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What is this lecture about?

= Tracking
= Basic principles
* Momentum resolution
* Impact parameter resolution
= Examples
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Key points from previous lecture

 Homogeneous and sampling calorimeter key differences
« Crystalline scintillator for homogeneous EM calorimeters
« Many sensor options for sampling calorimeters (EM and hadronic)

 Significant variation of radiation length with material Z, smaller differences for hadronic
interaction length A.

« Challenge in hadron calorimeters of ° — yy generating EM showers which interact
differently from the hadronic component (e/tr ratio varies with incident hadron energy)
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Particle ID (idealised)

Tracking Electromagnetic Hadron Muon
chamber calorimeter calorimeter chamber

Innermost Layer... P ...Outermost Layer
Beams collide at centre L
Minimum ~7 A here
of a GPD detector such X here ~20 X, and Muons with
as ATLAS or CM5 ° ~ 2 Ahere E>~3GeV
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Tracking goals

1. Reconstruct charged-particle trajectories (tracks)
join points to form a track (pattern recognition)
measure direction and position

- measure momentum and charge (with magnetic field)

- Two major configurations:
e inner spectrometers
 muon systems

2. Reconstruct decay and interaction vertices

“primary” vertex: collision point where most particle are
produced

“secondary” vertices:

« decay of unstable particles
e interaction with detector material

- evaluate compatibility of tracks with primary vertex
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Bending in a magnetic field

. . Lorentz force: is the force
q<0 F=qix B on a point charge due to
electromagnetic fields

V /‘\B 7—;1-1;2 ... for a particle in motion
(_513—" q=0 O > — = Q’UB perpendicular to a
T constant B field
Ve ' p
>0 R = pe = pc R=—
R 7 eBc” eB

Using units such that the radius, R, is in
metres, the magnetic field, B, is in Tesla and
the momentum p is in GeV

p=0299792458RB == |p =03RB]
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Path in a uniform field

The helix can be described in a parametric form

x(s) = xO+R{cos((l)0+hSCOSA)—cos(I)O}
y(s) = y0+R[sin((I)0+hSCOSA)—Sin(I)O]

Z2(s) = zp+ssinA
A is the dip-angle

h=+1 is the sense
of rotation of the helix
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Tracking in a fixed target experiment

————— 1 . : .
P I i = It is therefore possible to determine
Beam i N0 1880 S o .
== S ol w2 the momentum of a particle by the
b T R angular deviation after crossing a
T~ magnetic field:
- L -
Tracking Tracking L2 Ln 8 ~ Apf — q f Bdl
\ > pT pT

A spectrometer with a

magnetised region (of length L) A widely used method consists of the Determination

measurements of the bending of the ©f Gv/P:

track direction after crossing a =L Ty = Oz
magnetic field. h h
track
measurements —_— O-p T 0. p
A particle moving across a region witl — = - T
L . P 0 h eBL
x  a constant magnetic field will get a

5 ‘L pulse of
— Dl — Ap, =~ pL/R =qBL
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M ag N etS Solenoid Toroid

at L E F) + Large homogeneous field inside + Field always perpendicular to p

- Weak opposite field in return yoke + Rel. large fields over large volume
an d L H C - Size limited by cost + Rel. low material budget

- Relatively large material budget - Non-uniform field

- Complex structural design

B

Examples: Example:
*Delphi: SC, 1.2T,52m,L 7.4 m -ATLAS: Barrel air toroid, SC, ~1 T, 9.4
L3:NC,05T,119m,L119m m L24.3m

‘CMS:SC,4T,59m,L125m
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« A widespread method, if it is possible e In the case the sagitta is measured by
Se N S O rS to insert detectors inside the only three d?tectors:
- - magnetic field, consists of measuring oy
| n S | d e the sagitta of the particle trajectory: SRE 2 (yl ¥ yS)
I 2 1 2 2 1
magnetic O e = 7 5+, 470

fleld

gBI’ Taylor series
= expansion ...

Note that resolution decreases as p
increases, in contrast to the energy
resolution improvement of a
calorimeter

e And the relative\momentum resolution

1S.
OP US @

o
p S 03BI> °

Detectors (X2,¥2) | s =R[1-cos(6/2)]
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* The momentum of the particle is * Orders of magnitude

projected along two directions P, =1 GeV B=92T R—167m
! P P — 7 _ o _
Sen SOrsS I S P P, =10GeV B=2T R=167Tm
|nS|de * The sagitta s
m ag N etl C * In p- ¢ plane we measure the
fl el d transverse momentum P,
¢ A
W P, = Pcos\ = 0.3BR
-
p

*» Assume a track length of 1 m
* In the p - z plane we measure the "gt

dip angle A
p*ng P =1 GeV s=74cm

P, =10GeV s=074 cm

A

E}z

o
% Queen Mary

University of London

Science and Engineering



* Once we have measured the transverse
momentum and the dip angle the total
momentum is

