1 Basics of measure theory

1.1 Introduction

A central theme of measure theory is the following question. How can we assign a (nonnegative) measure to subsets of some ground set Ω ? In applications, the measure can have the meaning of size, content, mass, probability etc. We are talking of probability measure if the total measure of Ω is 1.

In your probability and statistics courses you mostly studied probability measures as distributions of random variables, with the focus on two types: 'discrete' with distribution supported by some finite or countable set or 'continuous' with some density. An elementary example of different type is a random variable $\min(E, a)$, where E is exponential r.v. and a > 0, with distribution having atom at a and positive density on [0, a).

As a function of set the measure should be *additive*. If Ω is finite or countable this is pretty straightforward, as a nonzero value $\mu(\omega)^{(1)}$ can be assigned to every $\omega \in \Omega$ and then $\mu(A)$ defined for any $A \subset \Omega$ using the summation formula $\mu(A) = \sum_{\omega \in A} \mu(A)$.

The problem becomes more involved if Ω is uncountable like $[0,1], \mathbb{R}^k$ or the infinite 'cointossing space' $\{0,1\}^{\infty} = \{0,1\} \times \{0,1\} \times \ldots$, or the space of continuous functions C[0,1], because it is not possible to assign measure in a reasonable way to every subset. That is to say, we should be careful about the domain of definition of a measure.

A fundamental example of measure is the Lebesgue measure generalising the geometric notions of length, area and volume. As a leading example today we shall consider the Lebesgue measure in one-dimension, that is the 'length' λ defined on certain subsets in \mathbb{R} . The length $\lambda(I)$ of any interval I = [a, b], (a, b], (a, b), [a, b) is $\lambda(I) = b - a$. For union of disjoint intervals I_1, \ldots, I_n the length is

$$\lambda\left(\bigcup_{k=1}^{n} I_k\right) = \sum_{k=1}^{n} \lambda(I_k),$$

which is an instance of the property called *finite additivity*. For infinite sequence of disjoint intervals I_1, I_2, \ldots the length of the union is the sum of series,

$$\lambda\left(\bigcup_{k=1}^{\infty}I_k\right) = \sum_{k=1}^{\infty}\lambda(I_k)$$

(infinite if the series diverges), which is an instance of the property called σ -additivity.

Using the σ -additivity we can do measure calculations for more complex sets. What is the length of the set \mathbb{Q} of rational numbers? The length of a point is $\lambda(\{x\}) = 0$, and \mathbb{Q} is countable, so by σ -additivity $\lambda(\mathbb{Q}) = 0$. But then the length of the set of irrational numbers $[0,1] \setminus \mathbb{Q}$ in [0,1] should be 1 since $\lambda([0,1] \setminus \mathbb{Q}) + \lambda(\mathbb{Q}) = \lambda([0,1]) = 1$.

Now let us find the length of the *Cantor set* $C \subset [0, 1]$. The Cantor set can be constructed step-bystep, at each stage obtaining some union of disjoint intervals C_k . Start with removing the middle third from [0, 1], thus defining $C_1 := [0, 1/3] \cup [2/3, 1]$. Then remove the middle third from [0, 1/3] and do the same with [2/3, 1], thus defining C_2 . By induction, C_{k+1} is obtained by removing the middle third from every interval in C_k . The Cantor set is defined as the infinite intersection $C = \bigcap_{k=1}^{\infty} C_k$. Note that, as in the above example, for $B \subset A$ we have $\lambda(B) \leq A$, because $A = B \cup (A \setminus B)$ is a disjoint union and $\lambda(A) = \lambda(B) + \lambda(B \setminus A)$. One can calculate the length of all removed intervals

$$\lambda([0,1] \setminus C) = \frac{1}{3} + \frac{1}{3}\left(1 - \frac{1}{3}\right) + \frac{1}{3}\left(\frac{2}{3}\right)^2 + \dots = \frac{1}{3} \cdot \frac{1}{1 - 2/3} = 1$$

⁽¹⁾This is a shorthand notation for $\mu(\{\omega\})$ in case of one-point sets.

to see that $\lambda(C) = 1 - 1 = 0$. Another way to derive this is to show by induction that

$$\lambda(C_{k+1}) = \frac{2}{3}\lambda(C_k), \text{ hence } \lambda(C_k) = \left(\frac{2}{3}\right)^k,$$

and since $C \subset C_k$, we have

$$\lambda(C) \le \lambda(C_k) = \left(\frac{2}{3}\right)^k, \quad k = 1, 2, \dots$$

and letting $k \to \infty$ yields $\lambda(C_k) \to 0$, so $\lambda(C) = 0$. The Cantor set is uncountable (has cardinality continuum, same as the cardinality of [0, 1] or \mathbb{R}) and, as we have shown, has length 0.

