

Science and Engineering

## Radiation Detectors (SPA 6309)

Lecture 19

Peter Hobson

### What is this lecture about?

## Tracking

- Basic principles
- Momentum resolution
- Impact parameter resolution
- Examples

## Key points from previous lecture

- Homogeneous and sampling calorimeter key differences
- Crystalline scintillator for homogeneous EM calorimeters
- Many sensor options for sampling calorimeters (EM and hadronic)
- Significant variation of radiation length with material Z, smaller differences for hadronic interaction length  $\lambda$ .
- Challenge in hadron calorimeters of  $\pi^0 \to \gamma \gamma$  generating EM showers which interact differently from the hadronic component (e/ $\pi$  ratio varies with incident hadron energy)

## Particle ID (idealised)



## **Tracking goals**



#### 1. Reconstruct charged-particle trajectories (tracks)

- join points to form a track (pattern recognition)
- measure direction and position
- measure momentum and charge (with magnetic field)
- Two major configurations:
  - inner spectrometers
  - muon systems

#### 2. Reconstruct decay and interaction vertices

- "primary" vertex: collision point where most particle are produced
- "secondary" vertices:
  - decay of unstable particles
  - interaction with detector material
- evaluate compatibility of tracks with primary vertex

## Bending in a magnetic field



$$\vec{F} = q\vec{v} \times \vec{B}$$

$$\frac{mv^2}{r} = qvB$$

Lorentz force: is the force on a point charge due to electromagnetic fields

... for a particle in motion perpendicular to a constant B field

$$R = \frac{v\varepsilon}{eBc^2} \qquad \beta\varepsilon = pc \qquad R = \frac{p}{eB}$$

Using units such that the radius, R, is in metres, the magnetic field, B, is in Tesla and the momentum p is in GeV

$$p = 0.299792458RB \implies p = 0.3RB$$

### Path in a uniform field

The helix can be described in a parametric form

 $x(s) = x_0 + R \left[ \cos \left( \Phi_0 + \frac{hs \cos \lambda}{R} \right) - \cos \Phi_0 \right]$  $y(s) = y_0 + R \left[ \sin \left( \Phi_0 + \frac{hs \cos \lambda}{R} \right) - \sin \Phi_0 \right]$ 

 $z(s) = z_0 + s \sin \lambda$ 

 $\lambda$  is the dip-angle

h=±1 is the sense of rotation of the helix





## Tracking in a fixed target experiment



A spectrometer with a magnetised region (of length L)





A widely used method consists of the measurements of the bending of the track direction after crossing a magnetic field.

A particle moving across a region with a constant magnetic field will get a pulse of

$$\Delta p_T \approx pL/R = qBL$$

It is therefore possible to determine the momentum of a particle by the angular deviation after crossing a magnetic field:

$$\theta \approx \frac{\Delta p_T}{p_T} = \frac{q \int Bdl}{p_T}$$

Determination of  $\sigma_p/p$ :

$$\vartheta = \frac{x}{h} \qquad \sigma_{\vartheta} = \frac{\sigma_x}{h}$$

$$\frac{\sigma_p}{p} = \frac{\sigma_{\vartheta}}{\vartheta} = \frac{\sigma_x}{h} \cdot \frac{p}{eBL}$$

## Magnets at LEP and LHC

#### Solenoid

- + Large homogeneous field inside
- Weak opposite field in return yoke
- Size limited by cost
- Relatively large material budget



#### Examples:

- •Delphi: SC, 1.2 T, 5.2 m, L 7.4 m
- •L3: NC, 0.5 T, 11.9 m, L 11.9 m
- •CMS: SC, 4 T, 5.9 m, L 12.5 m

#### **Toroid**

- + Field always perpendicular to p
- + Rel. large fields over large volume
- + Rel. low material budget
- Non-uniform field
- Complex structural design



#### Example:

•ATLAS: Barrel air toroid, SC, ~1 T, 9.4

m, L 24.3 m

## Sensors inside magnetic field

A widespread method, if it is possible to insert detectors inside the magnetic field, consists of measuring the sagitta of the particle trajectory:

$$s = R\left(1 - \cos\frac{\theta}{2}\right) \approx R\left(\frac{\theta^2}{8}\right)$$

$$= \frac{qBL^2}{8p}$$
Taylor series expansion ...

