

Science and Engineering

Radiation Sensors (SPA 6309)

Lecture 1

Module Introduction

Professor Peter R Hobson

Office: GO Jones 106

• Email: p.hobson@qmul.ac.uk

Role: Head of School

Research Group: Particle Physics

What is this module about?

- The principles of detection of ionising radiation
 - Interaction of charged and neutral particles with matter
 - Gaseous sensors
 - Semiconductor sensors
 - Scintillators
- Sensor systems used in particle and nuclear physics
 - Calorimeters
 - Tracking detectors
 - Neutrino detectors

What is this module not about?

- The fundamentals of particle physics (for that see SPA6306)
 - IMPORTANT: I will not assume that you have taken SPA6306.
- History of radiation sensors
 - I will concentrate on fairly recent developments use examples from current (or planned) experiments in most cases.
- Sensors primarily used in optical imaging.

Module outline (1)

- Interaction of radiation with matter
 - "Heavy" particle interactions (e.g. proton, alpha)
 - "Light" particle interactions (e.g. the electron)
 - The photon
 - Radiation damage issues
- Sensors that use ionisation directly
 - Gaseous detectors
 - Semiconductors
 - Noble-gas liquids
- Sensors producing light
 - Scintillators
 - Cherenkov

Module outline (2)

- Calorimeters
 - Homogeneous
 - Sampling
- Tracking Detectors
 - Silicon strip
 - Resistive plate
 - Time-projection
- Dark matter, astroparticle and neutrino
 - Scintillators
 - Cherenkov
- Detector system walkthrough
 - The Compact Muon Solenoid at the Large Hadron Collider

Assessment & Feedback

The summative (provides marks as well as feedback) assessment is as follows:

- 1. One hour class test in week 6, this will count towards 30% of the final mark.
- 2. An individual critical essay (deadline 14 April 2020) which will count for the remaining 70%.

Tutorial sessions starting in week 2. Questions which you should attempt before the tutorial will be normally available a week in advance. These will be formatively assessed within the tutorial session (they do not count towards the final module mark).

Philosophy

What are my aims?

- You gain an understanding of the key radiation sensor principles, including the interaction of particles with matter.
- You understand how the most important detector systems operate and what the current limits to performance are.
- You can estimate order-of-magnitude system parameters for typical applications.
- You can apply the above to critically analyse a significant experimental measurement of a fundamental particle property (for example mass).

Cropped from: Lestat (Jan Mehlich) [CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)]

Resources

The "recommended" text is by W R Leo, it is very good but even the 2nd edition is now over 25 years old.

The on-line "Particle Data Group" (PDG) reviews are up-to-date but are fairly condensed (see http://pdg.lbl.gov/)

These lectures will guide you, but I will give references to other resources as we go through where I think they will be useful.