How far can we go with ascribing the length to more complex sets $A \subset \mathbb{R}$? After the founder of measure theory Henri Lebesgue, the sets for which this can be done are called *Lebesgue measurable*, and the generalised length is called *the Lebesgue measure on* \mathbb{R} , to be discussed in the next section. Using the Axiom of Choice from the set theory it is possible to show existence of sets that are not Lebesque-mesaurable, but it is impossible to build them up from a system of intervals in some constructive manner. In probability theory we typically consider measures on a smaller class of Borel sets, which is rich enough for all purposes.

A probability measure on Ω is a measure with $\mu(\Omega) = 1$. Subsets of Ω to which probability is assigned are called events, and notation $\mathbb{P}(A)$ will be used for probability of $A \subset \Omega$. For instance, the Lebesgue measure on $[0, 1]^k$ is a probability measure, used to model a point chosen uniformly at random from the cube.

In your probability courses you studied repeated Bernoulli trials (e.g. coin-tossing) with some success probability p. For fixed number n of trials the finite sample space $\{0, 1\}^n$ with 2^n elements is sufficient. However, if the number of trials is unlimited, or for infinite series of trials a suitable sample space to model possible outcomes would be

$$\Omega = \{(\omega_1, \omega_2, \dots) : \omega_i = 0 \text{ or } 1, \text{ for } i = 1, 2, \dots\} = \{0, 1\}^{\infty},\$$

so one outcome is an infinite sequence like (0, 1, 1, 0, ...). Identifying 1 with a 'head' the event A 'first two tosses are heads' is $A = \{\omega \in \Omega : \omega_1 = \omega_2 = 1\}$ with $\mathbb{P}(A) = p^2$. More complex events are required to formulate theorems of probability theory like the Strong Law of Large Numbers, hence the same question arises: what is the reserve of events A to make sense of $\mathbb{P}(A)$?

1.2 Definition of measure

To pursue the idea that a measure is a σ -additive function of a set, the domain of definition of a measure should be a system of sets closed under the operations of taking countable union, and also intersection and complementation. In this context 'closed' means that applying operations $\cap, \cup, ^c$ to a countable selection of sets from the system will yield another set from the system. We write $A^c = \Omega \setminus A$ for the complement.

Definition 1.1. A σ -algebra \mathcal{F} on a set Ω is a family of subsets of Ω with the following properties:

- (i) $\Omega \in \mathcal{F}$,
- (ii) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$,
- (iii) $A_j \in \mathcal{F}, j \in \mathbb{N}, \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathcal{F}.$

A system \mathcal{A} of subsets of Ω is an *algebra* if \mathcal{A} satisfies (i), (ii) and (iii'): $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$. Thus algebra is closed under the operation of taking union of finitely many sets, while σ -algebra admits countable unions. Conditions (i), (ii), (iii) is a minimal set of axioms defining σ -algebra. Using these other properties are derived. So $\emptyset \in \mathcal{F}$ by (i), (ii). Then $A_1, A_2 \in \mathcal{F} \Rightarrow A_1 \cup A_2 \in \mathcal{F}$ because we can set $A_j = \emptyset$ for $j \ge 2$ in (ii). Using complementation rules, $A_j \in \mathcal{F}, j \in \mathbb{N}, \Rightarrow \bigcap_{i=1}^{\infty} A_j \in \mathcal{F}$. And so on.

Note: operating with more than countably many sets from \mathcal{F} may lead to outside of \mathcal{F} . Indeed, *every* subset of Ω is a union of it individual points.

The power set $\mathcal{P}(\Omega)$ (all subsets) is a σ -algebra. If Ω is countable this is often a reasonable setting for a measure.

Let A_1, A_2, \cdots be a partition of Ω in disjoint subsets. Taking arbitrary unions of A_j 's will define a σ -algebra.

But typically σ -algebras have too many sets to admit explicit description. However, with each collection of sets S we can associate a σ -algebra generated by S, which we denote $\sigma(S)$. Observe that for σ -algebras $\mathcal{F}_1, \mathcal{F}_2$ also the intersection $\mathcal{F}_1 \cap \mathcal{F}_2$ is a σ -algebra. For any system of σ -algebras $(\mathcal{F}_j, j \in J)$ (possibly with uncountable index set J) also $\bigcap_{j \in J} \mathcal{F}_j$, is a σ -algebra. Therefore, we can specify any collection $S \subset \mathcal{P}(\Omega)$ of *generators* and define $\sigma(S)$ to be the intersection of all σ -algebras that contain S. Thus the $\sigma(S)$ generated by S is the smallest σ -algebra containing S.

