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e |ntroduction to Maximum Entropy Principle
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e (Canonical and microcanonical network ensembles



Introduction
to

Maximum Entropy Principle



Ensemble

Definition

An ensemble X is atriple %%, %x) where the outcome X
Is the value of a random variable which takes on one of
possible values “x = {ai.a,...ay}  having probabilities

Py ={pps ..oy}  WIth Px=a)=p; p;>20 and Z Px =q) =1

iedy

Abbreviation

Briefer notation will be used. For example, px =) maybe
written as p) Or p)



Joint ensemble

A joint ensemble XY is an ensemble in which each outcome is an
ordered pair (x,y) with xe oy ={aj,a,,...aqy3 y € dy=1{b},b,,...bz)

We call P(x,y) the joint probability of (x,y)
Marginal probability

We can obtain the marginal probability p(x) from the joint

probability P(x,y) by summation Px)= ) P(x.y)
yedy

Conditional probability

The conditional probability is defined as
Px=a;,y = bj)
P(y = bj)

Px=a|y=10)= if P(y=>0)#0



Shannon information
content of an outcome

Definition

The Shannon information content of an outcome is defined to be

h(X) - = logc p(X)

Comment

The original definition is given in bits, i.e. the base of the logarithm is

chosen to be ¢ =2. However a popular choice is also ¢ = e, The Shannon
information content calculated in base ¢ = eand the one calculated in base ¢ =2
differ only by a multiplicative constant. If not explicitly stated here we take ¢ = ¢



ohannon intormation
content of an outcome

The smaller is the probability of an outcome, the larger is its
Shannon information content

h(x) = —Inp(x) = In L
p(x)

If the Shannon information content of a constant outcome is
Zero

p(x) =1 then h(x) =0



Shannon information
content of a joint ensemble

The Shannon information content of an outcome of a joint
ensemble is given by

h(x,y) = —Inp(x,y)

In the case in which x and y are independent we have that
the Shannon information content of (x,y) is given by the sum
of the information content of x and y

h(x,y) = —Inp(x,y) = — In[p(x)p(y)] = — h(x) — h(y)



Entropy of an ensemble

Definition

The entropy of an ensemble is defined to be the average Shannon
information of an outcome

S=- ) P®lnPx)
xed y

where the following convention is adopted,

0ln0=0

Therefore we can also write

S=— Z P()ln P(x)

x€d x| P(x)>0



Properties of the Entropy

The entropy is non negative and is zero only for deterministic outcomes

S>0 with S =0 iff P(x) =1 for one x
* Proof: Given the expression for the entropy

S=- )  P@hPy)

xed x| P(x)>0

¢ |[f we have a non deterministic variable the

P(x) € (0,1)Vx therefore h(x) = — In P(x) > O 1t follows that S > 0

e |[f we have a deterministic outcome

If P(x) > 0 then P(x) =1 with /i(x) = — In P(x) = 0 it follows that S =0



Properties of the Entropy

The entropy is maximised for uniform distribution

e |f the random variable can take M distinct values, i.e.

If|dy| =M
* then the maximum entropy over all possible distributions is

max S[P(x)] = S[P,(x)] = In M
P(x)

ewhere Py (x) is the uniform distribution

1
PU(X) = ﬁ



Proof

Let us assume that our variable can take M possible values |¥x| =M

The entropy of any distribution P(x) which is naturally normalised

Z Pix) =1
xX€HA g
S =— Z P(x)ln P(x)
x€d y

In order to maximise the entropy over all normalised distributions
consider the functional

IS given by

F=S—v ZP(x)—l :—ZP(x)lnP(x)—y ZP(x)—l

xX€HA g xXeHA xXEA

where U is a Lagrangian multiplier.
By differentiating respect to P(x) and putting the derivative to zero we get

0F
O0P(x)

=—InPx)—1—-v=0



Proof (continuation)

From the equations
0F

0P (x)

