‘Q’ Queen Mary

University of London
Science and Engineering

Radiation Detectors (SPA 6309)

Lecture 12
Peter Hobson




What is this lecture about?

= Scintillators
= Basic principles
* Important materials in current use
* Low energy applications (spectroscopy, medicine)
* High energy applications (calorimeters, Time-of-flight)
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Earliest example

* Rutherford’s scattering experiment:

* Discovery of atomic nucleus with

positive charge which holds most of its
mass (1908-1913)

* Experiment:

* Scattering of a particles on thin metal
(gold) foils

* Using microscope to count light flashes
on ZnS scintillating screen

* high efficiency (20%) but low
transparency to its own light
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What materials can we use”?

A wide range of materials are available in principle. However in
practice we need to compromise based on a range of parameters:
e Speed

e Lightyield (photons per MeV)

* Density

* Cost

e Typical volumes available

e Commercially viable

* Radiation tolerance

 Mechanical aspects (e.g. brittleness, thermal shock tolerance, crazing of
plastics)
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Inorganic scintillators

Band structure in inorganic crystals
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If forbidden band >> kT, no electrons in conduction band.

— Insulator

Radiation excites electron from valence into conduction band, forming
an electron-hole pair.

Electrons in conduction band and holes in valence band can move
freely throughout crystal.

For light emission, one must introduce states into the forbidden band,
so that
-Eemr'.s.ﬂ'on < Eg




Mechanisms

Three mechanisms:
a) excitons (bound electron-hole pair)

b) defects
(interstitial atoms, for example induced by heat treatment)

c) activators

Conduction Band

A Exciton Band
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Quenching of luminescence

Luminescence vs Quenchin
Q J If excited electron reaches F (depending on population of states in

minimum B), t ansition

F —- F4

n proceed by phonon emission (lattice vibrations),
I.e. without emission of a photon (quenching)

In some crystals, the proximity region F-F, is very close to the
minimum of the excited state. These crystals are heavily quenched.

ENERGY

X CONFIGURATION CO-0ORDINATE
(from Birks)

Excitation: A —- C (very fast)
thermal equilibration: C —- B (~1II]5 longer)
Photon emission: B - D

thermal equilibration: D — A
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“Luminescence properties of tungstates and molybdates phosphors: Illustration

S e Ct r aI O V e r I a on ALn(MO,), compounds (A = alikaline cation, Ln = lanthanides, M = W, Mo)”
Solid State Sciences 13 (2011) 460-467
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é Fig. 1. Photoluminescence spectra of LiLn(WO,); (Ln = Lu-Red, Y-green). For excitation
% Y spectra, Aemy = 500 nm. For emission spectra, Zexc = 280 nm. The black curve is the zero
7 order photoluminescent excitation of LiLu(WO,),. Inset graph represents the emission

intensity (integrated area) of LiLu(WQy), as a function of the temperature.
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Cross-luminescence ( e.g. BaF,)

The very fast transitions in BaFz; and CsF are due to an intermediate
transition between the valence and core bands.

Conduction band En<Eg fast fluorescence

E,>E, emission of Auger electron
(energy released in the transition from the
valence to the core band does not go into

""“wr‘_'ﬂiﬂf_: S e w‘""-' ol

' L

T photon emission, but into emission of an electron
an ---L ‘li..‘r;'.-

ol

to the conduction band)

Competition between photon emission and Auger effect narrows the
fast fluorescence N~ : )
range of scintillators with fast decays:

If E,, Is low: longer wavelength emission, longer decay time

,Ba5s band o .. e
Cs, Ba 5p core ban If E., is high: Auger emission, no scintillation light
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Important
examples

Scintillator pulse
height is relative to
Nal(Tl) = 100
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Scintillator Density Index of Wavelength Decay time Scinti
composition (g/cm?3) refraction of max.Em. Constant Pulse
(nm) (Ms) height"
Nal(TI) 3.67 1.9 410 0.25 100
Csl 4.51 1.8 310 0.01 6
CsI(TI) 4.51 1.8 565 1.0 45
CaF(Eu) 3.19 14 435 0.9 50
BaF, 488 1.5 1 9;);’%20 Dooggﬁ 155
BGO 7.13 2.2 480 0.30 10
CdWo, 7.90 2.3 540 5.0 40
PbWO, 8.28 2.1 440 0.020 0.1
CeF, 6.16 1.7 ggg gggg 5
GSO 6.71 1.9 430 0.060 40
LSO 7 1.8 420 0.040 75
YAP 5.50 1.9 370 0.030 70
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Lead tungstate (PbWO4) crystals for the CMS
electromagnetic calorimeter © 2001-2020 CERN
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Example signals
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Organic scintillators