Examples

- 1. Consider $S = \{\emptyset\}$. The generated σ -algebra is the smallest possible, $\{\emptyset, \Omega\}$.
- 2. Consider $S = \{A_1, \ldots, A_k\}$, where $A_1 \cup \cdots \cup A_k = \Omega$, A_j 's are nonempty and pairwise disjoint. We speak in this situation of a partition of Ω with blocks (or atoms) A_j . Every set in $\sigma(S)$ is obtained by selecting some of the A_j 's and taking union, e.g. $A_2 \cup A_3 \cup A_7$ (provided $k \ge 7$). There are 2^k ways to select a subset from a set with k elements, therefore $\sigma(S)$ has 2^k elements.
- 3. Taking partition $S = \{A_1, A_2, \dots\}$ into countably many (disjoint, nonempry) blocks will result in $\sigma(S)$ with continuum elements.
- 4. Consider the coin-tossing space Ω = {0,1}[∞]. For each k and (ϵ₁,...,ϵ_k) ∈ {0,1}^k let A(ϵ₁,...,ϵ_k) = {ω ∈ Ω : ω₁ = ϵ₁,...,ω_k = ϵ_k}, a set called finite-dimensional cylinder. Let F_k be generated by the partition with parts A(ϵ₁,...,ϵ_k), where k is fixed; so the cardinality of F_k is 2^k. Observe that F₁ ⊂ F₂ ⊂ ··· is an increasing sequence of σ-algebras, we call such sequence *filtration*. In the coin-tossing interpretation, the event A(1,0,1,1) occurs when the first outcomes are 1,0,1,1. So F_k incorporates the information contained in the first k coin-tosses. As more trials are observed, we get more information.

Union of σ -algebras need not be a σ -algebra (not closed under \cap). So we let $\mathcal{F} = \sigma(\bigcup_{k=1}^{\infty} \mathcal{F}_k)$, which is the σ -algebra generated by all $A(\epsilon_1, \ldots, \epsilon_k)$'s, that is with k and ϵ_j 's freely chosen. Think of \mathcal{F} as complete information gathered after infinitely many trials.

This \mathcal{F} is rich enough to state the 'strong laws' of probability theory. For example, the event

$$A = \{\omega \in \Omega : \lim_{k \to \infty} (\omega_1 + \dots + \omega_k) / k = 1/2\}$$

is in \mathcal{F} , but does not belong to \mathcal{F}_k for any k. Indeed, we can only compute the long-run frequency of heads as infinitely many coin tosses have been observed. If p = 1/2 (the coin is fair), then $\mathbb{P}(A) = 1$, but $\mathbb{P}(A) = 0$ for $p \neq 1/2$. Indeed, recall the Law of Large Numbers.

 σ -algebra of Borel sets Define the *Borel* σ -algebra on \mathbb{R} , denoted $\mathcal{B}(\mathbb{R})$, as the σ -algebra generated by the set of semi-open intervals $\{(a, b] : -\infty < a < b \le \infty\}$. Elements of $\mathcal{B}(\mathbb{R})$ are called *Borelmeasurable* or *Borel sets*. Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is a universum of sets sufficient for all practical purposes. There are many other ways to select the set of generators for $\mathcal{B}(\mathbb{R})$: we can take for S all open sets, or all closed sets. A 'spare' collection of generators S for the Borel σ -algebra is the set of half-lines $\{(-\infty, x] : x \in \mathbb{R}\}$. This can be further reduced to the countable collection of half-lines $\{(-\infty, x] : x \in \mathbb{Q}\}$.

Sometimes it is useful to employ conditions on σ -algebras other that the defining axioms (i),(ii),(iii). Next are two commonly used characterisations.

Proposition 1.2. (The monotone class characterisation.) If algebra \mathcal{A} satisfies the conditions: for $A_n \in \mathcal{A}, n \geq 1$,

$$A_1 \subset A_2 \subset \dots \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A},$$
$$A_1 \supset A_2 \supset \dots \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{A},$$

then A is a σ -algebra.

Proposition 1.3. (Dynkin's $\pi - \lambda$ -system.) A system S of subsets in Ω is a σ -algebra if it satisfies

$$\pi$$
-system condition $A_1, \ldots, A_n \in \mathcal{S} \Rightarrow \bigcap_{k=1}^n A_k \in \mathcal{S}$

and

$$\lambda - \text{system conditions} \qquad \begin{cases} \Omega \in \mathcal{S}, \\ A, B \in \mathcal{S}, A \subset B \Rightarrow B \setminus A \in \mathcal{S}, \\ A_n \in \mathcal{S}, n \ge 1; A_1 \subset A_2 \subset \dots \Rightarrow \cup_{n=1}^{\infty} A_n \in \mathcal{S}. \end{cases}$$

A pair (Ω, \mathcal{F}) , which is set Ω endowed with a σ -algebra \mathcal{F} , is called *a measurable space*.

