

Radiation Detectors (SPA 6309)

Lecture 21

Peter Hobson

Last revised 7 April 2020

What is this lecture about?

Tracking in CMS

- Motivation
- Design of the CMS tracker
- Performance

CMS Tracking Detector case study

This lecture is based on a lecture generously provided by Prof G Hall of Imperial College, London

CMS = Compact Muon Solenoid detector

	рр	Pb-Pb
Luminosity	$10^{34} \text{ cm}^{-2}.\text{s}^{-1}$	$10^{27} \text{ cm}^{-2} \text{ s}^{-1}$
Annual integrated L	$5 \times 10^{40} \text{ cm}^{-2}$?
CM energy	14 TeV	5.5 TeV/ N
$\sigma_{_{inelastic}}$	~70mb	~6.5 b
interactions/bunch	~20	0.001
tracks/unit rapidity	~140	3000-8000
beam diameter	20µm	20µm
bunch length	75mm	75mm
beam crossing rate	40MHz	8MHz
Level 1 trigger delay	- 3.2µsec	- 3.2µsec
L1 (average) trigger rate	Š100kHz	< 8kHz

Consequences

High speed signal processing Signal pile-up

High (low) radiation exposure High (low) B field operation

Very large data volumes

New technologies

Design philosophy

- Large solenoidal (4T) magnet
 iron yoke returns B field, absorbs particles
 technically challenging but
 smaller detector, p resolution, trigger, cost
- Muon detection
 - high p_{T} lepton signatures for new physics
- Electromagnetic calorimeter high (ΔE) resolution, for $H \Rightarrow \gamma\gamma$ (low mass mode)
- Tracking system
 momentum measurements of charged particles
 pattern recognition & efficiency
 complex, multi-particle events
 complement muon & ECAL measurements
 improved p measurement (high p)
 E/p for e/γ identification

require $m(l^+l^-) = m_Z \quad \Gamma_Z \sim 2.5 GeV$

precise vertex measurement identify b decays, or reduce fraction in data

Physics requirements (II)

p resolution

$$\frac{\sigma(p_T)}{p_T} \sim p_T \frac{\sigma_{meas}}{B.L^2 \sqrt{N_{pts}}}$$

large B and L

- high precision space points
 detector with small intrinsic σ_{meas}
- well separated particles
 good time resolution
 low occupancy => many channels
 good pattern recognition
- minimise multiple scattering
- minimal bremsstrahlung, photon conversions material in tracker most precise points close to beam

Silicon diodes as position detectors

Interactions in CMS

7 TeV p

Microstrip tracker system

~10M

Main components and their X0 and λ as a function of "angle"

Table 1. A summary of the principal characteristics of the various tracker subsystems. The number of disks corresponds to that in a single endcap. The location specifies the region in r(z) occupied by each barrel (endcap) subsystem.

Tracker subsystem	Layers	Pitch	Location
Pixel tracker barrel	3 cylindrical	$100 \times 150 \mu \mathrm{m}^2$	$4.4 < r < 10.2 \mathrm{cm}$
Strip tracker inner barrel (TIB)	4 cylindrical	$80-120\mu m$	$20 < r < 55 \mathrm{cm}$
Strip tracker outer barrel (TOB)	6 cylindrical	122–183 µm	$55 < r < 116 \mathrm{cm}$
Pixel tracker endcap	2 disks	$100 \times 150 \mu \text{m}^2$	$34.5 < z < 46.5 \mathrm{cm}$
Strip tracker inner disks (TID)	3 disks	100–141 µm	$58 < z < 124 \mathrm{cm}$
Strip tracker endcap (TEC)	9 disks	97–184µm	$124 < z < 282 \mathrm{cm}$

Event in the tracker

Silicon detector modules

 Constraints on tracker minimal material high spatial precision sensitive detectors requiring low noise readout power dissipation ~50kW in 4T magnetic field radiation hard Budget

Requirements

 large number of channels
 limited energy resolution
 limited dynamic range

Radiation environment

Particle fluxes

Charged and neutral particles from interactions ~ 1/r² Neutrons from calorimeter nuclear backsplash + thermalisation ≈ more uniform gas only E > 100keV damaging

Trackr readout electronics (APV and FED developed by Imperial College London)

APV25 0.25µm CMOS

Chip Size 7.1 x 8.1 mm

Final

The CMS Tracking Strategy

 Rely on "few" measurement layers, each able to provide robust (clean) and precise coordinate determination

2-3 Silicon Pixel10 - 14 Silicon Strip Layers

Number of hits by tracks: Total number of hits Double-side hits Double-side hits in thin detectors Double-side hits in thick detectors

P Hobson

October 2002

Vertex Reconstruction

Primary vertices: use pixels!

Simple algorithm using pixel detector

- 1. Match hit pairs from 1^{st} two layers (barrel & endcaps) in R- φ and z-R \cdot constraints from minimal p_T , maximal d_0
- 2. Valid pairs are matched with hit in 3^{rd} layer \rightarrow track candidates
- 3. Establish primary vertex candidates where \geq 3 tracks cross the z-axis
- 4. Identify most likely "signal" vertex from Σp_T and number of tracks
- 5. Erase tracks not pointing to signal vertex

At high luminosity, the trigger primary vertex is found in >95% of the events

How does it perform at the LHC?

CERN-PH-EP/2010-019 2010/07/14

CMS-TRK-10-001

CMS Tracking Performance Results from Early LHC Operation

The CMS Collaboration*

Figure 4: The normalized cluster charge measured in the (a) barrel and (b) endcap pixel detectors for the sample of 0.9 TeV minimum bias events. The insets show the same distributions on semi-log scales.

How does it perform at the LHC?

Figure 5: (a) The pixel local coordinate system and track angle definitions. The local *z* axis coincides with the sensor electric field \vec{E} . The local *x* axis is chosen to be parallel to $\vec{E} \times \vec{B}$ where \vec{B} is the axial magnetic field. The local *y* axis is defined to make a right-handed coordinate system. The angle α is the angle between the *x* axis and the track projection on the local *xz* plane. (b) The transverse cluster displacement of highly inclined barrel clusters as a function of depth for a sample of 0.9 TeV minimum bias events at a magnetic field of 3.8 T. The tangent of the Lorentz angle is given by the slope of a linear fit which is shown as the solid line.

How does it perform at the LHC?

Figure 7: Signal-to-Noise distributions in deconvolution mode for (a) (thin sensor) TIB and (b) (thick sensor) TOB modules. The curves are results of the fits to a Landau distribution convoluted with a Gaussian distribution.

Published results

"Description and performance of track and primary-vertex reconstruction with the CMS tracker", *JINST* **9** (2014) P10009

2020

Efficiency for muons from Z boson decay

dE/dx

• Using dE/dx data to fit the KK invariant mass distribution to detect the $\phi(1020)$.

Photon conversions in the pixel layers

Reconstructed photon conversions (photon "radiography")

Finding the cooling pipes!

Figure 2: Resolution of the transverse impact parameter depending on the azimuthal angle ϕ for two different track p_t ranges. The "oscillating" structure is due to the cooling pipes of the inner layer of the pixel detector.

Secondary vertex b-tagging

PV = primary vertex, SV = secondary vertex

IP = impact parameter

Jet = correlated collection of hadrons coming from an unseen primary quark or gluon

"Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV", JINST 13 (2018) P05011

Leakage Currents in Strips