* defined by electron configuration of large
carbon molecules: o and m orbitals

1T electron states of benzene
oo

* Organic = carbon atoms
. * .
Benzene™ (C,H,):

* p-orbital contains weakly bound 1-electrons

* fine structure from molecular vibrational

delocalized
electron cloud g
1

and rotational modes

* Scintillation principle:
typical scintillator signal shape Fluore

* Excitation to S, S, S;; levels i
’ i ’ orpuon

* radiation-less drop to S,(~ps)
total signal

* desired O(ns) fluorescence from
S, — S, ~ 3-4 eV,400-300 nm)

* a fraction of molecules can transit transition-
less to meta-stable triplet states and cause
undesired O(ms) phosphorescence.

e R I
—
2

light yield

fast component

L

Singlet ground Singlet excited Triplet excited

slow component state state state

time
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Organic scintillators

A traversing ionizing particle releases energy in the solvent. Then, energy flows
radiationless” to the scintillator. Finally, light emitted by the scintillator is absorbed (radiative
transfer**) and re-emitted at longer wavelength by the secondary fluor.

radiationless Molecular states _ _
_ A fluor has its absorption
singlet states and emission spectra

Ex. energy states S5 10" s shifted. The two peaks
in the solvent difference is called
S, triplet states Stokes shift
non- T
s, radiative 2
\ T *fast and local energy
fluorescence phosphorescence  transfer via non-radiative
‘N’\N\]\r 10% -10% s >10+ s dipole-dipole interactions
M/VVV); (Forster transfer).
s ) **~1/R? light attenuation

R is the distance between donor and acceptor
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Increase efficiency
using a
wavelength shifter
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Important liquid scintillators:

»  p-Terphenyl (CgH,,), POPOP (C,,H (N,O,),

PBD (C,,H,,N,0), DPO(C,sH,,NO)

* Mixture of one or several organic scintillators in an organic solvent (typically 3g/l solvent).

* Average distance to molecule of a different solvent should be below the emission wavelength

Solvents for liquid scintillators:
* Benzol (CH,), Toluol (C;Hg), Xylol (CgH, ),

Phenylcyclohexan (C,,H ), Triethylbenzol, Decalin (C,,H,g)

Can polymerize (low efficiency scinillators Polystrol, Polyvenyltoluol, Polymethylacrylat)

properties of these ‘plastic scintillators’

* Fast fluorescence: ca. 34 ns,

frequently used combinations

. liquid Benzol p-Terphenyl| POPOP
. ble detector sh
any possible detector shape Toluol BP0 880
* not very radiation resistant Xylol PBD BPO
Easy use of additives plastic | Polyvinylbenzol (PVB) | p-Terphenyl| POPOP
) : Polyvinyltoluol (PVT) DPO TBP
e hilter Polystyrol (PS) PBD |BBO/DPS

* |ncrease neutron cross section

wide range of detector applications
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Stokes shift
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Liquid noble gasses

8000 — Helium
= — Neon
7000 — — Argon
Liquefied noble gases: LAr, LXe, LKr 6000 — Krypton
S 5000 Xenon
s
2 4000 —
e F
de-excitation and £ 30001
excited dissociation 2000}
molecule v =
excitation @ M\P 1000 L
- » = |0 " e o ERT—— |
- uv 086 80 100 120 140 160 180 200
/ lisi Wavelength [nm)]
(a) collsion 130nm (Ar)
\ atoms 150nm (Kr)
ionization @ @ 175nm (Xe)
e —_—

ionized
molecule

4com bination
@

e

Also here one finds 2 time constants: from a few ns to 1 ps.
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Applications of Lar, LKr, LXe

@ Liquefied noble gases well suited detector medium for rare event
search

o Efficient scintillation medium with high light yields
e "Easily” scalable
e Chemical purification up to a high level of purity

@ Good background suppression needed
= Particle discrimination on an event-by-event basis

= Detailed investigation of scintillation properties
wavelength- and time-resolved
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TPC application @ Simultaneous measurement of

scintillation and ionization

%hggt!..-.. pof ™ @ 3D vertex reconstruction —
* 1 z-resolution: <1 mm, xy-resolution
Fiducial : - ~3mm (XENON100)
Volume El @ Powerful background rejection:
/_/ o Fiducialization
Liquid“}— | o Multi scatter-identification
D] neg HV ° Cl_hiZLgte s Particle identification
A o Pulse shape discrimination (LAr
% . /\52 detectors)
<A — > @ Optical coverage and light yield smaller
compared to single phase — increased
Figure: arXiv:1206.2169v1 threshold

(2012)
Alexander Neumeier (E15) JAPS-Scintillation in Liquid Noble Gases 29.11.2013 m