Definition 1.4. Let (Ω, \mathcal{F}) be a measurable space. A measure on Ω is a nonnegative function

$$\mu: \mathcal{F} \to [0,\infty]$$

such that $\mu(\emptyset) = 0$ and the σ -additivity property holds:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i),\tag{1}$$

for disjoint sets $A_i \in \mathcal{F}, i \in \mathbb{N}$. The triple $(\Omega, \mathcal{F}, \mu)$ is referred to as a measure space.

By the definition $\mu(A)$ is nonnegative, and the value ∞ is allowed. If $\mu(\Omega) < \infty$ we say that μ is a finite measure. If $\mu(\Omega) = 1$ we call μ probability measure, and often use notation \mathbb{P} . In the probability context we call measurable sets $A \in \mathcal{F}$ events, to which probability $\mathbb{P}(A)$ is assigned.

Example For fixed $x \in \Omega$, suppose $\{x\} \in \mathcal{F}$ (the one-point set is measurable). *Dirac measure* at x is

$$\delta_x(A) = \begin{cases} 1, \text{if } x \in A, \\ 0, \text{if } x \notin A. \end{cases}$$

Example Choose x_1, x_2, \ldots from Ω and let y_1, y_2, \ldots be positive numbers. A *discrete* measure is defined as

$$\mu(A) = \sum_{i=1}^{\infty} y_i \delta_{x_i}(A), \quad A \in \mathcal{F}.$$

Plainly, mass y_i sits in point x_i , so to compute the measure of set A you calculate the total mass of atoms x_i in this set. If Ω is countable, e.g. $\Omega = \mathbb{N}$ then every measure on $(\Omega, \mathcal{P}(\Omega))$ is discrete. The set of atoms of a discrete measure on \mathbb{R} need not consist of isolated points like \mathbb{N} or \mathbb{Z} , rather may have accumulation points and even be everywhere dense. For instance, enumerate rationals \mathbb{Q} and put mass 2^{-i} on the *i*th point; then every interval contains infinitely many atoms.

The last example points at the following simple fact: for measures μ_1, μ_2, \ldots on (Ω, \mathcal{F}) and nonnegative reals y_1, y_2, \ldots , the linear combination $\sum_{i=1}^{\infty} y_i \mu_i$ is also a measure on (Ω, \mathcal{F}) .

Next we list useful properties of measure implied by (and in fact equivalent to) the σ -additivity. Let $A_i \in \mathcal{F}, i \in \mathbb{N}$.

1. Increasing tower of sets, monotonicity:

$$A_1 \subset A_2 \subset \dots \Rightarrow \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} \mu(A_i)$$

To see this, apply the σ -additivity property to the union of disjoint sets $A_{i+1} \setminus A_i$. Note that $\mu(A_i)$ is nondecreasing in *i* in this case.

2. Decreasing tower of sets, monotonicity:

$$A_1 \supset A_2 \supset \dots \Rightarrow \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{i \to \infty} \mu(A_i).$$

This is obtained from the above increasing case by passing to complements.

3. Subadditivity:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mu(A_i).$$

The measurable sets A_i here need not be disjoint. If the left-hand side finite, the measure of the union can be expressed by the inclusion-exclusion formula.

1.3 Construction of measures by extension

Having introduced the general concept of measure, we wish to return to our principal example. We have the length $\lambda(A)$ defined for intervals $[a, b] \subset \mathbb{R}$ and some other sets of relatively simple nature. Is it possible to have λ well defined for *all* Borel sets, consistently with the definition of intervals? This is the fundamental problem of *measure extension*, which we may treat in the general setting.

Recall that a system of sets $\mathcal{A} \subset \mathcal{P}(\Omega)$ is an algebra if it satisfies conditions (i),(ii) from Definition 1.1, and is closed under finite unions. A function on algebra $\mu_0 : \mathcal{A} \to [0, \infty]$ is called a *pre-measure* if it satisfies (1) whenever $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. The difference between pre-measure and measure is that a pre-measure is defined on algebra, which need not be closed under *countable* unions.