Note that resolution *decreases* as p *increases*, in contrast to the energy resolution improvement of a calorimeter

And the relative momentum resolution is:

$$\frac{\sigma_p}{p} = \frac{\sigma_s}{s} = \frac{8p}{0.3BL^2}\sigma_s$$

 In the case the sagitta is measured by only three detectors:

$$s = y_2 - \frac{1}{2}(y_1 + y_3)$$



 The momentum of the particle is projected along two directions

## Sensors inside magnetic field



In  $\rho$  -  $\phi$  plane we measure the transverse momentum  $P_{\parallel}$ 



• In the  $\rho$  - z plane we measure the dip angle  $\lambda$ 



Orders of magnitude

$$P_{\perp} = 1 \;\; {
m GeV} \;\; B = 2 \, {
m T} \;\; R = 1.67 \, {
m m}$$
  
 $P_{\perp} = 10 \; {
m GeV} \;\; B = 2 \, {
m T} \;\; R = 16.7 \, {
m m}$ 

• The sagitta  $oldsymbol{s}$ 



• Assume a track length of 1 m

$$P_{\perp}=1~{
m GeV}~~s=7.4~{
m cm}$$
  $P_{\perp}=10~{
m GeV}~~s=0.74~{
m cm}$ 

# Sensors inside magnetic field

 Once we have measured the transverse momentum and the dip angle the total momentum is

$$P = \frac{P_{\perp}}{\cos \lambda} = \frac{0.3BR}{\cos \lambda}$$

The error on the momentum is easily calculated

$$\frac{\partial P}{\partial R} = \frac{P_{\perp}}{R}$$

$$\frac{\partial P}{\partial \lambda} = -P_{\perp} \tan \lambda$$

$$\left(\frac{\Delta P}{P}\right)^2 = \left(\frac{\Delta R}{R}\right)^2 + (\tan \lambda \Delta \lambda)^2$$

- We need to study
  - The error on the radius measured in the bending plane  $\rho$   $\phi$
  - The error on the dip angle in the ho z plane
- We need to study also
  - Contribution of multiple scattering to momentum resolution
- Comment:
  - In an hadronic collider the main emphasis is on transverse momentum
  - Elementary processes among partons that are not at rest in the laboratory frame
  - Use of momentum conservation only in the transverse plane

Multiple scattering effects

$$\sigma_{\phi} \approx \frac{14 \text{ MeV}/c}{p} \sqrt{\frac{L}{X_0}}$$

$$\frac{\sigma_p}{p} = \frac{\sigma_R}{R} = \frac{\sigma_\phi}{\phi}$$
 as  $R = \frac{L}{\phi}$ 



At small momenta this limits resolution of momentum measurement ...

momentum independent

$$\frac{\sigma_p}{p} = \frac{\sigma_\phi}{\phi} = \frac{14 \text{ MeV}/c}{p} \sqrt{\frac{L}{X_0}} \cdot \frac{R}{L} = \frac{14 \text{ MeV}/c}{p} \sqrt{\frac{1}{LX_0}} \cdot \frac{p}{eB} \sim \frac{1}{\sqrt{LX_0}B}$$

- Summarising
  - No Multiple Scattering
  - With Multiple Scattering
- Please notice
  - $\bullet$  Same dependence on Magnetic Field B
  - No Multiple Scattering
    - $\delta p/p$  improves as  $L^2$
    - $\delta p/p$  worse as p
  - With Multiple Scattering
    - $\delta p/p$  improves as L for fixed  $L/X_0$
    - $\delta p/p$  does not depend on p



