of constraints is extensive


then


Therefore the conjugated ensembles are not equivalent 

In this case the entropy of the micro canonical ensemble is given by 


i.e. it is significantly lower than the entropy of the canonical ensemble.

Ω = 𝒪(N )

Σ = S − Ω

P = 𝒪(N )

Anand & Bianconi 2009 Anand & Bianconi 2010



Log-likelihood 
Consider a network       coming from an unknown network ensemble


We assume that the unknown distribution of the ensemble is  coming from an 


ensemble with  distribution              dependent on the parameters 


Definition 

The log-likelihood of a parameters      is defined as


ℒ( ⃗λ |G) = − ln P ⃗λ (G)

G P(G)

⃗λ

P ⃗λ (G) ⃗λ



Maximum likelihood 
estimation

The maximum likelihood estimation of the parameters 


corresponding to the distribution          


that best approximate the observed network 


(according to maximum likelihood estimation) takes the form


⃗λ⋆

P ⃗λ⋆ (G)

⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |G) = argmin ⃗λ [−ln P ⃗λ (G)]



Relation between maximum 
entropy and maximum likelihood

Assuming that               is the Gibbs measures of the type


Maximum likelihood estimation of the parameters 


Implies that                is the maximum entropy ensemble with constraints fixed by the data 


⃗λ ⋆ = argmax ⃗λ ℒ( ⃗λ |G)

P ⃗λ (G)

P ⃗λ (G) =
e−∑P

μ=1 λμFμ(G)

Z

⃗λ ⋆

Fμ(G) = ⟨Fμ(G)⟩ENSEMBLE = ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ )

P ⃗λ (G)



Proof
Minimising  the negative log-likelihood 


We get


Therefore


Therefore we  have 


−ℒ( ⃗λ |G) = − ln P ⃗λ (G) = ∑
μ

λμFμ(G) + ln Z

0 =
∂ℒ( ⃗λ |G)

∂λμ
= Fμ(G) +

∂ ln Z
∂λμ

for μ = 1,2…, P

Fμ(G) = −
∂ ln Z
∂λμ

= ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ ) for μ = 1,2,…, P

Fμ(G) = ⟨Fμ(G)⟩ENSEMBLE = ∑
G′ ∈ΩG

P ⃗λ (G′ )Fμ(G′ )



Final remarks
In this second part of the second lesson we have covered


A. Canonical and microcanonical network ensembles 

B. Non-equivalence of the ensembles in presence of extensive 
number of constraints 

In the next lesson we will introduce 


Random graphs and 


Canonical ensembles with given expected degree sequence