These concepts are best seen on our main example, the set \mathbb{R} . Let S be the set of intervals (a, b], this is a generator of the Borel σ -algebra. Let A be the collection of sets $A \subset \mathbb{R}$ representable as finite unions of disjoint intervals,

$$A = \bigcup_{i=1}^{k} (a_i, b_i],$$

one may check that \mathcal{A} is an algebra. We have the length defined on \mathcal{A} by the formula

$$\lambda(A) = \sum_{i=1}^{k} (b_i - a_i).$$

Note that a countable union of disjoint intervals may belong to \mathcal{A} , for example $(0, 1/2] \cup (1/2, 3/4] \cup (3/4, 7/8] \cup \cdots = (0, 1]$. The length λ (which is a *pre-measure* for a time being, until extended) is σ -additive on \mathcal{A} .

The next is the measure extension theorem due to Carathéodory.

Theorem 1.5. Suppose μ_0 is a pre-measure on (Ω, \mathcal{A}) , where \mathcal{A} is an algebra. Then there is a measure on $(\Omega, \sigma(\mathcal{A}))$ such that

$$\mu(A) = \mu_0(A) \quad \text{for } A \in \mathcal{A}.$$

Moreover, this measure μ is unique if there exists a sequence of sets $B_1 \subset B_2 \ldots$ such that $\bigcup_{i=1}^{\infty} B_j = \Omega$, $B_j \in \mathcal{A}$ and $\mu_0(B_j) < \infty$ for all $j \in \mathbb{N}$.

If $\bigcup_{j=1}^{\infty} B_j = \Omega$, for some $B_j \in \mathcal{F}, j \in \mathbb{N}$, such that $\mu(B_j) < \infty$ for all $j \in \mathbb{N}$, we call measure μ σ -finite. Carathéodory's Theorem entails that a σ -finite measure on (Ω, \mathcal{F}) is uniquely determined by its values on some algebra of generators.

By Carathéodory's Theorem , the length λ defined initially on intervals has a unique extension to the Borel σ -algebra. The extended measure is called the *Lebesque measure on* $\mathcal{B}(\mathbb{R})$.

Example. Let us look how to define probability as a measure on $\Omega = \{0, 1\}^{\infty}$, to give a rigorous meaning to the notion of 'infinitely many independent Bernoulli trials with success probability p'.

Fix p and for each cylinder set $A(\epsilon_1, \ldots, \epsilon_k)$ let

$$\mathbb{P}(A(\epsilon_1, \dots, \epsilon_k)) = p^t (1-p)^{k-t}, \text{ where } t = \epsilon_1 + \dots + \epsilon_k.$$
(2)

The union $\mathcal{A} = \bigcup_{k=1}^{\infty} \mathcal{F}_k$ is an algebra, and \mathbb{P} is a pre-measure on (Ω, \mathcal{A}) . By Carathéodory's theorem there is a probability measure consistent with (2) and defined on $\mathcal{F} = \sigma(\mathcal{A})$. This probability measure is unique because $\mathbb{P}(\Omega) = 1$ is finite. In particular, it is meaningful to assign probability to the event

$$A = \{\omega \in \Omega : \lim_{k \to \infty} (\omega_1 + \dots + \omega_k) / k = z\}$$

(which is $\mathbb{P}(A) = 1$ if z = p, and $\mathbb{P}(A) = 0$ if $z \neq p$).

Example Take $\Omega = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^{\infty}$ with σ -algebra generated by finite-dimensional cylinder sets, and the probability measure making the coordinates in Ω to independent random variables X_1, X_2, \cdots with uniform distribution on $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Define a random real number by the decimal expansion

$$U = \sum_{n=1}^{\infty} \frac{X_n}{10^n}.$$

The distribution of U is a probability measure on [0, 1], what is this measure? Each interval of the kind $((k-1)10^{-n}, k10^{-n}]$ corresponds to a cylinder set in Ω , so has probability 10^{-n} , which suggests that the distribution of U is uniform (that is Lebesgue measure on [0, 1]). This can be justified by application of Carathéodory's theorem, since the intervals $((k-1)10^{-n}, k10^{-n}]$ comprise an algebra.

Construction of measures on \mathbb{R} via the distribution function. Measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which give finite mass to halflines $(-\infty, x]$ can be defined in terms of generalised distribution functions. Let $F : \mathbb{R} \to (0, \infty)$ be a nondecreasing right-continuous function with left limits and $\lim_{x\to-\infty} F(x) = 0$. We define the measure of halfline $(-\infty, x]$ to be

$$\mu(-\infty, x] = F(x). \tag{3}$$

This is extended to intervals by $\mu(a, b] = F(b) - F(a)$ and is extendible to all Borel sets in a unique way by Carathéodory's theorem. If $\lim_{x\to\infty} F(x) = 1$ the measure μ is a probability measure, and F its cumulative distribution function. This method is very general, and allows one to construct both discrete distributions (e.g. supported by \mathbb{N}) and probability distributions with densities. The

correspondence defined by (3) is invertible, in the sense that for every μ with $\mu(-\infty, x] < \infty, x \in \mathbb{R}$ the function F defined by this formula has the above properties (nondecreasing, etc).