=—InPx)—1-v=0Vxe dy

we get
P(x) = e~ 17

By extremising # with respect to 1/ we get the normalization condition

0F
— = — Px)—1]1=0
— Y P@)

xeH

Since we have |“x| =M the normalisation condition reads

1
Z P(x) = e '"*M = 1 or equivalently ¢~ = i

xEA

It follows that the distribution P(that maximised the entropy is uniform

POY) = Pyx) = — SIP, ()] = Lnl imm
U M and that [U(x)]__zﬁnM_n

xed y



Entropy of a Bernoull
variable

Given a Bernoulli variable x € {0,1} 0.8
0.6
ith distribution = p*(1 = p)I™*
wi P(x) = p*(1 - p)  oal
the entropy is given by 0.2
*3.0 0.5
§=—-php—(1-p)n(l -p) | ;

The entropy is zero for p=0 or p=1 (deterministic variable) and is maximised for
p=1/2, i.e.

S=0forp=0orp=1

1
S=lnM=ln2forp=5
The entropy is a concave function

1.0



Entropy of a joint ensemble

Defintion

The entropy of a joint ensemble is defined as

S=~ ), PlyhPxy)
(x,y)ed Y

with the usual convention 0ln0 =0

Uncorrelated joint ensembles

For uncorrelated variables, i.e. if  P(x,y) = P(x)P(y)

The entropy is given by S =— Z Px)P(y)In[P(x)P(y)]

(ry)EARY

therefore we have S=S8Sy+Sy



Quote

Everything should be made
as simple as possible, but not simpler

Einstein



Maximum entropy principle

The least biased ensemble
that satisfies a set of constraints
If the ensemble that maximises the entropy

(under the imposed constraints)



Maximum entropy principle

* Typically the constraints come from observations (data) or
from previous knowledge about the ensemble.

* The maximum entropy principle is a very powerful tool to
construct ensemble starting from partial information



Examples of Maximum
entropy ensembles

Let us construct a maximum entropy ensemble in which we fix the
expectations of some observables

L&) for p=12...,P

I.e. our constraints will be

Y POf0)=C, u=12....P

xed y

with C,, p=1.2...,P being P constants.



Examples of Maximum
entropy ensembles

The maximum entropy ensemble satisfying these constraints is given by the
Gibbs measure

Z

where is the normalisation constant also called partition function

P
Z — e_zﬂ=1 ﬂﬂfﬁ‘t(x)
and j“'u are the Lagrangian multipliers fixed by the constraints or equivalently

olnZ
_ —C

a, "




Proof

We consider the maximum entropy ensemble of distribution P(x)
satisfying the constraints

Z POOf,(x)=C, u=12...,P

x€HA
and the normalisation constraint

Z P(x) =1

xX€HA g

Therefore we need to maximise the entropy S=- Z P(x)In P(x)
xed y

Under this constraints.
To this end we consider the functional

F

P
- z P(x)ln P(x) — Zzﬂ z Pf,(x) = C, | -v Z Pix)—1
u=I

xeHA x€HA ¢ xeA

where {4,}.v are Lagrangian multipliers.
By differentiating respect toP(x) and to each Lagrangian multiplier putting
the derivative to zero we can determine the maximum entropy ensemble distribution.



Proof (continuation)

These equations read
OF c

e —lnP(x)—;/lﬂjZ(x)— 1—v=0
00"
fz_ Y P, -C,| =0
H xed 5
OF
E=— x;P(.X)—l —O

. . P
From the first equation we get P(x) = e~1Ve™ Zum A

From the normalisation condition we get
e'tl =7 = Z e~ Hufu)
x€HA

Finally ~ {4,} are fixed by the conditions

1 NP olnZ
Co= X f0P@W =— }' f(x)e” 2em ih = - —a‘;

xedly x€dly H



Entropy of the ensemble

* The entropy of this ensemble is given by

e (left as an exercise)



