

Science and Engineering

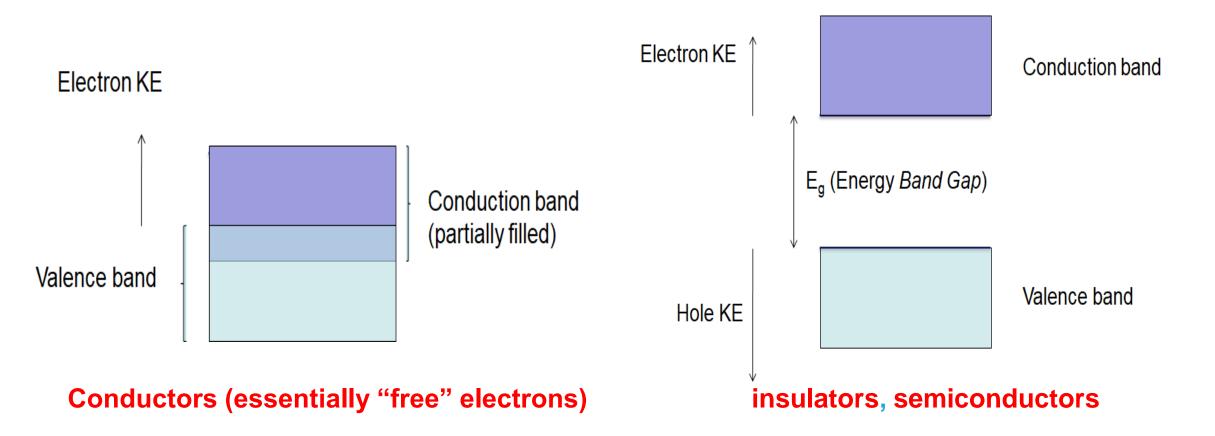
Radiation Detectors (SPA 6309)

Lecture 6

Peter Hobson

What is this lecture about?

- The principles of detection of ionising radiation
 - Interaction of charged and neutral particles with matter
 - Gaseous sensors
 - Semiconductor sensors
 - Scintillators
- Sensor systems used in particle and nuclear physics
 - Calorimeters
 - Tracking detectors
 - Neutrino detectors

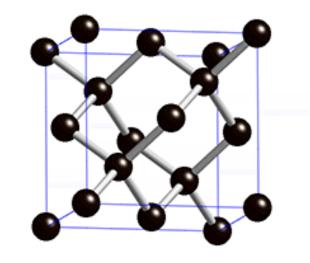

Key points from previous lecture

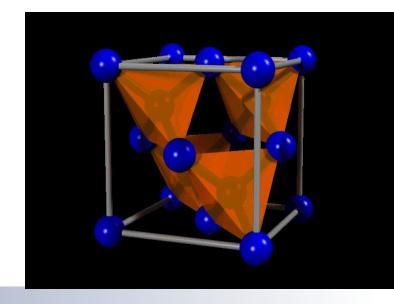
- Multi-wire proportional counter (MWPC)
- Drift chamber
 - Traditional (with wires like a MWPC)
 - Microstrip gas chamber
- Resistive Plate Chamber
 - Used where very large areas, good time resolution and moderate spatial resolution is needed, e.g. muon chambers in CMS at the LHC.
- Time Projection Chamber (TPC)
 - Uses very long drift distances in ultra pure gas (or noble liquid) to provide the third spatial coordinate.
 - zero material within the volume (bremsstrahlung, pair production minimised)
 - Important current technology for huge neutrino detectors (e.g. DUNE)

Silicon Sensors – basic semiconductor physics

- n, p Total electron/hole carrier concentrations
- n_i, p_i Intrinsic electron/hole carrier concentrations
- n_0, p_0 Thermal equilibrium electron/hole carrier concentrations
- \hat{n}, \hat{p} Excess carrier concentration (e.g. due to majority carrier injection)
- τ_e, τ_h electron/hole minority carrier lifetime
- *m** "Effective" mass (of electron or hole)
- μ_e, μ_h electron/hole mobility; units $[L]^2 [V.T]^{-1}$
- σ , ρ conductivity, resistivity (e.g. of a Si-wafer) and $\rho = \frac{1}{\sigma}$
- G,R Generation, Recombination rates (e-h pairs per unit volume per second)
- D_e, D_h Diffusivity of electrons/holes; units $[L]^2[T]^{-1}$

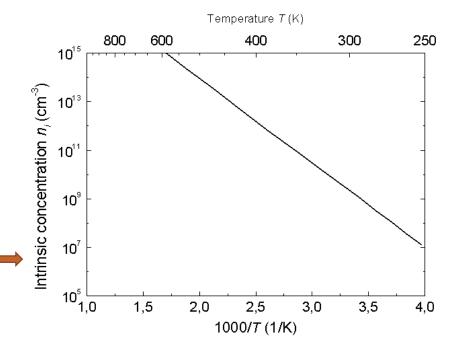
Conductors vs Insulators




What we call a semiconductor is an insulator whose electrical properties can be easily modified by adding impurities (e.g. n or p-type silicon).