If F has a jump at x, then the corresponding μ has an atom at x of mass $\mu(\{x\}) = F(x) - \lim_{k\to\infty} F(x-1/k)$. If F has a density, in the sense that

$$F(x) = \int_{-\infty}^{x} f(z)dz \tag{4}$$

then the measure of each point $\{x\}$ is zero, in which case we say that the measure is non-atomic (or diffuse). Conversely, if F is continuous then the associated measure is non-atomic, but this does not mean that the measure has a density!

Example Cantor distribution function (see the picture) is an example of a probability measure which is non-atomic, but has no density to represent F as integral (4). Under this measure, the Cantor set has full probability $\mu(C) = 1$ although its Lebesgue measure is $\lambda(C) = 0$; we say that the Cantor distribution is singular.

We have seen that a measure on $\mathcal{B}(\mathbb{R})$ may be discrete, may have a density or may be singular. A measure decomposition theorem says that these exhaust, in a sense, all possibilities. Specifically, if a measure is σ -finite, then the measure can be represented as sum of three component measures: discrete, absolutely continuous (having a density) and a singular measure.

Example Let X_1, X_2, \cdots be i.i.d. with any distribution on $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ different from uniform but giving positive probability to each digit. Define

$$Z = \sum_{n=1}^{\infty} \frac{X_n}{10^n}.$$

The distribution of such random variable is singular. Indeed, if $p \neq 10^{-1}$ is the probability of digit j then the long-run frequency (i.e. proportion among first n as $n \to \infty$) of digit j in Z is p; which is event of zero probability under the uniform distribution.

1.4 Lebesgue measure and Lebesgue measurable sets in \mathbb{R}^k

The Lebesgue measure on the line has natural generalisation to Euclidean spaces \mathbb{R}^k . For a rectangular parallelepiped $A = [a_1, b_1] \times \cdots \times [a_k, b_k]$ its Lebesgue measure is defined as the k-dimensional volume

$$\lambda^{(k)}(A) = \prod_{i=1}^{k} (b_i - a_i).$$

The σ -algebra of Borel sets $\mathcal{B}(\mathbb{R}^k)$ in k dimensions is the σ -algebra generated by open sets in \mathbb{R}^k . Like in \mathbb{R} , there is a more spare systems of generators generalising the half-lines in one dimension

$$\mathcal{S} = \{(-\infty, x_1] \times \cdots \times (-\infty, x_k] : (x_1, \dots, x_k) \in \mathbb{R}^k\}.$$

There is a larger than $\mathcal{B}(\mathbb{R}^k)$ σ -algebra of sets, to which the Lebesgue measure can be extended. If A is a Borel set with $\lambda^{(k)}(A) = 0$ and $B \subset A$ it is reasonable to assign to B measure 0. The σ -algebra generated by $\mathcal{B}(\mathbb{R}^k)$ and such null-subsets B is the σ -algebra of *Lebesgue-measurable* sets. This operation of adding subsets of zero-measure sets is called *completion*, that is the σ -algebra of Lebesgue-measurable sets is complete. We describe the basic steps of the completion.

Definition 1.6. A system of subset S in Ω is a *semiring* if

- (a) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$,
- (b) $A, B \in S \Rightarrow A \setminus B = C_1 \cup \cdots \cup C_n$ for some disjoint $C_i \in S$.

Definition 1.7. Let μ be a pre-measure on semiring S. For $A \subset \Omega$ define *exterior* measure

$$\mu^*(A) := \inf \sum_{n=1}^{\infty} \mu(A_n).$$

where the infinum is taken over all covers (i.e. $\bigcup_{n=1}^{\infty} A_n \supset A$) of A by $A_n \in S$. A set A is said to be *Lebesgue-measurable* if $\mu^*(A \Delta B_n) \rightarrow 0$ for some sequence of sets $B_1, B_2, \ldots \in S$. We denote $L(S, \mu)$ the collection of Lebesgue-measurable sets.

Theorem 1.8. (Lebesgue's theorem.) The family of sets $L(S, \mu)$ is a σ -algebra, and μ^* is a measure on $L(S, \mu)$ extending μ on S.