Log-likelihood of an
outcome

Consider an outcome X of a random variable with unknown distribution P(x)
We assume that the unknown distribution is coming from a family

of distributions P (x) dependent on the parameters 2

Definition

The log-likelihood of a parameters 7 is defined as

L(X]x) = In Po(x)



Likelihood of a set of data

e Consider a set of data formed by independent outcomes of the random
variable X

X = {X[, Xy, ..., Xn}

e The log-likelihood of this set of data is

N
LX) =) InPy(x)
i=1



Maximum likelihood
estimation

The maximum likelihood estimation of the parameters ;*
corresponding to the distribution p__x)
that best approximate the data

(according to maximum likelihood estimation) takes the form




Relation between maximum
entropy and maximum likelihood

Assuming that Pf(x) is the Gibbs measures of the type

e~ Tt Wi

Z

P T(X) =
7*

Maximum likelihood estimation of the parameters

—

A = argmaxTSf(ﬂ X)

Implies that PT(X) is the maximum entropy ensemble with constraints fixed by the data

<]7,¢(x)>DATA = <fﬂ(x)>ENSEMBLE = 2 P ;’fﬂ(x)

xeH




Proof

Consider a set of data formed by independent outcomes of the random variable X

D — {xl,X2, ...,xN}

The log-likelihood of this set of data is

N
L(Xx)= )Y InP3(x)
i=1
assuming
¢~ it 4

Pr(x) = ~

We have

N N
LA =Y ImPrx)==Y 4, fx)-NInZ
i=1

U i=1



Proof

Maximising the log-likelihood

LA |X) = ZlnP—»(x) = Zx Zf(x)—Nan
7 i=1
The log-likelihood of this set of data is

de/l
0= ( |X):_Zf() N

fory_lz ,P

We get

= Y Pr@f() fory=12,..P

/" xEA y

—2f< y=-2

Therefore we have

<f,;4(x)>DATA = <ﬁ,(x)>ENSEMBLE = Z PT]Z(X) for u—12...,P

xX€HA y



What we have covered so
far

In this first lesson we have covered

A.

B.

Maximum entropy principle
Uniform distribution maximised the entropy

Exponential families (Gibbs distributions) maximise the entropy given a set
of soft constraints

Relation between maximum entropy and maximum likelihood

In the next lesson we will introduce

maximum entropy ensembles of networks



Microcanonical
and
Canonical

Network Ensembles
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Network Ensemble

Definition (for simple networks)

A network ensemble € is a triple (G,Q4; P(G)) where G

IS any possible network G =(£.V) belonging to the set of all
simple networks with N nodes @; and PG) >0 with ), P(G) =1
is the probability associate to each graph G &l

Generalization

The definition can be extended to non simple networks such
as directed, weighted networks and also to generalised
network structures by suitably changing the definition of



Entropy of network
ensembles
Definition

The entropy of a network ensemble is given by

S=- ) P(G)P@G)
GeQ,

It can be thought as the logarithm of the typical number of
networks in the ensemble.

Here we have chosen the natural logarithm for simplicity



Constraints

We distinguish between soft constraints and hard constraints.

The soft constraints are the constraints satisfied in average
over the ensemble of networks.

2 F(G)PG)=C,for y=12...,P
GeQg;

The hard constraints are the constraints satisfied by each
network in the ensemble.

F(G)=C, forpu=12..,P

Anand Bianconi 2009



Examples of hard
constraints

e Example 2: We can fix the entire degree sequence

N N
Z a; k;fori=1.2,..., » F(G) = Z a;
J=1 j=1



Examples of soft
constraints

> [Z a,.j] PG)=L
GeQ, \ i</

e Example 2: We can fix the expected degree sequence

F(G) = ij
Y Za P(G)=k fori=12,.. » Z}a]
GeQ; \ j=1

=



Canonical and microcanical
ensembles

* The microcanonical ensemble is the maximum entropy
ensemble satisfying a given set of hard constraints of the

type
F(G)=C,foru=12...,P

* The canonical ensemble is the maximum entropy ensemble
satisfying a given set of soft constraints of the type

Y F(GPG)=C,for y=12....P
GeQ,

Anand Bianconi 2009



Conjugated ensembles

A microcanonical ensemble and a canonical ensemble
are conjugated
when they satisfy corresponding constraints,

l.e. when they satisfy

F(G)=C,foru=12...,P

Z F(GP(G)=C, for uy=12...,P
GeQg

with the same choice of F(G) and €, respectively.