Sensors
Inside

] p_ P _03BR
magnetlc cos \ cos \
fleld

* The error on the momentum is easily

calculated
op _P,
OR R
oP
3—A — —PJ_ t&ﬂ)\
? ?
[%} = [&?R] + (tan AAN)’
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* We need to study

* The error on the radius measured in
the bending plane p - ¢

* The error on the dip angle in the
p - z plane
* We need to study also

* Contribution of multiple scattering to
momentum resolution

» Comment:

* In an hadronic collider the main
emphasis is on transverse momentum

* Elementary processes among partons
that are not at rest in the
laboratory frame

* Use of momentum conservation only
in the transverse plane



Multiple scattering effects

- X e
- xf2 -
14 MeV /e | L e I A A
Tg ~ — —_— * plane .
. , X ~—— Yplane
P 0 Splane ~ - \
* *plane
Op OR 04 A
P R O
as R = £ At small momenta this limits resolution
¢ of momentum measurement ...
momentum
independent

Ip _ 99 _ 14 l\[eV/C L R - 14 h[eV/c\/T P 1
p ¢ p VXo L p LXo ¢B ~ VX,
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* Summarising

: . bp © o _ 1803
* No Multiple Scattering 2 03B VIO | Y = oD s DV (N + 3)

N is the number of sample

. . . op 1 0.0136 [1.3 points (typically 5 to 15)
* With Multiple Scatt — ~
Th Multiple ocatrering p 03B B \X,L

* Please notice
* Same dependence on Magnetic Field B Scale o 1/BL

* No Multiple Scattering
* dp/p improves as L? A

* dp/p worse as p ? Slope o o/L
* With Multiple Scattering A /

* dp/p improves as L for fixed L/X,
* dp/p does not depend on p =

B [
Plateau o \/(L/)ﬁ

e

ptransition ac L/J\/(L/Xﬂ}

g B

—_

DPtransition
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Reconstructing a vertex

In proximity of the interaction region, at first
order, it is possible to neglect the curvature:

- focus on position and direction.

- Example: detection of short-lived particles © LT T —
There is a group of particles with lifetimes of < I >
~1 ps
The flight length L can be measurable: L =ypct

Some typical examples:
- Symmetric B-factory:
Y'(4S) at rest
v=1.002, $=0.06, L~-30 um, -1
- Asymmetric B-factory:
e 9 Gey, e* 3.1 GeVY
v=1.15, $=0.5, L-290 um, p-1

- High energy collisions (LEP,

“b tagging” very important at LHC, ct is 455 um for B? =msss==)  Tevatron, LHC)
v=5-10, p=1, L=2-3 mm, y-0.1
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Impact parameter

It is useful to introduce the impact parameter d,
defined at the distance between the daugther particle

trajectory and the mother particle production point: ) L .
. 1 ‘ EEEEEEEEEEEEEDR I’l T T
d=Lsiny = O(yﬁcr) X O(— = O(C‘L‘) 5

for relativistic particles is approximately independent
of the boost.

An experimental apparatus with decay vertex
capabilities must be able to separate the production
and devay vertices:

« The decay vertex position is
given by the intersection of two

G, /L<1 trajectories:
As a practical examples, let’s consider a relativistic y=tany x+d
situation, where we can approximate:
tany = ¢ = siny V= tanzpzx+d2
and set the x-axis direction along the mother particle
flight direction. I - d d d d
This apparatus reconstructs trajectories tany —tany, zp] Y,
y=tany,x+d;
with measurement uncertainty oy o, \/Egd B O
(o, 1s negligible in most practical cases) I - d —d -
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Impact Parameter resolution

Beam pipe
Multiple scattering has a critical role in
determining the impact parameter
resolution.

Every material layer crossed by the //-"—' L

- - .ﬂ.—.ﬂ
particle before reaching the detector
introduce a random deviations with r.m.s.

0 = 13.6 MeV Z £ 1+0.038Tn— relevant for thin sensors
? pep | Xo X, radiation length
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CMS
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TOB).
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IP performance (2018) Material budget

20 (‘T‘MS Pre.lﬁmmar]r | | 30-31 lMay 201|8 (13 TE‘T'} - CMS simulation
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Simulated transverse momentum (p;) resolution

CMS simulation
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More Information

An excellent set of lecture slides by Francesco Ragusa, with a great deal more technical detail on
track fitting and errors, is available from here:

Also this open access paper: F Ragusa and L Rolandi, “Tracking at the LHC” New J. Phys. 9 (2007) 336
and this paper on pattern recognition: R Mankel, “Pattern Recognition and Event Reconstruction
in Particle Physics Experiments”, arXiv:physics/0402039v1 [physics.data-an] (2004)

The CMS plots are publicly available data: http://cms-results.web.cern.ch/cms-results/public-
results/publications/
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http://www0.mi.infn.it/~ragusa/tracking_sns_28.05.2014.pdf
http://cms-results.web.cern.ch/cms-results/public-results/publications/