 $C_N = \frac{180N^3}{(N-1)(N+1)(N+2)(N+3)}$ 

N is the number of sample points (typically 5 to 15)



## Reconstructing a vertex

In proximity of the interaction region, at first order, it is possible to neglect the curvature:

- focus on position and direction.
- Example: detection of short-lived particles

There is a group of particles with lifetimes of ~1 ps

The flight length L can be measurable:  $L = \gamma \beta ct$ 

Σome typical examples:

- Symmetric B-factory:  $\Upsilon(4S)$  at rest  $\gamma$ =1.002,  $\beta$ =0.06, L~30  $\mu$ m,  $\psi$ ~1
- Asymmetric B-factory:  $e^{-}$  9 GeV,  $e^{+}$  3.1 GeV  $\gamma$ =1.15,  $\beta$ =0.5, L~290  $\mu$ m,  $\psi$ ~1
- High energy collisions (LEP, Tevatron, LHC)  $\gamma$ =5-10,  $\beta$ =1, L=2-3 mm,  $\psi$ ~0.1



<sup>&</sup>quot;b tagging" very important at LHC,  $c\tau$  is 455  $\mu m$  for  $B^0$ 

## Impact parameter

It is useful to introduce the **impact parameter** d, defined at the distance between the daugther particle trajectory and the mother particle production point:

$$d = L\sin\psi = O(\gamma\beta c\tau) \times O\left(\frac{1}{\gamma}\right) = O(c\tau)$$

for relativistic particles is approximately independent of the boost.

An experimental apparatus with decay vertex capabilities must be able to separate the production and devay vertices:

As a practical examples, let's consider a relativistic situation, where we can approximate:

$$tan\psi \approx \psi \approx sin\psi$$

and set the x-axis direction along the mother particle flight direction.

This apparatus reconstructs trajectories

$$y=tan\psi_i x+d_i$$

with measurement uncertainty  $\sigma_d$  ( $\sigma_{\psi}$  is negligible in most practical cases)



 The decay vertex position is given by the intersection of two trajectories:

$$\begin{cases} y = \tan \psi_1 x + d_1 \\ y = \tan \psi_2 x + d_2 \end{cases}$$

$$L = \frac{d_2 - d_1}{\tan \psi_1 - \tan \psi_2} \approx \frac{d_2 - d_1}{\psi_1 - \psi_2}$$

$$\frac{\sigma_L}{L} = \frac{\sqrt{2}\sigma_d}{d_2 - d_1} = O\left(\frac{\sigma_d}{d}\right) = O\left(\frac{\sigma_d}{c\tau}\right)$$

## **Impact Parameter resolution**

Multiple scattering has a critical role in determining the impact parameter resolution.

Every material layer crossed by the particle before reaching the detector introduce a random deviations with r.m.s.

$$\theta_p = \frac{13.6 \,\text{MeV}}{\beta cp} z \sqrt{\frac{X}{X_0}} \left( 1 + 0.038 \overline{\ln \frac{X}{X_0}} \right)$$



## **CMS**





Silicon strip detectors in the "barrel" module (TIB and TOB).

## IP performance (2018)



## **Material budget**



## Simulated transverse momentum (p<sub>T</sub>) resolution



### **More information**

An excellent set of lecture slides by Francesco Ragusa, with a great deal more technical detail on track fitting and errors, is available from here:

http://www0.mi.infn.it/~ragusa/tracking sns 28.05.2014.pdf

Also this open access paper: F Ragusa and L Rolandi, "Tracking at the LHC" New J. Phys. 9 (2007) 336 and this paper on pattern recognition: R Mankel, "Pattern Recognition and Event Reconstruction in Particle Physics Experiments", arXiv:physics/0402039v1 [physics.data-an] (2004)

The CMS plots are publicly available data: <a href="http://cms-results.web.cern.ch/cms-results/public-results/publications/">http://cms-results.web.cern.ch/cms-results/public-results/publications/</a>