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What is this lecture about?

« The principles of detection of ionising radiation
» Interaction of charged and neutral particles with matter
« (Gaseous sensors
« Semiconductor sensors
« Scintillators

« Sensor systems used in particle and nuclear physics
» Calorimeters
« Tracking detectors
* Neutrino detectors
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Key points from previous lecture

 The Interactions of neutrons and Cherenkov effect

* Neutrons
* High energy can cause fission
* Intermediate energy, main scattering
« Thermal neutrons ~ 25 meV (milli electron volts) very slow, liable to
capture.

* Cherenkov
« A velocity threshold below which no photons emitted

« Very weak effect (can neglect as a cause of energy loss), intensity varies
as A2
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Key points from previous lecture

« The ionization of gasses and the proportional/Geiger counter

 Gases
 lonisation requires ~ 30 eV per ion-pair.
 Electrons drift in an electric field about 1000 times faster than positive
lons.
* Electrons can cause impact ionisation in regions of high field strength.

* Proportional Counter
« Almost all the signal is due to the movement of the positive ions.

« Highly asymmetric energy loss (Landau-Vavilov distribution) in “thin”
absorbers.

« Geiger plateau, very large signal, long “dead time”, still used for radiation
protection.
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Multi-wire proportional counter

e Multi-wire proportional counters (MWPC) collect
deposited charge in a large number of electrically
isolated cells — position resolution

* By using planes of MWPC with orthogonal (and often
diagonal) wire planes you get 2D hit resolution.

- Cathode planes

o . . . . Anode wires

Virtual cell boundaries —
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X-Cathode Strips
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2D position sensing using induced
charges on cathode plane strips.
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Drift Chamber (Concept)

e |n principle, since the electrons travel at a constant mean
velocity, measuring this drift time gives spatial information.
e Could use a modified proportional counter with a long drift
region.
e This design does not scale well (long drift times, very high
voltages, but see Time Projection Chamber)
Charged particle

&

%Y Queen Mary

University of London
Science and Engineering




Drift Chamber (practical, obsolete)

* The clever trick is to use the same structure as a MWPC but to avoid the significant field
non-uniformities (low field between anodes) which would ruin the resolution.

* Instead of having all anode wires, a drift chamber alternates anode wires with field
wires. These are thick and help maintain the electric field in the critical region.

* Localisation accuracy is limited by
» Spread in original position of ionisation (delta-rays)
 Stability of drift velocity
* Dispersion due to diffusion
e Localisation of order 20 um is achievable for a drift distance of 1 cm.

Field wires -HT

Anodes +HT ——
Cathode planes
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Drift Chamber |

(practical, modern) me

Figure (from NIM A 310 p89) Srmi)
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Resistive Plate Chamber (RPC)

U bars
/ PET film (0.3 mm) Aluminium skins (0.4 mm)
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Foam board (100 mm)
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- Bakelite plates (2 mm)

—-—— Graphite coating

PET film (0.3 mm)
Readout strips

Spacers (2 mm)

h-| PRC gas gap (2 mm)
-\ Bakelite bars

Gas mixture of 95% C,H,F, + 5% i-C,H,
J. Phys. G: Nucl. Part. Phys. 26 (2000) 1291

NIM A 518 (2004) 86—90
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Bakelite

Still widely manufactured,
even in the UK.

http://www.cylexplastics.co.uk
/products/thermosetting-
plastics/bakelite.html

Ericsson telephone, picture by Holger Elgaard

Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
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http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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RPC in CMS
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Time Projection Chamber (TPC)

A giant drift chamber, using 2D spatial plus time-of-drift information to
give a truly 3D picture particle tracks. Need a trigger signal to start the
timing clock.
" For the precision timing need a very
— uniform field and very high (graded)
N e voltages.

cathode

1. ionisation 2. drift 3. registration j8

Use gas multiplication to provide gain
at the anode. Use of Micromegas and
other new approaches replacing
traditional wires.

| Note: this approach also works with
' drifting in liquid noble gases (Ar, Kr, Xe)
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ALICE TPC

@ 5560
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Figure 3.8: Design of the end-plate and the service support wheel.

Figure 3.1: Conceptual view of the TPC field cage.
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ALICE TPC R
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ALICE TPC

Cosmic ray
shower
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ALICE TPC

“Loosely-bound objects produced in
nuclear collisions at the LHC” Nuclear
Physics A 987 (2019) pp 144-201

https://doi.org/10.1016/j.nuclphysa.
2019.02.006
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https://doi.org/10.1016/j.nuclphysa.2019.02.006

Liquid argon TPC

Liquid argon (LAr) can also be ionised and then have long drift distances for electrons. Thus a
large and massive (100 tonne +) detector can be built — neutrino physics. Lar also scintillates
providing a fast light pulse (clock start) which is critical for TPC operation.

A number of these have been/are being built

MicroBooNE (170 ton) at Fermilab: https://microboone.fnal.gov/

Short Baseline Near Detector (112 ton) at Fermilab: https://sbn-nd.fnal.gov/
Deep Underground Neutrino Experiment (~ 68 k ton) at Sanford Laboratory:
https://www.dunescience.org/
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Liquid Argon Time Projection Chamber (LArTPC)

The principle of LArTPC Anode wire planes:
- 3D track reconstruction U Vv Y
Liquid Argon TPC
Bo Yu (BNL)

Cathode
Plane

—
Edrift ~ 500V/cm




Liquid Argon Time Projection Chamber (LArTPC)

The principle of LArTPC Anode wire planes:
- 3D track reconstruction U Vv Y
Liquid Argon TPC
Bo Yu (BNL)

Charged particle tracks
ionize Argon atoms

Cathode
Plane

Edrift ~ 500V/cm



Liquid Argon Time Projection Chamber (LArTPC)

The principle of LArTPC
- 3D track reconstruction

Bo Yu (BNL)

Cathode
Plane

*—
Edrift ~

Liquid Argon TPC

/

500V/cm

Anode wire planes:
U vV Y

Charged particle tracks
ionize Argon atoms

Scintillation light (~ns) is detected
by PMTs at same time




Liquid Argon Time Projection Chamber (LArTPC)

The principle of LArTPC Anode wire planes:
- 3D track reconstruction U Vv Y
Liquid Argon TPC
Bo Yu (BNL)

Cathode
Plane

Then ionized electrons are
drifted to anode wires (~ms)

—
Edrift ~ 500V/cm




Liquid Argon Time Projection Chamber (LArTPC)

The principle of LArTPC Anode wire planes:
- 3D track reconstruction U Vv Y
Liquid Argon TPC )
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Bo Yu (BNL)
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Charge Signal Formation

Current
Out of Wire
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ArgoNeuT
1 MIP peak ~ 26 ADC counts
Noise rms ~ 1 ADC count

Induction
(small, bipolar)

Induction
(small, bipolar)

Collection
(large, unipolar)



Actual TPC data from MicroBooNE
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BNB DATA : RUN 5211 EVENT 1225. FEBRUARY 29, 2016 NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

https://microboone-exp.fnal.gov/public/approved plots/Event Displays.html
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https://microboone-exp.fnal.gov/public/approved_plots/Event_Displays.html

