

Radiation Detectors (SPA 6309)

Lecture 3

Last revised 26 January 2020

What is this lecture about?

- The principles of detection of ionising radiation
 - Interaction of charged and neutral particles with matter
 - Gaseous sensors
 - Semiconductor sensors
 - Scintillators
- Sensor systems used in particle and nuclear physics
 - Calorimeters
 - Tracking detectors
 - Neutrino detectors

Key points from previous lecture

- The principles of detection of ionising radiation
 - Bethe-Bloch formula and the concept of the Minimum Ionising Particle (MIP).
 - ~ 2 MeV g⁻¹cm² is the key number to retain in your mind, for relativistic particles and all materials (except H).
 - Bragg curve for ionising particles, most energy per unit length deposited at the end of their range (used in proton radiation cancer therapy).
 - Electrons lose energy dominantly by bremsstrahlung (gamma radiation) above the *critical energy* which is in the range 115 to 7 MeV for the elements Be to U.

Energy Loss for Photons

- Dramatically different processes for photons than for charged particles
 - Photoelectric effect
 - Pair production
 - Compton Scattering (+Thomson +Rayleigh)
 - Less important is
 - Nuclear dissociation

Dominant interaction below ~ 100 keV

- Photoelectric effect
 - Absorption of a photon by an atomic electron followed by the subsequent ejection of an electron from the atom.
 - Nucleus absorbs the recoil momentum
 - For photon energies above the K-shell the absorption cross section varies approximately as Z^5
 - Implies that high Z materials make good gamma ray detectors e.g. NaI, BGO, CsI (all scintillating crystals).

NOTE: These comments regarding the photoelectric effect is relevant up to photon energies ~ a few 100 keV

Photon absorption cross-sections in Carbon and Lead

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Queen Mary University of London Science and Engineering

 λ is the photon "mass attenuation length"

 ρ/λ gives you the linear attenuation coefficient μ [cm⁻¹]

 $I = I_0 e^{-\mu x}$

NIST data: https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html

Dominant interaction around 100 keV to about 10 MeV

- Compton Scattering
 - Scattering of photons by *free* electrons
 - Outgoing photon has lower energy than incoming photon.

Angular distribution is very dependent on the photon energy.

See also animation from Wolfram: <u>https://demonstrations.wolfram.com/Klein</u> <u>NishinaFormulaForComptonEffect/</u>

Dominant interaction above 10 MeV

- Pair production
 - Conversion of photon into electron+positron pair
 - Need a third body (momentum conservation), usually this is a nucleus.
 - Threshold energy is 1.022 MeV
 - Mean free path of a gamma ray for pair production is related to the radiation length for electrons:

$$\lambda_{pair} = \frac{9}{7} X_0$$

Photon absorption cross-sections in Carbon and Lead

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Queen Mary University of London Science and Engineering

Probability that a photon interaction will produce an e^+e^- pair

Scattering of charged particles

- As well as inelastic collisions with atomic electrons, particles also undergo *elastic* scattering from nuclei
- Classical formula due to Rutherford tells you that the cross-section varies approximately as θ^{-4}
 - Scattering produces mainly very small changes in particle trajectory
 - Cumulative effect of *multiple scattering* is however a net change.
 - For hadrons the strong and Coulomb interactions contribute to the effect.

 $N(\theta) = N_0 \cdot c_F \cdot d_F \frac{Z^2 \cdot e^4}{(8\pi\epsilon_0 E_\alpha)^2 \cdot \sin^4(\theta/2)}$ $N_0 = \text{number of incident } \alpha \text{-particles}$ $c_F = \text{atomic concentration of the foil}$ $d_F = \text{foil thickness}$ Z = atomic number of the foil $E_\alpha = \text{energy of the } \alpha \text{-particles}$ e = elementary charge $\epsilon_0 = \text{dielectric constant}$

Scattering of charged particles

Rutherford's Experiment

Simulated using the SRIM Monte Carlo

Scattering of charged particles

Figure 33.10: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

If we define

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} , \qquad (33.15)$$

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with an rms width given by Lynch & Dahl [40]:

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta c p} \ z \ \sqrt{\frac{x}{X_0}} \left[1 + 0.088 \log_{10}(\frac{x \ z^2}{X_0 \beta^2}) \right]$$

Scattering of charged particles

A collimated beam of 100 keV electrons interacting with silicon. The tracks in red backscatter out of the material.

Scattering of charged particles

100 keV electrons interacting with silicon. These plots show the backscattered energy and angle of the electrons that leave the material.

