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What is this lecture about?

= Scintillators

= Basic principles
* Important materials in current use
» Light detection

* Low energy applications (gamma spectroscopy,
medicine)

= High energy applications (calorimeters, Time-of-flight)
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Key points from previous lecture

« The photomultiplier is a vacuum photodetector which uses the external photoelectric
effect (photocathode) and then secondary electron emission (dynodes) to provide a
large area, fast, high gain sensor with low capacitance.

« Photosensitive areas up to several hundred cm? are available.

« Gains in excess of 10° obtainable.

* Low dark counts and limited sensitivity to temperature.

« Low QE compared to silicon devices, poor response in the red and near-IR regions.
« Bulky and somewhat fragile (especially large tubes), sensitive to helium ingress.

* Very few manufacturers available.
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Non-linear response

Real scintillators show non-linearity of
response as a function of gamma-ray
energy.

This can be (must be) calibrated out in
terms of the energy scale effect but it will
generate non ideal resolution effects.
Note that the sign of the non linearity
(relative to normalisation at a few MeV)
depends on the material of the scintillator
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FIGURE 1.13 Scintillation response curves for BGO (1) and CsL'TI (2) crystals.
(From Averkiev, V. V. et al., Pribory Tekh. Eksp., 4, 80, 1990.)
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Gamma ray Interactions

Remember that gamma rays interact via

1. photoelectric effect
2. Compton scattering (inelastic scattering)
3. pair production (threshold at 1.02 MeV photon energy)

This means that the response of a finite sized scintillator to a monochromatic source of
“low energy” photons ( less than about 10 MeV) will be complex.

1. Photoelectric absorption: Primary photon is absorbed and a secondary electron
with energy equal to the primary photon energy minus the binding energy of the electron.

We thus expect a single peak in the response of the scintillator (neglecting any
escape X-rays).
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Gamma ray Interactions

2. Compton effect: Inelastic scattering
producing a free electron and a photon of lower
energy than the original.

We thus expect a distribution in electron
energies in the scintillator up to a kinematic
limit.

Note that as the photon energy becomes much
greater than the electron rest mass, the

“Compton edge” approaches the incident photon
energy.

This diagram assumes the electron that takes
part in the interaction is free, binding energy
effects can be significant.
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Gamma ray Interactions

3. Pair production: When the photon energy is greater than twice the electron
rest mass an electron/positron pair can be produced. Above about 10 MeV (most
materials) this is the dominant process. In most scintillators the e+ or e- will travel
only a few mm.

We thus expect a single peak in the spectrum of charged particle energy
located at 2m,c? below the photon energy.

Note that the positron will annihilate with an electron in the scintillator to produce
two 511 keV energy photons. One or both of these can escape from a small
scintillator adding to the complexity of the spectrum.
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Small detectors
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Large detectors

Photoelectric abs.

It isn’t going to be quite as good as
this, some backscatter out of the
detector where the radiation enters
IS likely.

Compton
scattering

daN Full-energy
dE peak
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Intermediate detectors
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Gamma ray spectroscopy
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Gamma ray spectroscopy

Generally statistical T T i e s RS,
broadening of the | | 8GO ;
. = 10% |- | . | . ; ]
photopeak dominates  -14p . I _f /BaF2 1so |
. \ = p : 1
energy resolution R. LY g ol Af /t:ggc;w& i i e
= H :Ce 1
1.6 N 203 7] & / ’ K,LaCl.:Ce ]
N il VL . W LA B | Cal,.Eu ]
\(\ e o .A-/Csm " NalTI o .U -
\/E -1.81 \\ = '-_% - I 4/YA|031C9 ./ RbGd,Br;:Ce ]
R =K— : \\\ 22Ng g I / ‘ .‘LaCI3:Ce.( LaBr,:Ce ]
E 20 t(\ 95N b = g 29 | ; _—
o/ w Theoretical limit ]
1 7 )k i . (counting statistics)
lnR:an_ /ZlnE ISCS \\ e 0%-...1...1...1...i...i...j...
. 60, 3 ) ) ’ [ » '
~ 2.2 /3\ - 0 2,000 4,000 6000 8000 10,000 12,000 14,000
54 Mn \\J Luminosity (photoelectrons/662 keV)
24} 85 2n /o;a;om .
. 22Na N 88y
Not quite as steep 5
as prediCted by _2'51.5 -1J.0 —ol.s o.lo 0?5 1.10 x1.5
simple assumption In (E/moc)

of just Poisson
statistical effect

o
%Y Queen Mary

University of London
Science and Engineering




Low Z scintillators, e.g. plastic

Th-232 spectrum using PVT
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Positron Emission Tomography

Text

Photons collected along a "tube"
or line of response (LOR)
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Fig. 1. General principle of PET imaging: decay of radionuclide, positron () emission,
multiple scatter in tissue, annihilation with electron, and production of two back-to-back
511 keV annihilation photons. (Not to scale.)

Fig. 4a. Coincidence processing in PET data acquisition.

Active scanner surface

Fig.3. PET scanner schematic with a possible line-of-response.
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Scintillators for PET

Table 1. Scintillators used in PET Scanners.

Need bright scintillators Material  Cost Light [E)rrecgt:? Light Decay  comments

(detecting 511 keV utput’  Densi ime

photons) and fast Nal(T) ~ Sheap highest  lowest jong Hygroscopic
(relatively) Mo longer used

scintillators (time-of-flight).

Does not support

BGO expensive lowest  highest long TOF PET
LSO more - : Some patent
(or LYSO) expensive high high very short disputes
more very somewhat
GSO expensive high lower than LSO very short No longer used

! determines energy and spatial resolution

% determines scanner sensitivity

* determines scanner deadtime and random coincidences rate as well as ability to be
used with time-of-flight (TOF) PET imaging

Abbreviations: BGO = bismuth germinate, Nal(Tl) = thalium-doped sodium iodide, LS50 =
lutetium oxyorthosilicate, LYSO = lutetium yttrium orthosilicate, GSO = gadolinium
orthosilicate
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Time-of-flight PET

With bright and fast scintillators can measure the difference in arrival times and

determine, with some error, the interaction position in depth for every event. This leads to
Improved contrast, fewer artefacts. If you would like to know more, | recommend J Nucl
Med. 56 (2015) 98-105. doi:10.2967/jnumed.114.145029

Non-TOF and TOF images for a 35 cm diameter cylindrical lesion

phantom for scan times of (left to right) 5, 3, 2, and 1 minutes.
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