Band gaps

- Typically quoted in eV ("electron volts)
- 1 eV = 1.602×10^{-19} J
- Some important semiconductor band gaps (in eV):
 - Ge: 0.7 (indirect)
 - Si: 1.1 (indirect)
 - GaAs: 1.4 (direct)
 - GaP: 2.3 (direct)
 - 4H-SiC: 3.3 (indirect) Note: the "H" here indicates a particular structure.
 - GaN: 3.4 (direct)
 - C (diamond): 5.5 (indirect)
- A useful database of relevant material properties
 - http://www.ioffe.ru/SVA/NSM/Semicond/index.html



Thermal equilibrium

• DEFINITION: Intrinsic semiconductor: $n_i = p_i$

$$n_i = B(T) \exp\left(\frac{-E_g}{2kT}\right)$$

- *k* is Boltzmann's constant* and *B(T)* depends on the material and temperature.
- At 300K, $n_i = 1.3 \times 10^{10} \text{ cm}^{-3} \text{ for Si}$ and $n_i = 2 \times 10^6 \text{ cm}^{-3} \text{ for GaAs}$

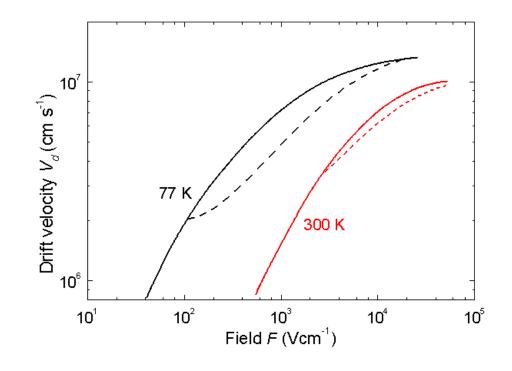
*(1.38×10⁻²³ JK⁻¹) but in more useful units, $k = 8.62 \times 10^{-5}$ eV.K⁻¹

Dynamic process

- Continual generation and recombination of electrons and holes.
- For band-band direct generation only the temperature is relevant.
- For recombination the carrier density is relevant

$$n_o p_o = n_i p_i$$
 Mass Action Law $n_o p_o = n_i^2$

 If an external source of carriers is available (optical/electrical/ionising radiation) then e/h concentrations can be raised above their thermal equilibrium value.


$$n = n_o + \hat{n}$$

 $p = p_o + \hat{p} = p_o + \hat{n}$
 $np \neq n_i^2$ out of equilibriu m

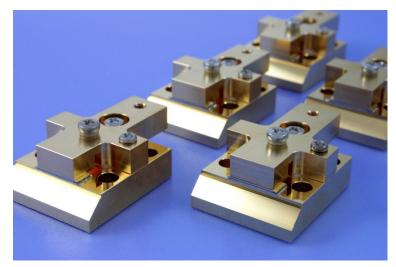
Drift current

- Thermal KE: $\frac{1}{2}m^*v_{th}^2 = \frac{3}{2}kT$ k is Boltzmann's constant
 - Drift velocity due to an applied electric field E $v_d \mathbf{x} = \mu_e E \mathbf{x}$ where μ_e is electron mobility
 - Note linear dependence on *E*. This holds up to quite high fields (~3 kV/cm for n-type Si) after which the velocity saturates at its scatter-limited value.

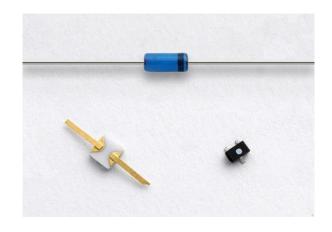
$$J\mathbf{x} = q(n\mu_e + p\mu_h)E\mathbf{x}$$
$$J\mathbf{x} = \sigma E\mathbf{x} \quad \text{Ohm's Law}$$

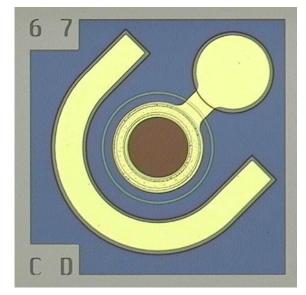
thus $\sigma = q(n\mu_e + p\mu_h)^J$ is current density, A is cross-sectional area, JA is the drift current, σ is conductivity.