In our main example $\Omega = \mathbb{R}$, where the finite unions $A = \bigcup_{j=1}^{n} (a_j, b_j]$ of disjoint intervals comprise a semiring S. The Lebesgue measure is thus extendible to the family of Lebesgue-measurable sets $L(S, \lambda)$. If $A \subset \mathcal{B}(\mathbb{R})$ is a null-set, with $\lambda(A) = 0$, then every $B \subset A$ belongs to $L(S, \lambda)$ and has $\lambda(B) = 0$. Let \mathcal{N} denote the family of such sets B that appear as subsets of Borel null-sets. Then $L(S, \lambda) = \sigma(\mathcal{B}(\mathbb{R}), \mathcal{N})$, that is Lebesgue-measurable sets comprise the σ -algebra generated by Borel sets and their null subsets.

It is important to note that $\mathcal{B}(\mathbb{R})$ is defined regardless of any measure, while $L(\mathcal{S}, \mu)$ depends on how the measure μ is chosen.

Using transfinite induction, it can be shown that the cardinality of the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is continuum. On the other hand, by Cantor's theorem from Set Theory, for Cantor set C the cardinality of the power-set $\mathcal{P}(C)$ is bigger than continuum, and each $A \subset C$ is Lebesgue-measurable. It follows that there are more Lebesgue-measurable sets than Borel sets. Hence many Lebesgue-measurable non-Borel sets exist, although they do not admit a constructive description.

1.5 Measurable spaces $(\mathcal{R}^{\infty}, \mathcal{B}(\mathcal{R}^{\infty}))$ and $(\mathcal{R}^{T}, \mathcal{B}(\mathcal{R}^{\infty}))$

The product space \mathbb{R}^{∞} is the space of sequences $(x_1, x_2, \ldots), x_k \in \mathbb{R}$. Let for $B \in \mathcal{B}(\mathbb{R}^n)$

$$C_n(B) = \{(x_1, x_2, \ldots) : (x_1, \ldots, x_n) \in B\},\$$

which is a finite-dimensional cylinder set. Disjoint unions of such cylinder sets (of same or different dimensions) comprise an algebra, as is easy to check. The σ -algebra generated by the cylinder sets is the Borel σ -algebra denoted $\mathcal{B}(\mathbb{R}^{\infty})$. A smaller set of generators is the set of parallelepipeds $B = (a_1, b_1] \times \cdots \times (a_n, b_n]$.

In applications, the measurable space $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$ endowed with some probability measure \mathbb{P} models a sequence of (in general, dependent) outcomes X_1, X_2, \ldots of a series of random experiments. In practice, however, we are given some way to describe the joint distribution P_n of (X_1, \ldots, X_n) for each n. This begs the question if the finite-dimensional distributions $P_n, n \ge 1$, indeed determine a probability measure on the infinite-dimensional space $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$. The key concept here is consistency. A cylinder $C_n(B)$ can be assigned probability $P_n(B)$ in terms of P_n , but also in terms of P_{n+1} as $P_{n+1}(B \times \mathbb{R})$.

Definition 1.9. Let P_n be probability measures on $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}), n \ge 1)$. The measures are said to be *consistent* if for all $n \ge 1, B \in \mathcal{B}(\mathbb{R}^n)$

$$P_{n+1}(B \times \mathbb{R}) = P_n(B).$$

Theorem 1.10. (Kolmogorov's measure extension theorem.) Let P_n be consistent probability measures on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ for n = 1, 2, ... There exists a unique probability measure \mathbb{P} on $(\mathbb{R}^\infty, \mathcal{B}(\mathbb{R}^\infty))$ such that for every n

$$\mathbb{P}(C_n(B)) = P_n(B), \quad B \in \mathcal{B}(\mathbb{R}^n)$$

Thus, for discrete-time random process X_1, X_2, \ldots the probability law of the whole process is uniquely determined by consistent finite-dimensional distributions of $(X_1, \ldots, X_n), n \ge 1$.

The space \mathbb{R}^T is the space of functions (x_t) from the index set T to \mathbb{R} . The Borel σ -algebra $\mathcal{B}(\mathbb{R}^T)$ is generated by cylinder sets of the form

$$C_{t_1,\dots,t_n}(B) = \{(x_t) : (x_{t_1},\dots,x_{t_n}) \in B\}, \quad B \in \mathcal{B}(\mathbb{R}^n), \ n \ge 1,$$

where $\{t_1, \ldots, t_n\} \subset T$ is any collection of distinct t_i 's. In fact, every $A \in \mathcal{B}(\mathbb{R}^T)$ can be represented as 'infinite-dimensional cylinder' of the form

$$A = \{ (x_t) : (x_{t_1}, x_{t_2}, \ldots) \in B \}, \quad B \in \mathcal{B}(\mathbb{R}^\infty)$$

for some t_i 's and B.