Canonical network
ensemble

Proposition

The canonical ensemble satisfying the set of soft constraints

is determined by a probability given b

L _s* ) F @)

u=1"H K

P

where Z is a normalisation constant H(G) = Z A,F(G) s called the Hamiltonian
u=1

and the Lagrangian multipliers 4,are fixed by the constraints.

For this reason the canonical network ensembles are also called exponential
random graphs



Proof

We consider the maximum entropy network ensemble of distribution  p(G)

satisfying the constraints
ying Y PGF(G)=C,u=12....P

GeQ,,
and the normalisation constraint Z P(G) =1
GeQ,,
S=— Z P(G)log P(G)
Therefore we need to maximise the entropy GeQ,

Under this constraints.
To this end we consider the functional

P
F=- ) PGlogPG) - Y i,| Y PGFG) -C,|- y< Y PG) - 1)

Ge; pu=l1 Gef); GeQ

where {3 },vare Lagrangian multipliers.
By differentiating respect to P(G)and to each Lagrangian multiplier putting
the derivative to zero we can determine the maximum entropy ensemble distribution.



Proof (continuation)

By maximising the functional

P
F=- ) PGlogPG) - ) 1, [ Y. P(GF,G) - CﬂJ ~ y< Y P@G) - 1)

Ge; pu=l1 Gel; GeQ

We obtain the equations
0F

P
=-InP(G) - Y 4F(G)—1-v=0
u=1

GeQ,

7 Y PG)-1[=0
ov B

GeQg

aQ\'
% - [ Y PGIFG) - cﬂ] =0

From the first equation we get




Proof (continuation)

v, — 2 AF(G)
Given the Gibbs measure P(G) = e~ 2

by using the normalisation condition GeQg

we get

The other Lagrangian multipliers{4,} are fixed by the conditions

). P(G)F,(G)=C,

Obtaining G

1 _y? 4 F dlnZ
Co= X FGIPG) =~ ¥ F(Gre =i = - —=
Gellg GeQg; U

B olnZ

T,




Entropy of canonical
ensemble

Proposition
The entropy of a canonical ensemble enforcing the

constraints

Y F(GPG)=C,for y=12....P
GeQ,

P
S=» 2C,+Inz
u=1

IS given by



Proof

The maximum entropy distribution of a canonical network ensemble is given by

P(G) = %e—ziﬂﬁ@

This ensemble has entropy

S=- ) P(G)P@G)
GeQ;
The entropy can be calculated explicitly as

s== ¥ PGWPG =- Y PG)n Ee-illwﬂ

GeQ; GeQg

P P P
S== Y PG)|-InZ= Y LFG) | =InZ+ Y 1| Y PGFG|=mZ+) iC,
GeQg u=1 u=1 GeQg u=1

where we have used the constraints that the ensemble satisfies.



Maximum entropy micro
canonical ensembles

* The microcanonical ensemble is the maximum entropy ensemble satisfying a given set of hard constraints
of the type

F(G)=C,foru=12...,P

¢ |n other words the micro canonical ensemble is the ensemble which satisfies the constraint

P(G)>0iff F(G)=C,forp=12...,P

Therefore the entropy of this ensemble can be written as

Z P(G)In P(G)




Maximum entropy micro
canonical ensembles

The microcanonical ensemble satisfying a given set of
hard constraints of the type

F(G)=C,forup=12...,P

has uniform distribution over all the networks satisfying the
above constraints i.e.

or where




Proof

The proof follows directly from the fact that maximum
entropy distribution over a set of possible outcomes

