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What is this lecture about?

« The principles of detection of ionising radiation
» Interaction of charged and neutral particles with matter
« (Gaseous sensors
« Semiconductor sensors
« Scintillators

« Sensor systems used in particle and nuclear physics
» Calorimeters
« Tracking detectors
* Neutrino detectors
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Key points from previous lecture

* The principles of detection of ionising radiation

« Bethe-Bloch formula and the concept of the Minimum lonising Particle
(MIP).

« ~2 MeV glcm?is the key number to retain in your mind, for relativistic
particles and all materials (except H).

» Bragg curve for ionising particles, most energy per unit length deposited
at the end of their range (used in proton radiation cancer therapy).

» Electrons lose energy dominantly by bremsstrahlung (gamma radiation)
above the critical energy which is in the range 115 to 7 MeV for the
elements Be to U.
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Photons
Energy Loss for Photons

« Dramatically different processes for
photons than for charged particles
— Photoelectric effect
— Pair production
— Compton Scattering (+Thomson +Rayleigh)

— Less important 1s
e Nuclear dissociation
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Photons

Dominant interaction below ~ 100 keV

* Photoelectric effect

— Absorption of a photon by an atomic electron followed
by the subsequent ejection of an electron from the

atom.
— Nucleus absorbs the recoil momentum

— For photon energies above the K-shell the absorption  —
cross section varies approximately as Z°

— Implies that high Z materials make good gamma ray
detectors e.g. Nal, BGO, CslI (all scintillating crystals). —

NOTE: These comments regarding the photoelectric
effect is relevant up to photon energies ~ a few 100 keV
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A is the photon
“mass attenuation
length”
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NIST data: https://physics.nist.geov/PhysRefData/XrayMassCoef/tab3.html
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Photons

Dominant interaction around 100 keV to
about 10 MeV

» Compton Scattering
— Scattering of photons by free electrons

— Outgoing photon has lower energy than
incoming photon.

y(1—cos(6))

T'=hv-hv'=hv hv’
1+ y(1—cos(8))
hv hv 2
where y = 5
m,c \
T

Hobson, Brunel
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Photons

Be—030

Angular distribution is very dependent on

the photon energy.

See also animation from Wolfram: | Py
https://demonstrations.wolfram.com/Klein 80 oo
NishinaFormulaForComptonEffect/
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https://demonstrations.wolfram.com/KleinNishinaFormulaForComptonEffect/

Photons

Dominant interaction above 10 MeV

 Pair production
— Conversion of photon into electron+positron pair

— Need a third body (momentum conservation), usually
this is a nucleus.

— Threshold energy is 1.022 MeV

— Mean free path of a gamma ray for pair production is
related to the radiation length for electrons:

;i’pair = /7 X,
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M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
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Scattering of charged particles

» As well as 1nelastic collisions with atomic 72 .ot
i ; : N(@)=N,-c,-d,
gg;tlrglrllzi elfiartlcles also undergo elastic scattering (@)=N,-cp-d; Sz.E.) -sin'(6)2)

N = number of incident a-particles

 Classical formula due to Rutherford tells you that - | | _
the cross-section varies approximately as 04 — mmmmp | ;= alomic concentration of the forl

— Scattering produces mainly very small changes in d. = foil thickness
particle trajectory Z = atomic number of the foil

— Cumulative effect of multiple scattering is however a E = energy of the a-particles
net change. e = elementary charge
g,= dielectric constant

— For hadrons the strong and Coulomb interactions

contribute to the effect.
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Scattering of charged particles

Rutherford’s Experiment
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Scattering - . -
of charged
particles

)? 1
b

9plane
A

Figure 33.10: Quantities used to describe multiple Coulomb scattering. The particle is incident in
the plane of the figure.

If we define .
Oy = Ggffm — ﬁ 9;;1;39 \ (33.15)

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of
the projected angular distribution, with an rms width given by Lynch & Dahl [40]:
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Scattering
of charged
particles

A collimated beam of 100 keV
electrons interacting with
silicon. The tracks in red
backscatter out of the
material.

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
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Scattering
of charged
particles
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100 keV electrons interacting with silicon. These plots show the
backscattered energy and angle of the electrons that leave the

material.
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