To be definite, we may focus on $T = [0, \infty)$ thought of as time span of some random process. Suppose we are given a family $P_{t_1,...,t_n}$ of probability measures on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ for each choice of times $\{t_1, \ldots, t_n\} \subset T$. The family is called *consistent* if for $\{s_1, \ldots, s_k\} \subset \{t_1, \ldots, t_n\}$ and $B \in (\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ it holds that

$$P_{t_1,\dots,t_n}(\{(x_{t_1},\dots,x_{t_n}):(x_{s_1},\dots,x_{s_k})\in B\})=P_{s_1,\dots,s_k}(B).$$

Another Kolmogorov's theorem, generalising Theorem 1.10, states that for consistent family of probability measures $P_{t_1,...,t_n}$ there exists a unique probability measure \mathbb{P} on $(\mathcal{R}^T, \mathcal{B}(\mathcal{R}^\infty))$ such that

$$\mathbb{P}(C_{t_1,\dots,t_n}(B)) = P_{t_1,\dots,t_n}(B), \quad B \in (\mathcal{R}^n, \mathcal{B}(\mathcal{R}^n)).$$

The latter is sometimes called 'theorem about existence of the process': consistent finite-dimensional distributions uniquely determine the probability law of the process as a whole.

Exercises

- 1. For $A \subset \Omega$ proper subset, describe $\sigma(\{A\})$.
- 2. Let $\Omega = [0, 1]$. Describe the σ -algebra generated by $\{[0, 1/4), (3/4, 1]\}$ by listing all its elements.
- 3. Show that the increasing monotonicity property is equivalent to σ -additivity.
- 4. Let \mathcal{A} be the family of sets $A \in \mathcal{B}(\mathbb{R})$ with the property that there exists a limit

$$\mu(A) = \lim_{n \to \infty} n^{-1} \lambda(A \cap [0, n]).$$

Show that \mathcal{A} is an algebra. Is $\mu \sigma$ -additive on \mathcal{A} ?

5. Consider the space of functions $x: T \to \mathbb{R}$ on some set T. Show that the sets of the form

$$A = \{ x : (x(t_1), \dots, x(t_k)) \in D \}$$

for some $k, t_1 < \cdots < t_k$ and $D \in \mathcal{B}(\mathbb{R}^k)$ comprise an algebra.

- 6. Let Ω = [0, 1], and for any rational interval I = (a, b) ∩ Q, (a, b] ∩ Q, [a, b) ∩ Q, [a, b] ∩ Q with a, b ∈ Q let µ(I) = b − a. Consider algebra A consisting of finite disjoint unions of such intervals. Show that µ as a function on A is finitely additive, but not σ-additive.
- 7. For $A \subset \mathbb{R}$ define $x + A := \{x + a, a \in A\}$. Prove translation invariance of the Lebesgue measure: $\lambda(x + A) = \lambda(A), A \in \mathcal{B}(\mathbb{R})$. Extend the property to Lebesgue-measurable sets A.
- 8. Explain why the distribution function of a random variable is right-continuous with left limits.
- 9. Show that every probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ admits a representation $\mu + \nu$, where μ is a discrete measure and ν is a diffuse measure (with $\nu(\{x\}) = 0$ for $x \in \mathbb{R}$).
- 10. Let $\mu = \sum_{j=1}^{\infty} 2^{-j} \delta_j$. Is it a probability measure? Sketch the graph of its cumulative distribution function.
- 11. Let $\Omega = \{0, 1\}^{\infty}$. Using set-teoretic operations $\cup, \cap, {}^c$ express the event

$$A = \{\omega \in \Omega : \lim_{k \to \infty} (\omega_1 + \dots + \omega_k)/k = z\}$$

in terms of events $A(\epsilon_1, \ldots, \epsilon_k)$.

- 12. (First half of the Borel-Cantelli lemma) Let $A_j, j \in \mathbb{N}$, be events in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\sum_{j=1}^{\infty} \mathbb{P}(A_j) < \infty$. Prove that $\mathbb{P}(\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} A_j) = 0$.
- 13. Consider $S := \{\{x\} : x \in \mathbb{R}\}$. Show that for $A \in \sigma(S)$, either A is countable (i.e. either finite or countably infinite) or A^c is countable. Now let $\mu(x) = 1$ for every $x \in \mathbb{R}$. What are possible values of $\mu(A)$? When $\mu(A) = \infty$?
- 14. For Borel sets $A, B \in \mathcal{B}(\mathbb{R})$ let $d(A, B) = \lambda(A\Delta B)$. Show that d(A, B) is a metric on $\mathcal{B}(\mathbb{R})$ (in particular, satisfies the triangle inequality).

Literature

- 1. S. Resnick, A probability path, Springer 2003.
- 2. R. Schilling, Measures, integrals and martingales, CUP 2005.