Diffusion Current

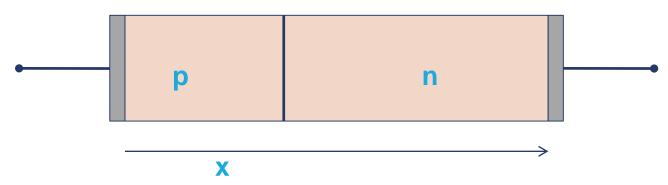

- Often in real devices one has both diffusion and drift simultaneously. Assume a pn junction plus an external applied electric field.
- Minority carrier holes are injected from p to n (diffusing away from p region) and then drift due to applied field.

$$J_h \mathbf{x} = \left(q \mu_h p E - q D_h \frac{dp}{dx} \right) \mathbf{x}$$
 Total hole current in x - direction


Diodes


Dynex high power rectifier diode

High power (2 kW) infrared laser bars (Credit: FBH/P. Immerz)



Noisecom noise diodes

High speed avalanche pin photodiode

1-D model

p-type region

- >Concentration of holes >> holes in the n-type region
- >This concentration gradient drives a *diffusion* current of holes to the *right*.
- >Thermal equilibrium \Rightarrow zero net hole current thus there *must* be a flow of holes to the *left* which **exactly cancels** the flow to the *right*.
- >This **cannot** be a *diffusion* current; it is in fact a *drift* current.

Transport equations

$$J_{h}\mathbf{x} = \left(q\mu_{h}pE - qD_{h}\frac{dp}{dx}\right)\mathbf{x} \quad \text{Total hole current in x - direction}$$

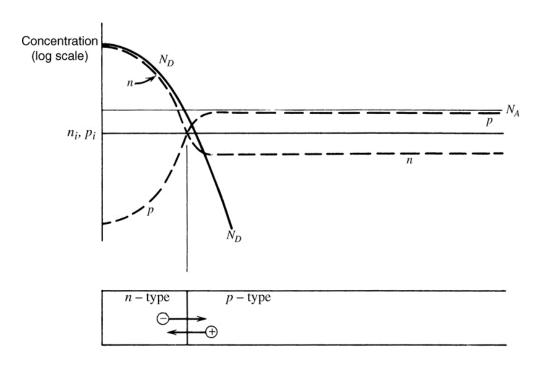
$$J_{e}\mathbf{x} = \left(q\mu_{e}nE + qD_{e}\frac{dn}{dx}\right)\mathbf{x} \quad \text{Total electron current in x - direction}$$

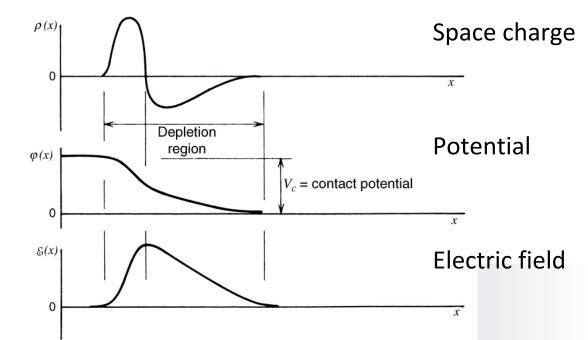
$$\mathbf{J}_{total} = \mathbf{J}_{h} + \mathbf{J}_{e} \quad \text{Total current density}$$

NOTE: change of sign!

Often in devices, e.g. bipolar, electron & hole currents vary with distance. Total current can be evaluated at any plane.

pn junction

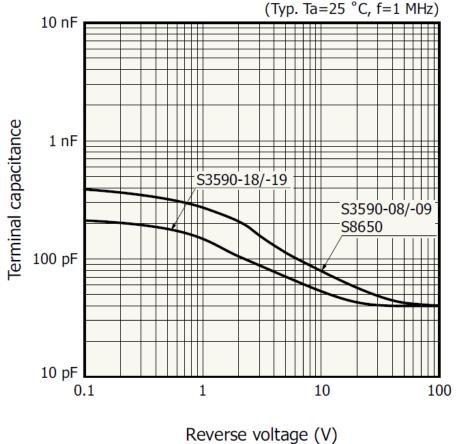

Depletion Region:


A buffer zone where, in thermal equilibrium, there is no *net* flow of electrons *or* holes.

Using Einstein relationship the electric field is:

$$\mathsf{E} = \frac{kT}{qp} \frac{dp}{dx} = -\frac{kT}{qn} \frac{dn}{dx}$$

Ideal Diode Equation (neglects carrier generation in the depletion region!)


$$J = J_0 \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$$

where J_0 is the saturation current density

A reverse biased diode (the type we are interested in) has capacitance due to the space charge, it varies with bias voltage V_R:

$$\frac{1}{C^2} = \frac{2(V_C + V_R)}{q\varepsilon_r \varepsilon_0 N_D}$$

[S3590 series, S8650]

Take away: key points

- 1. Semiconductors work with two types of charge carriers (electrons and holes).
- 2. The drift in electric fields with mobilities which depend on the semiconductor, the type of carrier and the temperature.
- 3. A pn junction diode has in built potential (from space charge) which separates any e/h pairs created in the depletion region.
- 4. Note some similarities with the principles of gas detectors from (Lectures 4 and 5) pn junction devices are solid-state ionization chambers in some sense.