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Scintillators
 Basic principles

 Important materials in current use

 Light detection

 Low energy applications (spectroscopy, medicine)

 High energy applications (calorimeters, Time-of-flight)

What is this lecture about?



• Scintillators are materials that produce light when ionising radiation interacts with 
them.

• Inorganic scintillators are primarily crystalline (there are glasses too).

• Organic scintillators are mainly plastic based.

• Noble gasses in liquid form are an important class of scintillator (UV emission) 
combined with a much slower ionisation signal (see self-triggered TPC).

• Some scintillators are very fast (BaF2 and most plastics) but some important materials 
(e.g. NaI(Tl)) have relatively long decay times.

• Inorganic scintillators can have high mean Z and high (> 7 gcm-3) densities – important 
for electromagnetic calorimeters in colliding beam experiments.

Key points from previous lecture



Photonics in Particle Physics

• “The technology of generating and harnessing light 
and other forms of radiant energy whose quantum 
unit is the photon” (from Photonics Spectra 
magazine)

• In our context it is
• The detection of light generated by some process 

related to the measurement of some property of 
particles (e.g. Energy or velocity).

• The transmission and reception of analogue & digital 
information connected with the electrical signals from  
particle detectors.



What systems are used in HEP?

• Calorimeters (which measure energy and position)

• Scintillation light

• Cherenkov light 

• Time-of-flight
• Fast scintillators used to determine the speed of a 

particle

• Readout of electronics in large hermetic detectors.

• Fibre backbone for Local and Wide Area Networks 
(I will not cover this aspect)



The human eye (historic!)

• Detection of  particles (He nuclei)
• Historic experiments of Geiger & Marsden (1909) using ZnS(Ag) 

scintillator screens

• Visual detection of scintillation light

• Rate limited to about 60 s-1

• Each detected flash contained around 300 photons entering the 
observer’s eye

• Last important visual experiment was the disintegration of 
Li neuclei by protons (Cockcroft & Walton (1932)
• Used a human coincidence counter technique



Solid state photodetectors

• These use the internal 
photoelectric effect

• A photon with energy larger 
than the bandgap of the 
material generates an 
electron-hole pair (eh-pair) 
with some probability < 100%

• The eh-pair is separated by 
an internal field (e.g. a 
junction inside a diode)



Absorption of Light
• In ideal (non scattering) materials the absorption of light is governed by 

the Beer-Lambert law. This relates transmittance, T, to absorbance, A,
and optical depth , by the fundamental relationship

𝑇 = 𝑒−𝜏 = 10−𝐴

If the attenuation coefficient  is given and the physical depth l, then

𝑇 = 𝑒−𝜇𝑙

For some actual values for real semiconductors see this site: 
http://www.ioffe.ru/SVA/NSM/Semicond/

http://www.ioffe.ru/SVA/NSM/Semicond/


Silicon photodiodes
• Silicon is the primary material since in general we are detecting fast scintillation or 

Cherenkov light (near UV to visible)

• Silicon diode technology is well advanced and the quantum efficiency (QE) is high 
(around 80% peak)

• Silicon devices are tolerant to quite high radiation levels, although there are problems 
with hadrons.

• Silicon photodiodes are linear over many orders of magnitude.

• An important manufacturer is Hamamatsu, you can see their current range of 
photodiodes here: 
https://www.hamamatsu.com/resources/pdf/ssd/si_pd_kspd0001e.pdf

https://www.hamamatsu.com/resources/pdf/ssd/si_pd_kspd0001e.pdf


Ideal behaviour
Photocurrent is proportional to the optical (signal) power

How large is the responsivity R (in A/W) and how does it vary 

with wavelength for an ideal photodetector?

𝑅 =
𝑞

𝐸𝑝ℎ

In an ideal photodiode with no gain (i.e. pn or pin structure or a Schottky

device) one gets one e/h pair per absorbed photon. This has the largest 

value when the photon energy is the smallest allowed, i.e. just above the 

band gap. Numerically, for wavelengths in nm and band-gaps in eV

𝑅 =
1

𝐸𝑔 𝑒𝑉
≈
 𝑛𝑚

1240



A commercial large area (10×10 mm2)PIN diode

Note 8 to 10 decades of
linear response

Data from Hamamatsu Photonics



Avalanche Photodiode (APD) – a diode 
with gain

• A junction photodetector with internal gain

• Uses impact ionisation that occurs at very high internal electric 
fields.

• The avalanche process is an additional source of noise (excess 
noise factor F)

• Use the majority carrier to minimise the excess noise

• Use an n+-p--p+ structure for silicon

• Interesting paper: IEEE TRANSACTIONS ON ELECTRON 
DEVICES, 46 (1999) 1632



Silicon “Reach-through” APD

Silicon RAPD structure, electrons are the carriers multiplied here.

Figure from http://www.tpub.com/neets/tm/111-4.htm



A commercial large area (5×5 mm2)APD

Data from Hamamatsu Photonics



Silicon photomultiplier

Take an APD, increase the reverse bias to get a very high gain (Geiger mode) .
PROBLEM! The first photon detected will generate a huge avalanche in the high field region 
which could be destructive.
SOLUTION: limit current with external quench resistor.

Clever idea: couple together lots of tiny APD (cells) in parallel to make a moderate area 
device (several square millimetres), then can get an quantised output (up to ~ the number 
of cells) which allows photon counting.

Geiger mode also produces a fast signal so get good timing information (Time-of-Flight 
applications fro example).



SiPM

# of photons in 
event



SiPM summary