(G € QG| F(G) = C, V)
of cardinality

P
2y =G € QI F,G) = G, vl = ¥, []6(Fu6).6,)
GeQ; u=l1

is the uniform distribution

P

P(G) = Zina (F.6).C,)

g



Entropy of the
microcanonical ensemble

Proposition
The entropy of the micro canonical ensemble is given by

Y= 2 P(G)In P(G) = In Z,,

ooy

Proof

In fact we have

1 P ] P
P(G) = Z—MH5 <Fﬂ(G), cﬂ> with 7, = Y []s (Fﬂ(G), cﬂ>
u=1

GeQ,; n=1
Therefore
1 1
S=- —In|— ) =InZ
) Zy (Z) M

‘M

ceey



Entropy of conjugated
ensembles

Proposition

The entropy of a micro canonical ensemble = and the entropy §
of the conjugated canonical ensemble are related by

>=5-Q
where

P 1 p
_1 ¥ LF©
Q=-In Y PG)] |5<F”(G), Cﬂ> Po(G) = —e ™2

and where 6(,y) Indicates the Kronecker delta.

Anand Bianconi 2010



Proof

Our aim is to calculate

P
a=-m Y P&)]]s(F6).C,)

GeQ; u=1
Where PC(G) — le—zll;l/lﬂFﬂ(G)
Z

By inserting this explicit expression we obtain

1 P i 1 P P
Q=—1In Z Ee_zﬂﬂi”F”(G)HcS (Fﬂ(G), Cﬂ> =—1In Z Ee_zﬂ=l'1”c“n (Fﬂ(G), Cﬂ>

1 _yr F
Q=—1In [Ee L1 4G Z H5 (FM(G), cﬂ)} =—InleZ,|=-lne**=5-%



Equivalence of the
ensembles

the entropies of conjugated ensembles
are asymptotically equal in the large network limit, i.e.
2~ S N>1
In this case we say that we have equivalence of the ensembles.

This implies that the two resembles have the same statistical properties.



Preview:
Non-equivalence of the ensembles with
extensive number of constraints

If the number of constraints is extensive

Therefore the conjugated ensembles are not equivalent

In this case the entropy of the micro canonical ensemble is given by

l.e. it is significantly lower than the entropy of the canonical ensemble.

Anand & Bianconi 2009 Anand & Bianconi 2010



Log-likelihood

Consider a network G coming from an unknown network ensemble F(G)
We assume that the unknown distribution of the ensemble is coming from an
ensemble with distribution £7(G) dependent on the parameters P
Definition

The log-likelihood of a parameters 7 is defined as

Z(X|G) = —InP~(G)



Maximum likelihood
estimation

The maximum likelihood estimation of the parameters ;*
corresponding to the distribution p_c)
that best approximate the observed network

(according to maximum likelihood estimation) takes the form




Relation between maximum
entropy and maximum likelihood

Assuming that PT(G) is the Gibbs measures of the type

P
o~ T WA

P7(G) = ——

Maximum likelihood estimation of the parameters 1 *

—

A* = argmaxTSf(Tl G)

Implies that P 7(G)is the maximum entropy ensemble with constraints fixed by the data

F(G) = <F,u(G)>ENSEMBLE = 2 P+(G)F,(G)

G'eQg;




Proof

Minimising the negative log-likelihood
~L(X|G)=-P#G) =) I,F(G)+InZ

U

We get
0Z( 1 |G dlnZ
0=22U1G) by 42 o u= 10, P
ol Z ol
Therefore
dln Z
F(G) ==L =Y PHGIFG)for u=12,..P
o,
G'eQ,

Therefore we have

F(G)= (F, ,u(G)>ENSEMBLE = Z P-(G)F,(G)

G'eQ;




Final remarks

In this second part of the second lesson we have covered
A. Canonical and microcanonical network ensembles

B. Non-equivalence of the ensembles in presence of extensive
number of constraints

In the next lesson we will introduce
Random graphs and

Canonical ensembles with given expected degree sequence



